首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A continuous, 1,420-cm sediment record from Lake Pupuke, Auckland, New Zealand (37°S) was analysed for diatom taxonomy, concentration and flux. A New Zealand freshwater diatom transfer function was applied to infer past pH, electrical conductivity, dissolved reactive phosphorus and chlorophyll a. A precise, mixed-effect regression model of age versus depth was constructed from 11 tephra and 13 radiocarbon dates, with a basal age of 48.2?cal kyr BP. Diatom-inferred changes in paleolimnology and climate corroborate earlier inferences from geochemical analyses (Stephens et al. 2012), with respect to the timing of marked climate changes in the Last Glacial Coldest Phase (LGCP; 28.8?C18.0?cal kyr BP), the Last Glacial Interglacial Transition (LGIT; 18.0 to ca. 12?C10?cal kyr BP) and the Holocene, the onset of which is difficult to discern from LGIT amelioration, but which includes an early climatic optimum (10.2?C8.0?cal kyr BP). The LGCP is readily defined by a reduction in lake level and effective precipitation, whereas the LGIT represents a period of rising lake level, with greater biomass during the Holocene. There was limited change in diatom assemblage structure, influx or inferred water quality during a Late Glacial Reversal (LGR; 14.5?C13.8?cal kyr BP), associated with heightened erosional influx. In contrast, an LGIT peak in paleoproductivity is recorded by increased diatom influx from 13.8 to 12.8?cal kyr BP. Changes in sediment influx and biomass record complex millennial-scale events attuned to the Antarctic Cold Reversal (ACR; 14.5?C12.8?cal kyr BP). Additional millennial-scale environmental change is apparent in the Holocene, with marked changes in lake circulation beginning at 7.6?cal kyr BP, including the onset of seasonal thermal stratification and rapid species turnover at 5.7?cal kyr BP. The most rapid diatom community turnover accompanied widely varying nutrient availability and greater seasonality during the last 3.3?cal kyr. Rising seasonality appears to have been linked to strengthened Southern Westerlies at their northern margins during the middle and late Holocene.  相似文献   

2.
Geochemical data obtained from X-ray fluorescence, physical properties, total organic and inorganic carbon content (TOC/TIC), and diatom analysis from a 6.61-m-long sedimentary sequence near the modern northern shore of Lake Zirahuen (101° 44′ W, 19° 26′ N, 2000 m asl) provide a reconstruction of lacustrine sedimentation during the last approximately 17 cal kyr BP. A time scale is based on ten AMS 14C dates and by tephra layers from Jorullo (AD 1759-1764) and Paricutin (AD 1943-1952) volcanoes. The multiproxy analyses presented in this study reveal abrupt changes in environmental and climatic conditions. The results are compared to the paleo-record from nearby Lake Patzcuaro. Dry conditions and low lake level are inferred in the late Pleistocene until ca. 15 cal kyr BP, followed by a slight but sustained increase in lake level, as well as a higher productivity, peaking at ca. 12.1 cal kyr BP. This interpretation is consistent with several regional climatic reconstructions in central Mexico, but it is in opposition to record from Lake Patzcuaro. A sediment hiatus bracketed between 12.1 and 7.2 cal kyr BP suggests a drop in lake level in response to a dry early Holocene. A deeper, more eutrophic and turbid lake is recorded after 7.2 cal kyr BP. Lake level at the coring site during the mid Holocene is considered the highest for the past 17 cal kyr BP. The emplacement of the La Magueyera lava flows (LMLF), dated by thermoluminiscence at 6560 ± 950 year, may have reduced basin volume and contributed to the relative deepening of the lake after 7.2 cal kyr BP. The late Holocene (after 3.9 cal kyr BP) climate is characterized by high instability. Extensive erosion, lower lake levels, dry conditions and pulses of high sediment influx due to high rainfall are inferred for this time. Further decrease in lake level and increased erosion are recorded after ca. AD 1050, at the peak of Purepechas occupation (AD 1300–1521), and until the eighteenth century. Few lacustrine records extend back to the late Pleistocene—early Holocene in central Mexico; this paper contributes to the understanding of late Pleistocene-Holocene paleoclimates in this region.  相似文献   

