首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. A total of 3708 1 × 1° free-air gravity anomaly averages have been used to construct a new 1 × 1° gravimetric geoid of the Northwest Pacific Ocean. The 1 × 1° averages are based on a compilation of 147000 surface ship and pendulum gravity measurements. The gravimetric geoid reveals information in the geoid of the Northwest Pacific not present in currently used satellite derived models. The RMS difference between the 1 × 1° geoid and satellite derived models is about ±6 m. Difference geoid undulations range from a maximum of +19 m over the Hawaiian ridge to a minimum of −31 m over the junction of the Kuril and Aleutian trenches. The Hawaiian swell is associated with a geoidal high of up to +15 m with wavelengths of about 2200 km and the topographic rises seaward of deep-sea trenches are associated with geoidal highs of up to 4m with wavelengths of about 220–900 km. The main difference between the gravimetric geoid and the satellite derived models occurs over the Pacific basin where discrepancies reach +10 m with wavelengths of 4000 km. The agreement between the gravi-metric geoid and Skylab-4 and Geos-3 altimeter data is close for wavelengths greater than about 300 km but poor for shorter wavelengths.  相似文献   

2.
Observations of gravity can be aliased by virtue of the logistics involved in collecting these data in the field. For instance, gravity measurements are often made in more accessible lowland areas where there are roads and tracks, thus omitting areas of higher relief in between. The gravimetric determination of the geoid requires mean terrain-corrected free-air anomalies; however, anomalies based only on the observations in lowland regions are not necessarily representative of the true mean value over the topography. A five-stage approach is taken that uses a digital elevation model, which provides a more accurate representation of the topography than the gravity observation elevations, to reduce the unrepresentative sampling in the gravity observations. When using this approach with the Australian digital elevation model, the terrain-corrected free-air anomalies generated from the Australian gravity data base change by between 77.075 and −84.335 mgal (−0.193 mgal mean and 2.687 mgal standard deviation). Subsequent gravimetric geoid computations are used to illustrate the effect of aliasing in the Australian gravity data upon the geoid. The difference between 'aliased' and 'non-aliased' gravimetric geoid solutions varies by between 0.732 and −1.816 m (−0.058 m mean and 0.122 m standard deviation). Based on these conceptual arguments and numerical results, it is recommended that supplementary digital elevation information be included during the estimation of mean gravity anomalies prior to the computation of a gravimetric geoid model.  相似文献   

3.
The relationship between gravity and bathymetry in the Pacific Ocean   总被引:2,自引:0,他引:2  
Summary. Surface-ship and satellite derived data have been compiled in new free-air gravity anomaly, bathymetry and geoid anomaly maps of the Pacific Ocean basin and its margin. The maps are based on smoothed values of the gravity anomaly, bathymetry and geoid interpolated on to a 90 × 90 km grid. Each smoothed value was obtained by Gaussian filtering measurements along individual ship and subsatellite tracks. The resulting maps resolve features in the gravity, bathymetry and geoid with wavelengths that range from a few hundred to a few thousand kilometres. The smoothed values of bathymetry and geoid anomaly have been corrected for age. The resulting maps show the Pacific ocean basin is associated with a number of ENE–WSW-trending geoid anomaly highs with amplitudes of about ± 5 m and wavelengths of about 3000 km. The most prominent of these highs correlate with the Magellan seamounts–Marshall Gilbert Islands–Magellan rise and the Hess rise–Hawaiian ridge regions. The correlation between geoid anomaly and bathymetry cannot be explained by models of static compensation, but is consistent with a model in which the geoid anomaly and bathymetry are supported by some form of dynamic compensation. We suggest that the dynamic compensation, which characterizes oceanic lithosphere older than 80 Myr, is the result of mantle convection on scales that are smaller than the lithospheric plates themselves.  相似文献   

