首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Today's numerical methods like the Spectral Element Method (SEM) allow accurate simulation of the whole seismic field in complex 3-D geological media. However, the accuracy of such a method requires physical discontinuities to be matched by mesh interfaces. In many realistic earth models, the design of such a mesh is difficult and quite ineffective in terms of numerical cost. In this paper, we address a limited aspect of this problem: an earth model with a thin shallow layer below the free surface in which the elastic and density properties are different from the rest of the medium and in which rapid vertical variations are allowed. We only consider here smooth lateral variations of the thickness and elastic properties of the shallow layer. In the limit of a shallow layer thickness very small compared to the smallest wavelength of the wavefield, by resorting to a second order matching asymptotic approximation, the thin layer can be replaced by a vertically smooth effective medium without discontinuities together with a specific Dirichlet to Neumann (DtN) surface boundary condition. Such a formulation allows to accurately take into account complex thin shallow structures within the SEM without the classical mesh design and time step constraints. Corrections at receivers and source—when the source is located within the thin shallow layer—have been also derived. Accuracy and efficiency of this formulation are assessed on academic tests. The stability and limitations of this formulation are also discussed.  相似文献   

2.
An algorithm for the numerical modelling of magnetotelluric fields in 2-D generally anisotropic block structures is presented. Electrical properties of the individual homogeneous blocks are described by an arbitrary symmetric and positive-definite conductivity tensor. The problem leads to a coupled system of partial differential equations for the strike-parallel components of the electromagnetic field. E x, and H x These equations are numerically approximated by the finite-difference (FD) method, making use of the integro-interpolation approach. As the magnetic component H x, is constant in the non-conductive air, only equations for the electric mode are approximated within the air layer. The system of linear difference equations, resulting from the FD approximation, can be arranged in such a way that its matrix is symmetric and band-limited, and can be solved, for not too large models, by Gaussian elimination. The algorithm is applied to model situations which demonstrate some non-trivial phenomena caused by electrical anisotropy. In particular, the effect of 2-D anisotropy on the relation between magnetotelluric impedances and induction arrows is studied in detail.  相似文献   

3.
Summary. We show that Maslov's extension of the WKBJ method allows an extension of the dynamic ray tracing to wavefields involving caustics of arbitrary form. If the receiver lies off the caustics, then the synthetic seismogram can be obtained by integrating the DRT system along a single ray joining the receiver to the source which may touch caustics. If the receiver-lies in the vicinity of a caustic then DRT has to be carried out along a bunch of rays covering a neighbourhood of the receiver. Our approach encompasses pre-stressed and/or anisotropic media. Initial boundary conditions for a point source embedded in an anisotropic elastic medium are also presented.  相似文献   

4.
In this study, we propose a new numerical method, named as Traction Image method, to accurately and efficiently implement the traction-free boundary conditions in finite difference simulation in the presence of surface topography. In this algorithm, the computational domain is discretized by boundary-conforming grids, in which the irregular surface is transformed into a 'flat' surface in computational space. Thus, the artefact of staircase approximation to arbitrarily irregular surface can be avoided. Such boundary-conforming gridding is equivalent to a curvilinear coordinate system, in which the first-order partial differential velocity-stress equations are numerically updated by an optimized high-order non-staggered finite difference scheme, that is, DRP/opt MacCormack scheme. To satisfy the free surface boundary conditions, we extend the Stress Image method for planar surface to Traction Image method for arbitrarily irregular surface by antisymmetrically setting the values of normal traction on the grid points above the free surface. This Traction Image method can be efficiently implemented. To validate this new method, we perform numerical tests to several complex models by comparing our results with those computed by other independent accurate methods. Although some of the testing examples have extremely sloped topography, all tested results show an excellent agreement between our results and those from the reference solutions, confirming the validity of our method for modelling seismic waves in the heterogeneous media with arbitrary shape topography. Numerical tests also demonstrate the efficiency of this method. We find about 10 grid points per shortest wavelength is enough to maintain the global accuracy of the simulation. Although the current study is for 2-D P-SV problem, it can be easily extended to 3-D problem.  相似文献   

