首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 279 毫秒
1.
微波遥感传感器在36.5 GHz通道会因雪深超过其穿透深度而出现信号饱和,从而导致雪深被低估。针对该问题,首先建立了18.7 GHz与36.5 GHz通道亮温差和10.7 GHz与18.7 GHz通道亮温差相结合的积雪深度分层反演新方法,然后利用GCOM-W1星上搭载的AMSR2传感器数据估算了2012年12月至2013年2月新疆每日积雪深度,结合同期的气象站点观测数据与野外实测数据对遥感反演结果进行了评价。结果表明,所建立模型能够很好识别新疆地区积雪的空间分布状况,雪深的估算结果明显优于常用的Chang模型。  相似文献   

2.
基于MODIS数据的雪深反演--以天山北坡经济带为例   总被引:7,自引:0,他引:7  
应用中分辨率成像光谱仪(MODIS)数据进行雪深遥感反演理论和方法的研究.利用全波 段地物光谱仪对不同深度的积雪进行反射光谱值野外量测且同步测定雪深,通过分析雪深和 反射光谱值的关系确定反演雪深的MODIS最佳观测通道,应用新疆地区冬季MODIS 1B数据, 以天山北坡经济带为实验区,结合该区域同期气象台地面雪深观测记录数据建立雪深遥感反 演数学公式.雪深反演结果与实测值对比表明,应用MODIS数据进行大区域雪深反演时 ,其结果具有分辨率高、监测范围广的特点,可以清楚反映积雪覆盖范围和雪深空间分布特征,对地表径流量计算、农业开发等具有应用价值.  相似文献   

3.
以木孜塔格峰地区为研究区,从不同坡度、坡向的样方内测量雪深和采集光谱,通过分析归一化差分雪盖指数(Normalized Difference Snow Index,NDSI)、反照率、HJ-1卫星的红外波段反射率与雪深的相关关系,建立了适用于HJ-1星的积雪深度反演模型,估算出2012年4月14日-25日木孜塔格峰地区的雪深时空变化,并结合实测数据进行验证。结果表明:反照率反演模型的复相关系数为0.992;通过NDSI阈值区分混合雪盖像元和积雪像元,雪深估测精度可达92.78%。冰川区的反照率、NDSI与海拔的相关系数分别为0.626和0.733,且高海拔带反照率值明显高于低海拔带的反照率值。受西风带降雪的影响,非冰川区的北坡雪深值较大;西坡、南坡次之;东坡最小,且雪深最大值出现在坡度约等于10°处。雪深估测的相对误差随着样地的坡度增大而增加,坡度为15°时相对误差较大。  相似文献   

4.
用EOS/MODIS资料反演积雪深度参量   总被引:4,自引:1,他引:4  
利用EOS/MODIS可见光、近红外及短红外多通道资料以及新疆地区积雪深度气象台站实测资料等,在考虑积雪性质包括积雪粒子相态、积雪年龄等的差异以及积雪区的下垫面条件包括地表粗糙度、土地覆盖类型等的不同的情况下进行积雪分类,在此基础上,建立EOS/MODIS积雪深度反演模型,实现深度在30 cm以内的积雪深度反演的主要原理、思路及方法,并对模型的反演结果进行了验证。结果表明,利用该模型对30 cm以内的积雪进行深度反演计算,其精度能达到80%以上。  相似文献   

5.
利用GNSS-R(全球导航卫星系统反射测量)技术进行准确的雪深监测已成为传统雪深测量的重要补充手段。本文使用GNSS-R技术反演了2012—2018年美国阿拉斯加州4个GPS观测站附近的雪深结果,结合加拿大气象中心(Canadian Meteorological Centre, CMC)提供的雪深模型数据产品,以PBO(Plate Boundary Observatory)H2O项目组提供的雪深资料为参考值,分析了不同手段获取的雪深值在不同时间尺度上的变化特征,同时评估了GNSS-R反演雪深结果作为独立数据集验证CMC模型数据的能力。结果表明:GNSS-R、CMC和PBO得到的长时间序列雪深结果均具有较为一致的明显周期性变化,整体上GNSS-R反演结果比CMC数据精度更高,更能反映雪深的年际变化情况。GNSS-R反演值和CMC模拟值均能够反映各测站PBO雪深值的逐月变化规律,但GNSS-R反演值的精度和稳定性总体上优于CMC模拟值。GNSS-R反演结果比CMC模拟值与PBO雪深值的季节性变化更具一致性,且对于本文研究的4个测站,GNSS-R反演雪深的精度和稳定性在雪深值较大的春季和冬季...  相似文献   

