首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
基于MODIS数据新疆土壤干旱特征分析   总被引:4,自引:1,他引:3  
干旱是一种常见的自然灾害,严重影响着新疆的农业生产。利用中分辨率成像光谱仪MODIS影像MOD11A2数据和MOD13A2数据,数字高程模型(DEM)对Ts进行了纠正,提取归一化植被指数(NDVI)和地表温度(Ts)构建NDVI-Ts特征空间,并依据特征空间计算的温度植被干旱指数(TVDI)作为监测土壤湿度指标,反演了新疆2013年5、6、7三个月每16 d的土壤湿度。较好地反映地表图层土壤湿度,分析了新疆土壤湿度的时空分布特征,新疆北部地区土壤湿度高于南部,西部的土壤湿度高于东部,且土壤湿度由西北向东南逐步减小,依次表现为湿润>正常>轻旱>中旱>重旱>极旱;由5月到7月土壤湿度不断增大,这与新疆降水量分布和实地土壤含水率十分吻合,监测结果可信,能够为决策部门防旱抗旱提供有力的信息支持。  相似文献   

2.
基于MODIS数据的玛纳斯河山区雪盖年际波动特征研究   总被引:1,自引:0,他引:1  
基于2000 -2010年的MODIS/Terra积雪8d合成数据(MOD10A2)与DEM数据,通过计算和分析不同高程带、不同坡向和不同坡度的积雪覆盖率,研究了新疆玛纳斯河山区雪盖的年际波动特征.结果表明:(1)鼎盛期积雪覆盖率在研究时段内形成两高两低的总体走势,2000/2001和2007/2008雪年为高值年,2...  相似文献   

3.
利用MODIS数据进行旱情动态监测研究   总被引:14,自引:0,他引:14  
MODIS-EVI植被指数与不同覆盖程度植被的线性关系已得到明显改善,可以更有效地反映地表植被的生长状态。利用MODIS合成数据MYD11A2和MYD13A2获取的增强型植被指数(EVI)和陆地表面温度(Ts)构建EVI-Ts特征空间,并以该特征空间计算的温度植被干旱指数(TVDI)作为干旱监测指标,分析广西2006年秋旱分布。结果表明:以地表温度和MODIS-EVI为基础的温度植被干旱指数能较好地反映区域旱情分布和旱情发展过程,2006年9月中旬—11月中旬广西受旱区域不断扩大,旱情持续加重。  相似文献   

4.
东北冻土区MODIS地表温度估算   总被引:1,自引:0,他引:1  
地表温度作为重要的地表参数是驱动土壤热状态的主要因子,对冻土分布和活动层厚度变化的研究具有重要意义。常规方式获取地表温度数据往往来自气象站点监测,范围小且不连续。NASA官网提供的MOD11A1地表温度产品可以提供大范围地表温度数据,但在冬季由于对云与雪的混淆导致大量的数据缺失,影响该产品在东北冻土区的使用。根据对东北冻土区植被、裸土、水体、积雪等常见下垫面状况的遥感分类结果,利用劈窗算法反演2006年四幅少云或无云的MODIS1B卫星影像,并分别以气象站实测数据和MODIS温度产品进行验证和对比分析。结果表明:该方法得到地表温度结果与气象站点实测数据误差较小,平均绝对误差仅为1.24℃。且可根据分类情况较好的得到积雪区域地表温度的空间分布状况,与地表温度产品的一致性较高,弥补地表温度产品因为云和积雪的混淆所导致的数据缺失,得到较为完整的地表温度空间分布数据。  相似文献   