5.
The diffraction of P, S and Rayleigh waves by 3-D topographies in an elastic half-space is studied using a simplified indirect boundary element method (IBEM). This technique is based on the integral representation of the diffracted elastic fields in terms of single-layer boundary sources. It can be seen as a numerical realization of Huygens principle because diffracted waves are constructed at the boundaries from where they are radiated by means of boundary sources. A Fredholm integral equation of the second kind for such sources is obtained from the stress-free boundary conditions. A simplified discretization scheme for the numerical and analytical integration of the exact Green's functions, which employs circles of various sizes to cover most of the boundary surface, is used.
The incidence of elastic waves on 3-D topographical profiles is studied. We analyse the displacement amplitudes in the frequency, space and time domains. The results show that the vertical walls of a cylindrical cavity are strong diffractors producing emission of energy in all directions. In the case of a mountain and incident P, SV and SH waves the results show a great variability of the surface ground motion. These spatial variations are due to the interference between locally generated diffracted waves. A polarization analysis of the surface displacement at different locations shows that the diffracted waves are mostly surface and creeping waves.  相似文献   

6.
Scattering of wavefields in a 3-D medium that includes passive and/or active structures, is numerically solved by using the boundary integral equation method (BIEM). The passive structures are velocity anomalies that generate scattered waves upon incidence, and the active structures contain endogenous fracture sources, which are dynamically triggered by the dynamic load due to the incident waves. Simple models are adopted to represent these structures: passive cracks act as scatterers and active cracks as fracture sources. We form cracks using circular boundaries, which consist of many boundary elements. Scattering of elastic waves by the boundaries of passive cracks is treated as an exterior problem in BIEM. In the case of active cracks, both the exterior and interior problems need to be solved, because elastic waves are generated by fracturing with stress drop, and the growing crack boundaries scatter the incident waves from the outside of the cracks. The passive cracks and/or active cracks are randomly distributed in an infinite homogeneous elastic medium. Calculations of the complete waveform considering a single scatter show that the active crack has weak influence on the attenuation of first arrivals but strong influence on the amplitudes of coda waves, as compared with those due to the passive crack. In the active structures, multiple scattering between cracks and the waves triggered by fracturing strongly affect the amplitudes of first arrivals and coda waves. Compared to the case of the passive structures, the attenuation of initial phase is weak and the coda amplitudes decrease slowly.  相似文献   

7.
We derive a set of non-hypersingular boundary integral equations, both elastodynamic and elastostatic, for the analysis of arbitrarily shaped 2-D anti-plane and in-plane cracks located in an infinite homogeneous isotropic medium, rendered in a unified nomenclature for all cases. The hypersingularities that appear in the usual formulations for the dynamic cases, existent both at the source point and at the wavefront, are removed by way of a regularization technique based on integration by parts. The equations for the in-plane cases are presented in terms of a local Cartesian coordinate system, one of the axes of which is always held locally tangential to the crack trace. The expressions for the elastic field at any point on the model plane are also given.
Our formulations are shown to yield accurate numerical results, as long as appropriate stabilization measures are taken in the numerical scheme. The numerical applicability of our method to non-planar crack problems is illustrated by simulations of dynamic growth of a hackly crack which has small off-plane side-branches. The results imply that the branching of a crack brings about a significant decrease in the crack-tip stress concentration level and consequently may play an essential role in the arrest of earthquake rupturing.  相似文献   

8.
Summary. Wave-induced stress in a porous elastic medium is studied on the basis of Biot's linearized theory which is a special case of the mixture theory. For sufficiently high frequencies which are pertinent to ocean waves and seismic waves, a boundary layer of Stokes' type is shown to exist near the free surface of the solid. Outside the boundary layer, fluid and the solid skeleton move together according to the laws of classical elasticity for a single phase. This division simplifies the analysis of the equations governing the two phases; and several examples of potential interest to geophysics and foundation mechanics are treated analytically.  相似文献   