4.
An up to date determination of a high-resolution geoid requires the use of best available databases concerning digital terrain model (DTM), bathymetry, global geopotential model and gravity field. The occasion to revisit methods to validate and merge different data sets has been created by a new project for the determination of a new European Geoid.
Since the computation of the latest European geoid and quasi-geoid model (EGG97), significant new or improved data sets have become available, such as new global geopotential models from CHAMP and GRACE missions, new national and global DTMs and new or upgraded gravity data sets.
In the context of the new European Gravity and Geoid Project (EGGP), within the IAG Commission 2, some data validation tests have been performed in the Italian zone.
In the area 19°× 17° wide, covering Italy, three kinds of tests have been performed: comparison among different DTMs in order to choose the best one to be used; comparisons in terms of geoid computation in some coastal areas, to evaluate bathymetry effects, and the validation of the EIGEN-CG01C and EIGEN-CG03C new global models up to degree and order 360.
These preliminary tests lead to the choice of SRTM DTM (integrated in no-data holes), with an added bathymetry derived by the Italian 1:25 000 official cartography near the coasts and the NOAA bathymetry in high seas. The validation of the new global models and the comparison with EGM96 model show that, in terms of geoid computation, the EGM96 yields better results. Moreover, the validation of new available land gravity data and the cross-validation of two sets of gravity data on sea have been completed.  相似文献   

5.
Summary A technique is presented for calculating geoid height anomalies over two-dimensional models of Earth structure. The method consists of convolving gravity anomalies over the structure with filters which take into account the finite size of the structure in the third dimension and the curvature of the Earth. Similar filters are also developed for a flat earth case. The method is applied to a sea-surface gravity profile crossing the Tonga-Kermadec trench and is found to give good agreement with a Geos-3 radar altimetry profile in the same region. The example demonstrates that introducing arbitrary offsets in computing gravity anomalies can result in spurious long-wavelength effects in the computed geoid. Comparison of the results obtained using flat earth and spherical earth filters suggests that the effects of the curvature of the Earth only become significant for wavelengths in the gravity field greater than about 1000 km.  相似文献   

6.
The remote-sensing satellite ERS-1, launched in 1991 to study the Earth's environment, was placed on a geodetic (168-day repeat) orbit between 1994 April and 1995 March to map, through altimetric measurements, the gravity field over the whole oceanic domain with a resolution of 8 km at the equator in both along-track and cross-track directions. We have analysed the precise altimeter data of the geodetic mission, and, by also using one year of Topex-Poseidon altimeter data, we have computed a global high-resolution mean sea surface. The various steps involved in pre-processing the ERS-1 data consisted of correcting the data for environmental factors, editing, and reducing, through crossover analyses, the radial orbit error, which directly affects sea-surface height measurements. For this purpose, we adjusted sinusoids at 1 and 2 cycle rev−1 along the ERS-1 profiles in order to minimize crossover differences between ERS-1 and yearly averaged Topex-Poseidon profiles. In effect, the orbit of Topex-Poseidon is very accurately determined (within 2–3 cm for the radial component), so Topex-Poseidon altimeter profiles can serve as a reference to reduce the ERS-1 radial orbit error. The ERS-1 residual orbit error was further reduced through a second crossover analysis between all ascending and descending profiles of the geodetic mission. The along-track ERS-1 and Topex-Poseidon data were then interpolated over the whole oceanic domain on a regular grid of 1/16°× 1/16° size. The mapping of the gridded sea-surface heights reveals the very fine structure of the marine geoid, up until now unknown at a global scale. This new data set will be most useful for marine geophysical and tectonic investigations.  相似文献   

7.
利用2003年8月22日-9月3日中国北极科学考察队在北冰洋78°N浮冰站获得的近地层观测资料,采用整体输送法对北冰洋浮冰近地层特征参数进行了分析研究。结果表明,在考察期间,雪面吸收的净辐射仅为3.6 W/m2,其中以感热和潜热向大气输送的能量分别占52%和31%,向海冰深层传导的热量很少;近中性层结条件下的平均拖曳系数Cdn为1.16×10-3,略小于75°N北冰洋浮冰上近中性层结的Cdn。与1999年75°N附近冰站观测结果的对比表明,当海冰密度及冰站所在浮冰的尺度不同时,海冰与大气相互作用的热力学和动力学过程的差异显著,在研究北冰洋地区海/冰/气相互作用对气候过程影响时,应考虑这一问题。  相似文献   