5.
不同类型生态系统水热碳通量的监测与研究   总被引:5,自引:0,他引:5  
亚太地区环境革新战略项目(APEIS) 在中国5种主要生态系统类型区(草地: 海北、耕地: 禹城、稻田: 桃源、林地: 千烟洲、荒漠: 阜康) 建立了一个以连续观测能量、水分和碳素通量为中心,包括气象、水文、土壤、植被等各项生态要素的监测网络系统,被称之为APEIS-FLUX系统。作者首先对APEIS-FLUX系统的观测数据进行了初步分析,表明该系统稳定可靠,它可以实时地提供高质量、高精度、长期而连续的通量及生态要素的观测数据。对数据的比较清楚地反映出了不同生态系统类型区的水热碳通量的差异性。其次,利用APEIS-FLUX数据对美国航空航天局(NASA) 的MODIS数据产品进行比较验证后发现,除部分产品如地表面温度(MOD11) 等与观测数据较吻合以外,大部分数据产品如土地覆盖(MOD12),叶面积指数(MOD15) 和光合速率与净第一性生产力(MOD17) 等都与观测数据相差深远,有必要对其处理程序和模式进行修正。为此,我们利用APEIS-FLUX的数据作为MOD15和MOD17的生成模型(BIOME-BGC) 的输入数据,并对该模型的有关参数进行了修订。结果表明,该模式在通过修正后,可以很好地模拟植被的生长过程及其相应的水热碳循环过程。  相似文献   

6.
基于FTIR和MODIS数据,建立了新疆沙漠宽波段(8~13.5 μm)地表比辐射率的最优估算模型。首先,利用傅立叶变换热红外光谱仪观测的塔克拉玛干沙漠地表比辐射率光谱数据,结合同期MODIS温度/比辐射率产品MOD11A1的29、31和32波段比辐射率值和MOD09A1的第7波段反射率值,建立宽波段地表比辐射率估算模型,并分别采用观测数据和光谱库数据验证了模型的精度,估算结果的均方根误差分别为0.0041和0.0081。其次,选择最优估算模型,利用MODIS数据,估算了新疆4个沙漠的宽波段地表比辐射率,得到了沙漠地表比辐射率的空间分布特征。结果表明:塔克拉玛干沙漠和库鲁克库姆沙漠气候干燥稳定,地表比辐射率分布较为均匀,范围为0.850~0.915;古尔班通古特沙漠受到植被和地表水分的影响,比辐射率空间分布不均匀,范围为0.890~0.915;库木塔格沙漠的地表比辐射率分布与其羽状地表类似,范围为0.860~0.910。  相似文献   

7.
气温是反映生态环境的重要参数之一,准确估算气温的时空分布对于气候变化研究具有重要意义。论文基于2011—2019年青海省气温实测数据、MODIS产品和SRTM DEM数据,在像元尺度分别开展了晴天条件和有云条件下瞬时空气温度的遥感估算研究,并评价了不同气温估算方法的精度差异,进而通过多元回归模型生成研究区高精度月空气温度产品,对青海省气温的时空分布格局进行分析。研究结果表明,在未使用气温实测数据进行校准的情况下,通过将MOD07_L2大气廓线产品反演的空气温度与MOD06_L2地表温度平均的方法,能够显著提高气温的估算精度。晴天条件下相关系数(r)为0.93,均方根误差(RMSE)为4.71 ℃;有云条件下r为0.89,RMSE为5.16 ℃。在使用气温观测值进行校准的情况下,通过引入高程参数,多元回归模型月尺度空气温度估算的决定系数(R2)和RMSE总体分别保持在0.8以上和2.5 ℃以下。将上述回归模型应用到栅格尺度,从而生成整个青海省高精度卫星过境时刻的逐月气温产品,进而分析其时空分布格局。具体来说,青海省月最高气温出现在7月,全省平均气温为13.59 ℃,最低气温出现在1月,全省平均气温为-9.44 ℃;气温的空间分布主要受海拔控制,全省平均气温直减率为4 ℃/km。上述研究表明MODIS大气廓线产品在全天气气温估算方面具有独特优势,特别是在地面气温实测数据的支持下能够有效降低遥感估算的系统性误差,实现大尺度复杂地形条件下气温的高精度估算。  相似文献   