9.
We have been developing an accurate and efficient numerical scheme, which uses the finite-difference method (FDM) in spherical coordinates, for the computation of global seismic wave propagation through laterally heterogeneous realistic Earth models. In the field of global seismology, traditional axisymmetric modeling has been used widely as an efficient approach since it can solve the 3-D elastodynamic equation in spherical coordinates on a 2-D cross-section of the Earth, assuming structures to be invariant with respect to the axis through the seismic source. However, it has the severe disadvantages that asymmetric structures about the axis cannot be incorporated and the source mechanisms with arbitrary shear dislocation have not been attempted for a long time. Our scheme is based on the framework of axisymmetric modeling but has been extended to treat asymmetric structures, arbitrary moment-tensor point sources, anelastic attenuation, and the Earth center which is a singularity of wave equations in spherical coordinates. All these types of schemes which solve 3-D wavefields on a 2-D model cross-section are classified as 2.5-D modeling, so we have named our scheme the spherical 2.5-D FDM. In this study, we compare synthetic seismograms calculated using our FDM scheme with three-component observed long-period seismograms including data from stations newly installed in Antarctica in conjunction with the International Polar Year (IPY) 2007–2008. Seismic data from inland Antarctica are expected to reveal images of the Earth's deep interior with enhanced resolution because of the high signal-to-noise ratio and wide extent of this region, in addition to the rarity of sampling paths along the rotation axis of the Earth. We calculate synthetic seismograms through the preliminary reference earth model (PREM) including attenuation using a moment-tensor point source for the November 9, 2009 Fiji earthquake. Our results show quite good agreement between synthetic and observed seismograms, which indicates the accuracy of observations in the Antarctica, as well as the feasibility of the spherical 2.5-D modeling scheme.  相似文献   

10.
When interpreting electromagnetic fields observed at the Earth's surface in a realistic geophysical environment it is often necessary to pay special attention to the effects caused by inhomogeneities of the subsurface sedimentary and/or water layer and by inhomogeneities of the Earth's crust. The inhomogeneities of the Earth's crust are expected to be especially important when the electromagnetic field is generated by a source located in a magma chamber of a volcano. The simulation of such effects can be carried out using generalized thin-sheet models, which were independently introduced by Dmitriev (1969 ) and Ranganayaki & Madden (1980 ). In the first part of the paper, a system of integral equations is derived for the horizontal current that flows in the subsurface inhomogeneous conductive layer and for the vertical current crossing the inhomogeneous resistive layer representing the Earth's mantle. The terms relating to the finite thickness of the laterally inhomogeneous part of the model are retained in the equations. This only marginally complicates the equations, whilst allowing for a significant expansion of the approximation limits.
  The system of integral equations is solved using the iterative dissipative method developed by the authors in the period from 1978 to 1988. The method can be applied to the simulation of the electromagnetic field in an arbitrary inhomogeneous medium that dissipates the electromagnetic energy. When considered on a finite numerical grid, the integral equations are reduced to a system of linear equations that possess the same contraction properties as the original equations. As a result, the rate at which the iterative-perturbation sequence converges to the solution remains independent of the numerical grid used for the calculations. In contrast to previous publications on the method, aspects of the algorithm implementation that guarantee its effectiveness and robustness are discussed here.  相似文献   

11.
We consider the two coupled differential equations of the two radial functions appearing in the displacement components of spheroidal oscillations for a transversely isotropic (TI) medium in spherical coordinates. Elements of the layer matrix have been explicitly written—perhaps for the first time—to extend the use of the Thomson-Haskell matrix method to the derivation of the dispersion function of Rayleigh waves in a transversely isotropic spherical layered earth. Furthermore, an earth-flattening transformation (EFT) is found and effectively used for spheroidal oscillations. The exponential function solutions obtained for each layer give the dispersion function for TI spherical media the same form as that on a flat earth. This has been achieved by assuming that the five elastic parameters involved vary as r p and that the density varies as r p-2, where p is an arbitrary constant and r is the radial distance. A numerical illustration with p = - 2 shows that, in spite of the inhomogeneity assumed within layers, the results for spherical harmonic degree n , versus time period T , obtained here for the Primary Reference Earth Model (PREM), agree well with those obtained earlier by other authors using numerical integration or variational methods. The results for isotropic media derived here are also in agreement with previous results. The effect of transverse isotropy on phase velocity for the first two modes of Rayleigh waves in the period range 20 to 240 s is calculated and discussed for continental and oceanic models.  相似文献   