6.
雪盖信息在生态研究、水资源评价管理以及灾害防治中有重要的作用,MODIS利用冰雪指数(NDSI)和阈值提供全球每日积雪产品,微波遥感传感器AMSR-E提供南北半球不受云影响的雪水当量数据。通过融合同一天不同时间过境的MODIS积雪产品MOD10A1和MYD10A1为MOYD,融合MOYD和AMSR-ESWE积雪当量产品产生MODAM,以祁连山区气象站观测雪深数据为"真值",检验了2010-2011年积雪季MODIS积雪产品和AMSR-E识别积雪的精度,结果表明:MOYD产品和MODAM使云量减少了15%和100%,积雪精度和总体精度分别达到了24%、59%和88%、80%,通过融合多时相和多传感器数据大大提高了积雪监测精度,此外对祁连山积雪时间分布和不确定进行了分析。  相似文献   

7.
选用Landsat 8资料构建了地表温度(Ts)与归一化植被指数(NDVI)的Ts-NDVI特征空间,计算了温度植被干旱指数(TVDI)。利用MODIS温度产品数据和实地野外采样数据进行精度验证确定煤田火区TVDI阈值。通过对遥感影像的地表热异常信息进行定性与定量分析继而对煤田温度异常区边界信息进行挖掘。结果表明:(1)利用野外实测土壤相对含水量进行验证,反演值与实测值的相关系数R~2=0.66,表明干旱指数的反演精度较高,相关性较好。(2)TVDI模型对温度呈现出较高的敏感性,二维散点图集中在1∶1线上,对NDVI的敏感性较低,有利于识别温度异常区。(3)利用MVC最大合成法,建立TVDI-MVC作为精度验证数据,火区面积为5.03 km~2,其中TVDI-SC提取火区精度最大为98.50%,TVDI-SW_2提取火区精度最小为88.98%。可见煤田温度异常区范围较广,潜在的灾情恶化较严重。  相似文献   

8.
选用Landsat 8 资料构建了地表温度(Ts)与归一化植被指数(NDVI)的Ts-NDVI特征空间,计算了温度植被干旱指数(TVDI)。利用MODIS温度产品数据和实地野外采样数据进行精度验证确定煤田火区TVDI阈值。通过对遥感影像的地表热异常信息进行定性与定量分析继而对煤田温度异常区边界信息进行挖掘。结果表明:(1)利用野外实测土壤相对含水量进行验证,反演值与实测值的相关系数R2=0.66,表明干旱指数的反演精度较高,相关性较好。(2)TVDI模型对温度呈现出较高的敏感性,二维散点图集中在1∶1 线上,对NDVI的敏感性较低,有利于识别温度异常区。(3)利用MVC最大合成法,建立TVDI-MVC作为精度验证数据,火区面积为5.03 km2,其中TVDI-SC提取火区精度最大为98.50%,TVDI-SW2提取火区精度最小为88.98%。可见煤田温度异常区范围较广,潜在的灾情恶化较严重。  相似文献   

9.
基于卫星遥感数据进行云层划分,并根据不同云层和地面站观测雨量间的回归关系,利用线性回归法反演流域降水数据.以GMS卫星影像为信息源,以实测站点数据为基础,对2000年、2004年柘林水库流域降水进行了遥感反演.基于R~2法的反演结果可信度分别达到0.9855、0.9904,其反演精度较高,可为分布式水文模型等提供输入参数.  相似文献   

10.
基于BP神经网络的盐渍土盐分遥感反演模型研究   总被引:3,自引:0,他引:3  
采用遥感技术和BP神经网络技术,结合野外实测的盐渍土光谱特征和实验室化验的土壤含盐数据,对盐渍土盐分的遥感反演进行了模型的设计与编程实现.BP神经网络模型的预测精度在62.5%,明显高于传统统计模型的预测精度,表明BP神经网络能较好地模拟土壤含盐量与光谱数据之间的关系,可用于建立土壤盐分遥感反演模型.  相似文献   