8.
MODIS水汽通量估算方法在华北平原农田的适应性验证   总被引:7,自引:0,他引:7  
利用遥感手段估算区域水汽通量对研究区域气候变化及生态系统功能评价颇具意义。但是由于估算模式涉及时空差异很大的地表特征参数很难完全通过遥感数据获得,因此MODIS水汽通量数据产品 (MOD16) 至今尚未问世。本研究以中科院禹城综合实验站2002年4~5月份冬小麦田的涡度相关实测水汽通量为标准,验证MOD16算法所估算的农田水汽通量,结果表明直接使用MOD16算法计算的麦田水汽通量比实测水汽通量平均偏大近20%。对其中的作物三基点温度、空气动力学阻抗计算方法和植被覆盖度进行修正,修正后的MOD16计算结果和实测值非常吻合,1:1曲线斜率为0.9706,相关系数R2为0.8845。这为利用MODIS数据大面积估算农田水汽通量提供了科学依据。  相似文献   

9.
基于2001—2018年MOD10A2积雪产品和MOD11A2陆地表面温度数据,采用精细分区统计和相关性分析方法,研究了中国天山不同海拔高度上积雪垂直分布特征及其与地表温度(Land surface temperature,LST)的响应关系。结果表明:中国天山积雪覆盖率(Snow cover percentage,SCP)随海拔的变化呈现春、夏、秋、冬4种不同的季节变化模式。SCP在海拔4200 m以下呈秋冬季增加、春夏季减少态势,在海拔4200 m以上呈秋冬季减少、春夏季增加态势。除冬季外,春、夏、秋3个季节的SCP与LST均具有显著强负相关性。  相似文献   

10.
基于MODIS影像的土地覆被分类研究——以京津冀地区为例   总被引:6,自引:1,他引:5  
左玉珊  王卫  郝彦莉  刘红 《地理科学进展》2014,33(11):1556-1565
在全球变化研究中,如何快速、准确获取土地覆被信息对该项研究有着至关重要的作用.随着遥感科学的不断发展和应用领域的深入,研究者可以利用遥感影像进行土地覆被分类研究,并且具有准确、快速、自动化等优点.本文利用MODIS数据具有的多光谱、多时相特点,以京津冀地区为例,选取2013 年全年16-day 的MOD13Q1/EVI时间序列数据、2013 年5 月份一期的MOD09Q1(1、2 波段)和MOD09A1(3-7 波段)产品,并运用时间序列谐波分析法对全年MOD13Q1/EVI 时间序列数据进行去云、去噪的平滑重建处理,使其数据更能反映物候周期性变化规律.选择谐波分析后的全年MOD13Q1/EVI 时间序列数据、MODIS数据的1-7 波段地表反射率和NDWI(归一化差异水体指数)、MNDWI(改进归一化差异水体指数)和NDSI(土壤亮度指数),构建了3 种特征变量组合方案的CART决策树,分别进行京津冀地区的土地覆被分类研究.结果表明:方案一(全年EVI 的23 个时相)、方案二(方案一+MOD09 的1-7 波段地表反射率)和方案三(方案二+MNDWI+NDSI+NDWI)的总体分类精度分别达到86.70%、89.98%、91.34%,Kappa系数分别为84.94%、88.66%、90.20%.研究表明,仅利用MODIS遥感影像自身多种分类特征和决策树方法对宏观土地覆被分类就可达到较高精度,显示了本文分类方法在实践中的可行性及MODIS数据在区域尺度土地覆被分类研究方面的优势与潜力.  相似文献   

11.
MODIS影像的NDVI和LSWI植被水分含量估算   总被引:6,自引:4,他引:2  
植被含水量估算在作物灌溉和森林火灾预警中具有重要指导意义。采用8天合成MODIS地表反射率数据,针对植被水分含量与陆表水指数,植被覆盖与归一化植被指数的关系及不同植被类型和地表水分含量状况在NDVI-LSWI二维空间中的分布规律,在NDVI-LSWI梯形特征空间中确定最大和最小含水量边界线的基础上采用植被干燥指数直接估算植被水分亏缺程度。该方法不仅简便,而且可以避开植被指数温度梯形图中陆地表面温度和气温差值的测量。  相似文献   