12.
Finite difference (FD) simulation of elastic wave propagation is an important tool in geophysical research. As large-scale 3-D simulations are only feasible on supercomputers or clusters, and even then the simulations are limited to long periods compared to the model size, 2-D FD simulations are widespread. Whereas in generally 3-D heterogeneous structures it is not possible to infer the correct amplitude and waveform from 2-D simulations, in 2.5-D heterogeneous structures some inferences are possible. In particular, Vidale & Helmberger developed an approach that simulates 3-D waveforms using 2-D FD experiments only. However, their method requires a special FD source implementation technique that is based on a source definition which is not any longer used in nowadays FD codes. In this paper, we derive a conversion between 2-D and 3-D Green tensors that allows us to simulate 3-D displacement seismograms using 2-D FD simulations and the actual ray path determined in the geometrical optic limit. We give the conversion for a source of a certain seismic moment that is implemented by incrementing the components of the stress tensor.
Therefore, we present a hybrid modelling procedure involving 2-D FD and kinematic ray-tracing techniques. The applicability is demonstrated by numerical experiments of elastic wave propagation for models of different complexity.  相似文献   

13.
Summary. Asymptotic ray theory is applied to surface waves in a medium where the lateral variations of structure are very smooth. Using ray-centred coordinates, parabolic equations are obtained for lateral variations while vertical structural variations at a given point are specified by eigenfunctions of normal mode theory as for the laterally homogeneous case. Final results on wavefields close to a ray can be expressed by formulations similar to those for elastic body waves in 2-D laterally heterogeneous media, except that the vertical dependence is described by eigenfunctions of 'local' Love or Rayleigh waves. The transport equation is written in terms of geometrical-ray spreading, group velocity and an energy integral. For the horizontal components there are both principal and additional components to describe the curvature of rays along the surface, as in the case of elastic body waves. The vertical component is decoupled from the horizontal components. With complex parameters the solutions for the dynamic ray tracing system correspond to Gaussian beams: the amplitude distribution is bell-shaped along the direction perpendicular to the ray and the solution is regular everywhere, even at caustics. Most of the characteristics of Gaussian beams for 2-D elastic body waves are also applicable to the surface wave case. At each frequency the solution may be regarded as a set of eigenfunctions propagating over a 2-D surface according to the phase velocity mapping.  相似文献   

14.
This study describes an examination of surface gravity changes caused by dislocations within a 3-D heterogeneous earth. This new theory is described using six independent dislocations: a vertical strike-slip, two vertical dip-slips perpendicular to each other, and three tensile openings on three perpendicular planes. A combination of the six independent dislocations is useful to compute coseismic gravity changes resulting from an arbitrary seismic source at an arbitrary position. Based on the 3-D lateral inhomogeneous P -wave velocity model, we deduce the 3-D density and S -wave velocity models using the relation of Karato. Finally, numerical computations are performed for a location south of Japan (30°N, 135°E). We calculate the coseismic gravity changes resulting from the six independent dislocations for source depths of 100, 300 and 637 km, respectively. Numerical results show that the maximum 3-D effect varies concomitantly with the dislocation type and the source depth. For seismic problems, the effect of elastic parameter  μ  is dominant.  相似文献   

15.
Summary. Two approaches to travel-time computations in laterally inhomogeneous anisotropic media are presented. The first method is based on ray tracing in an anisotropic inhomogeneous medium, the second on the linearization procedure. The linearization procedure, which can be applied to inhomogeneous, slightly anisotropic media, does not require ray tracing in an anisotropic medium. Applications of linearized equations to the solutions of direct and inverse kinematic problems are discussed. A program package to perform the linearized computations for rather general 2-D laterally inhomogeneous layered structures is described and a numerical example is presented.  相似文献   

16.
A quadrangle-grid velocity–stress finite difference method, based on a first-order hyperbolic system that is equivalent to Biot's equations, is developed for the simulation of wave propagation in 2-D heterogeneous porous media. In this method the velocity components of the solid material and of the pore fluid relative to that of the solid, and the stress components of three solid stresses and one fluid pressure are defined at different nodes for a staggered non-rectangular grid. The scheme uses non-orthogonal grids, allowing surface topography and curved interfaces to be easily modelled in the numerical simulation of seismic responses of poroelastic reservoirs. The free-surface conditions of complex geometry are achieved by using integral equilibrium equations on the surface, and the source implementations are simple. The algorithm is an extension of the quadrangle-grid finite difference method used for elastic wave equations.  相似文献   