11.
天山山区冬季积雪深厚,稳定积雪期较长,利用积雪遥感图象可以动态监测大面积的积雪变化,有效地调查大范围的积雪资源状况,积雪遥感监测和积雪遥感制图涉及多方面的资料,积雪数据库是积雪遥感监测系统必不可少的一部分。本文就新疆典型流域积雪遥感信息系统数据库的建立,数据库之间的数据格式转换,接口,可视化界面等进行讨论。  相似文献   

12.
In order to analyze the differences between the two snow cover data, the snow cover data of 884 meteorological stations in China from 1951 to 2005 are counted. The data include days of visual snow observation, snow depth, and snow cover durations, which vary according to different definitions of snow cover days. Two series of data, as defined by "snow depth" and by "weather observation," are investigated here. Our results show that there is no apparent difference between them in east China and the Xinjiang region, but in northeast China and the Tibetan Plateau the "weather observation" data vary by more than 10 days and the "snow depth" data vary by 0.4 cm. Especially in the Tibetan Plateau, there are at least 15 more days of "weather observation" snow in most areas (sometimes more than 30 days). There is an obvious difference in the snow cover data due to bimodal snowfall data in the Tibetan Plateau, which has peak snowfalls from September to October and from April to May. At those times the temperature is too high for snow cover formation and only a few days have trace snow cover. Also, the characteristics and changing trends of snow cover are analyzed here based on the snow cover data of nine weather stations in the northeast region of the Tibetan Plateau, by the Mann-Kendall test. The results show significantly fewer days of snow cover and shorter snow durations as defined by "snow depth" compared to that as defined by "weather observation." Mann-Kendall tests of both series of snow cover durations show an abrupt change in 1987.  相似文献   

13.
In this paper, a variation series of snow cover and seasonal freeze-thaw layer from 1965 to 2004 on the Tibetan Plateau has been established by using the observation data from meteorological stations. The sliding T-test, M-K test and B-G algorithm are used to verify abrupt changes of snow cover and seasonal freeze-thaw layer in the Tibetan plateau. The results show that the snow cover has not undergone an abrupt change, but the seasonal freeze-thaw layer obviously witnessed a rapid degradation in 1987, with the frozen soil depth being reduced by about 15 cm. It is also found that when there is less snow in the plateau region, precipitation in South China and Southwest China increases. But when the frozen soil is deep, precipitation in most of China apparently decreases. Both snow cover and seasonal freeze-thaw layer on the plateau can be used to predict the summer precipitation in China. However, if the impacts of snow cover and seasonal freeze-thaw layer are used at the same time, the predictability of summer precipitation can be significantly improved. The significant correlation zone of snow is located in middle reaches of the Yangtze River covering the Hexi Corridor and northeastern Inner Mongolia, and the seasonal freeze-thaw layer exists in Mt. Nanling, northern Shannxi and northwestern part of North China. The significant correlation zone of simultaneous impacts of snow cover and seasonal freeze-thaw layer is larger than that of either snow cover or seasonal freeze-thaw layer. There are three significant correlation zones extending from north to south: the north zone spreads from Mt. Daxinganling to the Hexi Corridor, crossing northern Mt. Taihang and northern Shannxi; the central zone covers middle and lower reaches of the Yangtze River; and the south zone extends from Mt. Wuyi to Yunnan and Guizhou Plateau through Mt. Nanling.  相似文献   

14.
LiYun Dai  Tao Che 《寒旱区科学》2011,3(4):0325-0331
Ground snow observation data from 1999 to 2008 were used to analyze the temporal and spatial distribution of snow density in China. The monthly maximum density shifted from north to south during the period from October to the following January, and then moved back from south to north during the period from January to April. The maximum snow density occurred at the border between Hunan and Jiangxi provinces in January, where snow cover duration was short and varied remarkably. Snow density in Northeast China and the Xinjiang Uygur Autonomous Region were also high and showed less variation when the snow cover duration was long. Ground observation data from nine weather stations were selected to study changes of snow density in Northeast and Northwest China. A phase of stable snow density occurred from the middle ten days of November to the following February; non-stationary density phases were observed from October to the first ten days of November and from March to April. To further investigate the effects of climatic factors on snow density, correlations between snow density and precipitation, air temperature, snow depth and wind velocity for Northeast and Northwest China were analyzed. Correlation analysis showed that snow depth was the primary influence on snow density.  相似文献   