12.
闫峰  王艳姣  吴波 《地理科学》2014,34(8):987-993
采用2011年5月28日MODIS多时间尺度数据产品和土壤相对含水量RSM数据,对河北省多时间尺度Ts-EVI特征空间旱情遥感监测的差异性进行了研究,结果表明:① 多时间尺度Ts-EVI特征空间的TVDI与土壤表层RSM具有较高的相关性,1 d尺度Ts和1 d、8 d尺度EVI构建的RSM-TVDI决定系数较高,8 d尺度的Ts和8 d、16 d尺度EVI的RSM-TVDI决定系数较低。② 多时间尺度Ts-EVI特征空间的旱情监测结果在空间分布上具有较好的一致性,但其面积存在一定的差异;旱情监测应用中Ts-EVI特征空间构建应首选1 d时间尺度的Ts和EVI,其次是1 d尺度的Ts和8 d尺度的EVI,再次为8 d尺度的Ts和8 d尺度的EVI。  相似文献   

13.
2001-2010年秦岭森林物候时空变化遥感监测   总被引:1,自引:1,他引:0  
植被物候是陆地生态系统对全球气候变化响应的最佳指示器,研究其时空变化对深入理解陆面水热过程、碳循环过程及预测陆地生态系统的时空变化具有重要意义。本文采用2001-2010年MODIS MOD09A1产品,通过引入MOD09A1的时间控制层DOY(Day of Year)提高EVI的时间精度;采用最大变化速率法和阈值法相结合提取秦岭森林物候期。结果表明,随着水热条件变化,由低海拔至高海拔,东南向西北,生长季始期(Start of Growth Season, SOG)逐渐推迟,集中在第81~120 d(即从3月下旬-4月末);生长季末期(End of Growth Season, EOG)逐渐提前,集中在第270~311 d(10月初-11月上旬);生长季长度(Length of Growth Season, LOG)逐渐缩短,集中在150~230 d。秦岭森林物候期与海拔关系密切,海拔每升高100 m,SOG推迟2 d,EOG提前1.9 d,LOG缩短3.9 d。2001-2010年,森林SOG提前、EOG延后和LOG延长主要分布于秦岭中高海拔区;SOG延后、EOG提前和LOG缩短主要分布在海拔1000 m以下部分区域。高海拔区物候的年际变化要比低海拔区复杂,2000 m以上区域SOG提前、EOG提前、LOG缩短。上述研究结果量化了不同海拔梯度森林的物候差异,揭示了近10年秦岭森林物候的时空格局,可为秦岭地区生态环境评价和保护提供科学依据。  相似文献   

14.
陈斌  张学霞  华开  徐珂 《干旱区地理》2013,36(5):930-937
以内蒙古锡林郭勒盟地区为研究对象,选取2010年研究区旱情发生显著变化的9、10月份的MODIS植被指数和陆地表面温度数据,构建草原地区NDVI-LST和EVI-LST特征空间,进而由此构建了草原地区的温度植被干旱指数(TVDI),并结合当地气象数据和野外同步实地测量得到的土壤含水量数据对该指数进行定量验证。结果表明:(1)基于EVI-TS特征空间构建的TVDI,同样适用于旱情研究;且在研究区植被覆盖度不高的条件下,基于NDVI-TS特征空间的TVDI更适用于干旱监测;(2)构建的NDVI-TS和EVI-TS特征空间,其散点图符合三角形的关系,与前人研究成果相符;(3)TVDI可以很好地反映研究区的旱情变化情况,可以对研究区进行旱情动态监测;(4)基于NDVI-TS及EVI-TS空间构建的TVDI均与实地同步野外采集的土壤含水量数据结果显著负相关。且通过对基于TVDI的干旱监测结果与研究区实际情况对比分析发现,两者在旱区分布范围、旱情强度等级、干旱发展进程等方面基本吻合,说明TVDI可以在时间上很好监测旱情变化,TVDI可以用来评价草原干旱状况。  相似文献   

15.
基于TVDI的黄土高原地表干燥度与土地利用的关系研究   总被引:5,自引:1,他引:5  
基于地表温度和植被指数的经验关系构建地表干燥度指数。该指数对Ts/NDVI特征空间的生态特征的解释,对土壤和作物的水分含量具有一定的指示意义。通过对地表干燥度进行分级,分析陕北黄土高原区地表含水状况的空间差异,进而结合该地区的主要土地利用类型,探讨各类型的干燥度情况,并对不同地表干燥度条件下各土地利用类型对地表水分的保持能力差异进行分析,结果表明,在该区相对湿润环境中,林地以及疏林地的水分保持能力优于农地和草地,但在干旱的环境下,草地则好于林地及疏林地。建议根据不同土地利用类型的保水能力,在湿润区域增加林地的面积比例,在偏湿润区域增加疏林地的面积,在干旱区域增加草地的比例,减少农地开垦。  相似文献   