17.
Generalized Born scattering of elastic waves in 3-D media   总被引:1,自引:0,他引:1  
It is well known that when a seismic wave propagates through an elastic medium with gradients in the parameters which describe it (e.g. slowness and density), energy is scattered from the incident wave generating low-frequency partial reflections. Many approximate solutions to the wave equation, e.g. geometrical ray theory (GRT), Maslov theory and Gaussian beams, do not model these signals. The problem of describing partial reflections in 1-D media has been extensively studied in the seismic literature and considerable progress has been made using iterative techniques based on WKBJ, Airy or Langer type ansätze. In this paper we derive a first-order scattering formalism to describe partial reflections in 3-D media. The correction term describing the scattered energy is developed as a volume integral over terms dependent upon the first spatial derivatives (gradients) of the parameters describing the medium and the solution. The relationship we derive could, in principle, be used as the basis for an iterative scheme but the computational expense, particularly for elastic media, will usually prohibit this approach. The result we obtain is closely related to the usual Born approximation, but differs in that the scattering term is not derived from a perturbation to a background model, but rather from the error in an approximate Green's function. We examine analytically the relationship between the results produced by the new formalism and the usual Born approximation for a medium which has no long-wavelength heterogeneities. We show that in such a case the two methods agree approximately as expected, but that in a media with heterogeneities of all wavelengths the new gradient scattering formalism is superior. We establish analytically the connection between the formalism developed here and the iterative approach based on the WKBJ solution which has been used previously in 1-D media. Numerical examples are shown to illustrate the examples discussed.  相似文献   

18.
Summary. The computational effectiveness of travel-time inversion methods depends on the parameterization of a 3-D velocity structure. We divide a region of interest into a few layers and represent the perturbation of wave slowness in each layer by a series of Chebyshev polynomials. Then a relatively complex velocity structure can be dcscribed by a small set of parameters that can be accurately evaluated by a linearized inversion of travel-time residuals. This method has been applied to artificial and real data at small epicentral distances and in the teleseismic distance range. The corresponding matrix equations were solved using singular value decomposition. The results suggest that the method combines resolution with computational convenience.  相似文献   

19.
We present a spectral-finite-element approach to the 2-D forward problem for electromagnetic induction in a spherical earth. It represents an alternative to a variety of numerical methods for 2-D global electromagnetic modelling introduced recently (e.g. the perturbation expansion approach, the finite difference scheme). It may be used to estimate the effect of a possible axisymmetric structure of electrical conductivity of the mantle on surface observations, or it may serve as a tool for testing methods and codes for 3-D global electromagnetic modelling. The ultimate goal of these electromagnetic studies is to learn about the Earth's 3-D electrical structure.
Since the spectral-finite-element approach comes from the variational formulation, we formulate the 2-D electromagnetic induction problem in a variational sense. The boundary data used in this formulation consist of the horizontal components of the total magnetic intensity measured on the Earth's surface. In this the variational approach differs from other methods, which usually use spherical harmonic coefficients of external magnetic sources as input data. We verify the assumptions of the Lax-Milgram theorem and show that the variational solution exists and is unique. The spectral-finite-element approach then means that the problem is parametrized by spherical harmonics in the angular direction, whereas finite elements span the radial direction. The solution is searched for by the Galerkin method, which leads to the solving of a system of linear algebraic equations. The method and code have been tested for Everett & Schultz's (1995) model of two eccentrically nested spheres, and good agreement has been obtained.  相似文献   

20.
When full 3-D modelling is too costly or cumbersome, computations of 3-D elastic wave propagation in laterally heterogeneous, multilayered 2-D geological structures may enhance considerably our ability to predict strong ground motion for seismological and engineering purposes. Towards this goal, we extend the method based on the combination of the thin-layer finite-element and boundary-element methods (TLFE-BEM) and calculate windowend f - k spectra of the 3-D wavefield. The windowed f - k spectra are spatially localized spectra from which the local properties of the wavefield can be extracted. The TLFE-BEM is particularly suited for calculating the complete wavefield where surface waves are dominant in multilayered media. The computations are performed in the frequency domain, providing the f - k spectra directly. From the results for the 3-D wavefield excited by a point source in a 2-D multilayered, sloped structure, it can be said that the phase velocity of the fundamental-mode Rayleigh wave in a laterally heterogeneous multilayered medium, estimated from the windowed f - k spectra, varies with the location of the point source. For the model calculated in this article, the phase velocity varies between the value for the flat layered structure of the thick-layer side and that for the structure just under the centre of the window. The exact subsurface structure just under the centre of an array in a laterally heterogeneous medium cannot be obtained if we use the f - k spectral analysis assuming a flat layered structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号