8.
We present a new numerical method to describe the internal dynamics of planetary mantles through the coupling of a dynamic model with the prediction of geoid and surface topography. Our tool is based on the simulation of thermal convection with variable viscosity in a spherical shell with a finite-volume formulation. The grid mesh is based on the 'cubed sphere' technique that divides the shell into six identical blocks. An investigation of various numerical advection schemes is proposed: we opted for a high-resolution, flux-limiter method. Benchmarks of thermal convection are then presented on steady-state tetrahedral and cubic solutions and time-dependent cases with a good agreement with the few recent programs developed to solve this problem.
A dimensionless framework is proposed for the calculation of geoid and topography introducing two dimensionless numbers: such a formulation provides a good basis for the systematic study of the geoid and surface dynamic topography associated to the convection calculations. The evaluation of geoid and surface dynamic topography from the gridded data is performed in the spectral domain. The flow solver is then tested extensively against a precise spectral program, producing response functions for geoid as well as bottom and surface topographies. For a grid mesh of a reasonable size (6 × 64 × 64 × 64) a very good agreement (to within ∼1 per cent) is found up to spherical harmonic degree 15.  相似文献   

9.
Summary. Numerical convection models are presented in which plates are simulated by imposing piecewise constant horizontal velocities on the upper boundary. A 4 × 1 box of constant viscosity fluid and two-dimensional (2-D) flow is assumed. Four heating modes are compared: the four combinations of internal or bottom heating and prescribed bottom temperature or heat flux. The case with internal heating and an isothermal base is relevant to lower mantle or whole mantle convection, and it yields a lower thermal boundary layer which is laterally variable and can be locally reversed, corresponding to heat flowing back into the core locally. When scaled to the whole mantle, the surface deflections and gravity and geoid perturbations calculated from the models are comparable to those observed at the Earth's surface. For models with migrating ridges and trenches, the flow structure lags well behind the changing surface 'plate'configurations. This may help to explain the poor correlation between the main geoid features and plate boundaries. Trench migration substantially affects the dip of the cool descending fluid because of induced horizontal shear in the vicinity of the trench. Such shear is small for whole mantle convection, but is large for upper mantle convection, and would probably result in the Tonga Benioff zone dipping to the SE, opposite to the observed dip, for the case of upper mantle convection.  相似文献   

10.
Summary. A pronounced positive magnetic anomaly of approximately 300 gamma occurs over the eastern edge of the East Shetland Platform at approximately 60°N, 1°E. After the removal of the regional gravity variation and the gravity effect of the known geological structure, it is found that this magnetic high correlates with a negative gravity residual anomaly of approximately 30 mGal. Seismic data indicate that these anomalies occur in an area of relatively shallow basement on the upthrown side of the main Viking Graben margin fault. The presence of a buried granite batholith of approximately 40 × 40km may explain the gravity, magnetic and seismic observations. The observed deviation of the fault defining the edge of the Viking Graben in the proximity of the proposed granite may be explained in terms of the tectonic influence of the buoyant granite block during the taphrogenic development of the graben.  相似文献   

11.
本文根据在印度洋实测的重力资料,用sinx/x反演了一些典型构造的莫氏面深度,对印度洋两种不同类型的大陆边缘、大洋中脊、无震海岭、深海盆地的重力异常特征及地质意义进行了较深入的研究,结果表明,东南非岸外以张性下沉为主,构造活动比较单一,其上的重力异常为单调的正负不对称异常,说明这儿的被动陆缘基本上处于均衡状态;而印度洋东北边缘的太平洋型活动陆缘,为一复杂的火山岛弧系,这里的重力异常面貌复杂,反映了该地区处于非均衡状态;查戈斯-拉克代夫海岭为印度洋中典型的无震海岭,它不应属于印度洋中脊的一部分;印度洋中的大部分深海盆,其上具有典型的大洋重力组合,说明印度洋存在着广大的大洋型原生地壳。  相似文献   

12.
利用我国最新地球重力场模型 WDM94,给出了南极 (纬度范围为 - 60°~ - 90°)大地水准面高和平均空间重力异常。为了全面总结分析南极大地水准面特征 ,收集了国外最新地球重力场模型 OSU91 ( 360阶次 )和 JGMOSU( 360阶次 ) ,计算了相应的大地水准面高和平均重力异常。其结果分别与 WDM94的结果作了比较 ,WDM94与 OSU91和 JGMOSU的大地水准面高标准差分别为± 1 .90 m和± 2 .0 9m,平均空间重力异常标准差分别为± 8.97mgal和± 9.32 mgal  相似文献   