16.
农业干旱对农业生产影响最为严重,基于站点观测数据的干旱指数不能准确监测区域尺度的农业干旱特征。因此,本文利用2003—2010年MODIS地表温度(LST)、植被指数(NDVI)和TRMM降水(3B43)数据以及1960—2015年黄土高原地区及周边92个气象站点的月均温和月降水量数据,构建了综合遥感干旱监测模型规模干旱条件指数(Scale Drought Condition Index,SDCI),对黄土高原地区农用地生长季(4~10月)旱情的时空分布特征进行研究,结果表明:黄土高原地区农用地生长季多年平均干旱状态为中度干旱,干旱程度在空间上表现为西北部较严重,东南部较轻。2003—2010年黄土高原地区旱情年际变化呈缓慢加重趋势,2003—2007年旱情持续加重,2007—2009旱情缓慢减轻,2009—2010年旱情又加重。黄土高原地区旱情年内变化表现4-8月持续减轻,8-10月持续加重,干旱程度具体表现为4月呈严重干旱,5月、6月和10月呈中度干旱,7月、8月和9月呈轻度干旱。研究表明利用多源遥感数据构建的具有适当权重的SDCI可以有效监测黄土高原地区作物生长季的干旱状况。  相似文献   

17.
基于Ts-EVI特征空间的春旱遥感监测——以河北省为例   总被引:2,自引:0,他引:2  
春季干旱是影响我国农业生产的重要自然灾害。以河北省为研究区,采用Ts-EVI构建的特征空间,以温度植被干旱指数TVDI作为土壤水分估算因子对2005年4~5月的春旱发生与发展进行遥感监测,主要得出以下结论:(1)表层土壤相对湿度RSM_(10)与TVDI的相关性均通过了α=0.001水平的置信度的t检验而表现出显著相关性,基于Ts-EVI特征空间构建的TVDI可以较好地估算土壤表层水分状况。(2)TVDI与不同土壤深度RSM的相关性在不同时期存在一定的差异,4月上旬~4月中旬以10 cm深度处的相关性最高,20 cm处次之;4月下旬~5月下旬以20 cm土壤深度处的相关性最好,10 cm处次之。(3)在不统计云覆盖地区旱情的情况下,2005年4月上旬河北省春旱面积为15 014.4 km~2;4月中旬~5月下旬的春旱面积分别为43 350.4 km~2、13 889.3km~2、71 664.3 km~2、12 864.8 km~2和44381.5 km~2。  相似文献   

18.
利用两种卫星影像合成并引入冰川积雪区的方法,对西昆仑山玉龙喀什河流域2000-2013 年MOD10A2积雪数据进行去云处理,分析不同海拔高度积雪的年内和年际变化特征及趋势,结合气象要素,分析其分布变化原因。结果表明:① 低山区(1650-4000 m)积雪年内变化为单峰型,补给期为冬季,而高山区(4000~6000 m)存在“平缓型”春季补给期和“尖峰型”秋季补给期两个峰值;② 就年际变化而言,低、高山区平均、最大积雪面积呈微弱增加趋势,高山区最小积雪面积显著增加,倾向率为65.877 km2/a;③ 就季节变化而言,春、夏、冬三季低、高山区积雪面积年际变化呈“增加—减少—增加”趋势,秋季高山区积雪面积则呈“增加—减少”趋势,而低山区积雪面积在2009 和2010 年异常偏大,其他年份面积变化不大;④ 在低山区,气温是影响春、夏两季积雪面积变化的主因,气温和降水对秋季积雪面积变化的影响相当,而冬季积雪面积变化对降水更敏感;在高山区,夏季积雪面积变化对气温更敏感,而冬、春季积雪面积变化主要受降水影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号