15.
新疆北部的降水量线性变化趋势特征分析   总被引:4,自引:6,他引:4  
应用新疆北疆地区以及天山山区26个气象站1961-2005年的月降水量资料,分析了新疆北部地区、天山山区、北疆沿天山经济带、北疆平原、北疆北部流域、北疆西部流域6个区域的年、暖季(5-10月)、冷季(11-4月)以及各月的降水量线性趋势特征。结果显示:6个区域及26个气象站的年降水量45a年来均呈线性增加趋势;暖季降水量6个区域均呈线性增加趋势,北疆区、天山山区最显著;冷季降水量6个区域全部呈明显的线性增加趋势;月降水线性趋势变化较显著的月份为1、2、7、11、12月,其它各月没有通过0.10显著性水平检验,12个月中增湿趋势站数明显占优势的月份可占80%左右,3、9月呈下降趋势的站数较多。增湿结果已给新疆带来风吹雪、雪崩、畜牧业雪灾、洪水、融雪性洪水、泥石流、滑坡等灾害。  相似文献   

16.
近30年来西藏那曲地区湖泊变化对气候波动的响应   总被引:33,自引:4,他引:29  
根据1975年地形图、20世纪80年代至2005年的TM、CBERS卫星遥感资料和近45年的气温、降水量、蒸发量、最大积雪深度和最大冻土深度等气候资料分析得出,西藏那曲地区东南部的巴木错、蓬错、东错、乃日平错等四个湖泊的水位面积在近30年来呈较显著的扩大趋势,2005年与1975年相比,分别增加了48.2 km2、38.2km2、19.8 km2 (比2004年)、26.0 km2,增长幅度分别为25.6%、28.2%、16.2%、37.6%。其主要原因与该地区近年来气温的上升、降水量的增加和蒸发量的减少、冻土退化等暖湿化的气候变化有很大关系。  相似文献   

17.
基于EOS/MODIS遥感数据改进式融雪模型   总被引:2,自引:1,他引:2  
在中国西部的中纬度干旱和半干旱山区,融雪水是极其重要的水资源,融雪径流对河流的补给量在春季甚至可达75%以上,但是急剧的融雪也容易引发洪水,所以从水资源的有效利用和洪水预警方面看,有必要了解大范围的积雪消融状况。基于积雪层能量平衡原理建立融雪模型,利用正午过境的EOS/MODIS的Terra卫星遥感数据反演模型中的参数,结合气象数据获得瞬时的能量平衡信息,然后根据B.Sequin、B.ltier和谢贤群的研究推算日融雪量,改善了融雪模型的算法。另外采用遥感数据对雪盖进行实时监测,避免在进行融雪量估算时候对无雪区的错误估算。  相似文献   

18.
陈鹏  王勇  张青  李悦 《干旱区地理》2020,43(2):434-439
风云三号D星(FY-3D)是我国新一代极轨气象卫星,中分辨率光谱成像仪Ⅱ(MERSI-Ⅱ)是其携带的核心传感器之一,MERSI-Ⅱ实现了云、气溶胶、水汽、陆地表面特性、海洋水色等大气、陆地、海洋参量的高精度定量反演。选取2018年7、8月无云时相的FY-3D/MERSI-Ⅱ数据对天山中段终年积雪进行归一化积雪指数(NDSI)的计算。结合高分辨率Landsat-8影像,利用混淆矩阵对FY-3D/MERSI-Ⅱ数据计算结果与同期MODIS日积雪产品数据MOD10A1进行精度对比分析。结果表明:FY-3D/MERSI-Ⅱ图像平均总体精度为0.855,MOD10A1图像平均总体精度为0.820,FY-3D/MERSI-Ⅱ积雪覆盖提取平均总体精度比MOD10A1积雪覆盖提取平均总体精度高0.035。FY-3D/MERSI-Ⅱ的Kappa系数平均值为0.659,MOD10A1的Kappa系数平均值为0.558,FY-3D/MERSI-Ⅱ的Kappa系数平均值大于MOD10A1的Kappa系数平均值。故FY-3D/MERSI-Ⅱ数据提取积雪覆盖面积精度更高,更接近高分辨率Landsat-8影像目视解译结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号