13.
冰芯中MSA迁移假说的延伸和完善   总被引:1,自引:0,他引:1       下载免费PDF全文
MSA在冰芯深层的“迁移”现象的存在 ,关系到能否应用大气中 MSA季节特征进行极地冰芯断代 ,并以冰芯分析结果确定大气中生物硫化物含量的方法基础。本文展示各类最有代表性的冰雪 MSA剖面 ,对提出冰芯深层 MSA“迁移假说”的理论依据进行探讨 ,并根据最新资料 ,说明冰川中 MSA的“迁移”和重新分布 ,在表层粒雪和渗浸 -冻结冰层中同样可能发生。对“迁移假说”的延伸补充在于 ,粒雪中的 MSA迁移是在积雪中空气与外界贯通的“开放”条件下进行的 ,渗入雪层中的融水将 MSA溶出后 ,在晶粒间宏观向下输送 ,在阳离子集中的层位发生反应 ,生成盐类冰点的改变使之发生“冻结”,重新分布。而渗浸 -冻结冰层中的迁移机制可能和深层冰川冰中的情况接近 ,即在气体与外界隔绝条件下 ,主要在“封闭”的晶间脉状纹理中以“微观”形式进行。南极半岛 MSA迁移过程需要很长时间 ,而表层渗浸 -冻结冰层中 MSA迁移过程很快出现 ,说明冰中脉状纹理的加快形成、较高冰川温度和冰层中的较大含水量等因素会对 MSA“迁移”进程起促进作用。最后 ,对 MSA“迁移”情况下 ,如何进行有关冰芯 MSA计算进行了讨论 ,对设计实验验证并完善迁移理论提出了设想。  相似文献   

14.
Summary The free air geoid, which is the co-geoid obtained by the use of free air anomalies in Stokes' integral, is computed for Australia from available gravity data. The set of anomalies used to represent the outer zones had been obtained previously using a combined solution from satellite data and terrestrial gravimetry. The solutions so obtained for the free air geoid are compared with the astrogeodetic determination of the geoid on the Australian Geodetic Datum by Fischer and Slutsky and the accuracy of the comparisons is estimated.  相似文献   

15.
The ocean geoid can be inferred from the topography of the mean sea surface. Satellite altimeters transmit radar pulses and determine the return traveltime to measure sea-surface height. The ERS-1 altimeter stacks 51 consecutive radar reflections on board the satellite to a single waveform. Tracking the time shift of the waveform gives an estimate of the distance to the sea surface. We retrack the ERS-1 radar traveltimes using a model that is focused on the leading edge of the waveforms. While earlier methods regarded adjacent waveforms as independent statistical events, we invert a whole sequence of waveforms simultaneously for a spline geoid solution. Smoothness is controlled by spectral constraints on the spline coefficients. Our geoid solutions have an average spectral density equal to the expected power spectrum of the true geoid. The coherence of repeat track solutions indicates a spatial resolution of 31  km, as compared to 41  km resolution for the ERS-1 Ocean Product. While the resolution of the latter deteriorates to 47  km for wave heights above 2  m, our geoid solution maintains its resolution of 31  km for rough sea. Retracking altimeter waveform data and constraining the solution by a spectral model leads to a realistic geoid solution with significantly improved along-track resolution.  相似文献   

16.
张赤军  陆洋 《极地研究》1998,9(2):71-75
1IntroductionTheAntarcticiceshetnearlyocupies90%oftheglobalones,theformationandablationofwhichhaveastrongimpactontheglobalgeo...  相似文献   

17.
Summary. The geopotential is usually expressed as an infinite series of spherical harmonics, and the odd zonal harmonics are the terms independent of longitude and antisymmetric about the equator: they define the 'pear-shape' effect. The coefficients J 3, J 5, J 7, … of these harmonics have been evaluated by analysing the variations in eccentricity of 28 satellite orbits from near-equatorial to polar. Most of the orbits from our previous determination in 1974 are used again, but three new orbits are added, including two at inclinations between 62° and 63°, which have been specially observed for more than five years by the Hewitt cameras. With the help of the new orbits and revised theory, we have obtained sets of J -coefficients with standard deviations about 40 per cent lower than before. A 9-coefficient set is chosen as representative, and is as follows (all × 109): J 3=– 2530 ± 4, J 5=–245 ± 5, J 7=–336 ± 6, J 9=–90 ± 7, J 11= 159 ± 9, J 13=–158 ± 15, J 15=– 20 ± 15, J 17=– 236 ± 14, J 19=– 27 ± 19. With this set of values, the pear-shape asymmetry of the geoid (north polar minus south polar radius) amounts to 45.1 m instead of the previous 44.7 m. The accuracy of the longitude-averaged geoid profile is estimated as 50 cm, except at latitudes above 86°. The geoid profile and predicted amplitude of the oscillation in eccentricity are compared with those from other sources.  相似文献   

18.
According to the theory of isostasy, the Earth has a tendency to deform its surface in order to reach an equilibrium state. The land-uplift phenomenon in the area of the Fennoscandian Shield is thought to be a process of this kind. The geoid, as an equipotential surface of the Earth's gravity field, contains information on how much the Earth's surface departs from the equilibrium state. In order to study the isostatic process through geoidal undulations, the structural effects of the crust on the geoid have to be investigated.
  The structure of the crust of the Fennoscandian Shield has been extensively explored by means of deep seismic sounding (DSS). The data obtained from DSS are used to construct a 3-D seismic-velocity structure model of the area's crust. The velocity model is converted to a 3-D density model using the empirical relationship that holds between seismic velocities and crustal mass densities. Structural effects are then estimated from the 3-D density model.
  The structural effects computed from the crustal model show that the mass deficiency of the crust in Fennoscandia has caused a geoidal depression twice as deep as that observed from the gravimetric geoid. It proves again that the crust has been isostatically compensated by the upper mantle. In other words, an anomalously high-density upper mantle must exist beneath Fennoscandia.  相似文献   

19.
The inversion of high-resolution geoid anomaly maps derived from satellite altimetry should allow one to retrieve the lithospheric elastic thickness, T e , and crustal density, c . Indeed, the bending of a lithospheric plate under the load of a seamount depends on both parameters, and the associated geoid anomaly is correspondingly dependent on the two parameters. The difference between the observed and modelled geoid signatures is estimated by a cost function, J , of the two variables, T e and c . We show that this cost function forms a valley structure along which many local minima appear, the global minimum of J corresponding to the true values of the lithospheric parameters. Classical gradient methods fail to find this global minimum because they converge to the first local minimum of J encountered, so that the final parameter estimate strongly depends on the starting pair of values ( T e ,   c ). We here implement a non-linear optimization algorithm to recover these two parameters from altimetry data. We demonstrate from the inversion of synthetic data that this approach ensures robust estimates of T e and c by activating two search phases alternately: a gradient phase to find a local minimum of J , and a tunnelling phase through high values of the cost function. The accuracy of the solution can be improved by a search in an iteratively restricted parameter subspace. Applying our non-linear inversion to the Great Meteor Seamount geoid data, we further show that the inverse problem is intrinsically ill-posed. As a consequence, minute geoid (or gravity) data errors can induce large changes in any recovery of lithospheric elastic thickness and crustal density.  相似文献   

20.
The polythcrmal valley glacier Erikbreen (79°40'N 12°30'E), northern Spitsbergen, was investigated in 1970 and 1990 using digital photogrammetry and digital elevation model (DEM) techniques. The bottom topography was derived from radio-echo soundings. Based on the DEM, mass balance and changes of surface slope, crevasse and flow pattern were evaluated, and internal ice deformation velocities were calculated. Calculations of the total mass balance show that Erikbreen has not been in equilibrium for the last 20 years. The average surface lowering was 0.38 m/a and the volume had decreased by 5% to 6% from 1970 to 1990 or on the average by 3.5 × 10−1 water. The glacier surface subsided over the whole glacier area except in minor areas with northfacing slopes in the accumulation area. The surface slope and the crevasse pattern, however, did not change significantly during the 20-year-period, except in areas below 100 ma.s.l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号