3.
Detailed depth profiles of photosynthetic pigments in a sediment core (G-12) collected at the BDP93 site, the Buguldeika saddle, of south Lake Baikal, along with depth profiles of total organic carbon (TOC) and biogenic silica, were studied to elucidate the temporal changes of phytoplankton assemblages in the lake during the past 28 kyr. In addition to the quantification of carotenoids by high-performance liquid chromatography with photodiode-array detection (HPLC-PDA), steryl chlorin esters (SCEs) were analyzed by HPLC-PDA, HPLC-mass spectrometry (LC-MS) and sterols in SCEs by gas chromatography–mass spectrometry (GC–MS) to enrich the taxonomical information on the phytoplankton composition. Allochthonous input of organic matter from the Selenga River resulted in the higher TOC contents in core G-12 than in a previously reported core (G-6) collected at another site from the southern basin. The poorer correlation in core G-12 than in G-6 between TOC and chlorophyll-a-originating pigments, which are indicative of autochthonous production, also indicated a significant allochthonous input at the site. The abundance of lutein among the carotenoids detected, and the good correlation of total chlorophyll a and b shows that green algae represented a significant portion of the phytoplankton, accompanying the diatoms at the G-12 site, after the last glacial period. The presence of cryptomonads and cyanobacteria were confirmed from marker carotenoids in the sediment core. GC–MS analysis of sterols in SCEs detected marker sterols of diatoms, green algae, chrysophytes and dinoflagellates. The depth profiles of the measured indicators gave consistent features for temporal changes in phytoplankton assemblage at the G-12 site of Lake Baikal after the last glacial maximum. Notably, the profile of a chrysophyte-specific sterol in SCEs was consistent with the reported distribution of chrysophyte cysts during the Holocene. The presence of phytoplankton, such as green algae, diatoms and chrysophytes, in Lake Baikal during the late last glacial period was indicated by the analysis of sterols in SCEs. Sedimentary carotenoids and sterols in SCEs were found to give complementary information about phytoplankton composition. These molecular indicators allow us to reconstruct past lake phytoplankton assemblages responding to environmental changes with a time resolution as high as age–depth relationship in sediments attainable at present.  相似文献   

4.
通过对太湖北部钻孔沉积物地球化学元素的测试分析,可以很好的反演太湖8 000年来沉积环境演变,大体可以分为4个阶段:1)8.0~6.6 kyr BP气候温暖湿润阶段;2)6.6~2.6 kyr BP气候趋冷及频繁波动阶段;3)2.6~1.5 kyr BP气候回暖阶段;4)1.5 kyr~现在,气候再次快速变冷阶段。认为两次暖湿阶段指示近8 000年来东亚季风两次明显的加强,此变化导致长江中下游湖泊在全新世期间两次明显的高水位期。  相似文献   

5.
We present the first continuous paleolimnological reconstruction from the North Island of New Zealand (37°S) that spans the last 48.2?cal kyr. A tephra- and radiocarbon-based chronology was developed to infer the timing of marked paleolimnological changes in Lake Pupuke, Auckland, New Zealand, identified using sedimentology, magnetic susceptibility, grain size and geochemistry (carbon, nitrogen and sulphur concentrations and fluxes, carbon and nitrogen stable isotopes). Variable erosional influx, biomass and benthic REDOX conditions are linked to changing effective precipitation and seasonality within three inferred broad intervals of climatic change: (1) the Last Glacial Coldest Phase (LGCP) of reduced effective precipitation and cooler temperatures, from 28.8 to 18.0?cal kyr BP, (2) the Last Glacial Interglacial Transition (LGIT) of increasing effective precipitation and warmer conditions, from 18.0 to 10.2?cal?kyr?BP, and (3) a Holocene interval of high effective precipitation, beginning with a warm period of limited seasonality from 10.2?cal?kyr?BP and followed by increasing seasonality from 7.6?cal?kyr?BP. The LGCP and LGIT also contain millennial-scale climate events, including the coldest inferred glacial conditions during the LGCP from 27.8 to 26.0 and 22.0?C19.0?cal?kyr?BP, and a climate reversal in the LGIT associated with lower lake level, from 14.5 to 13.8?cal?kyr?BP, coeval with the Antarctic Cold Reversal. The onset of seasonal thermal stratification occurred at 5.7?cal?kyr?BP and was linked to natural eutrophication of Lake Pupuke, which produced enhanced organic sedimentation.  相似文献   

6.
The lithology, radiocarbon chronology, granulometry, geochemistry and distribution of diatoms were investigated in three sediment cores from fresh-water Figurnoye Lake in the southern Bunger Hills, East Antarctica. Our paleolimnological data provide a record of Holocene environmental changes for this region. In the early Holocene (prior to 9.0 ± 0.5 kyr BP), warm climate conditions caused intensive melting of either the floating glacier ice mass or glaciers in the immediate lake surroundings, leading to the accumulation of terrigenous clastic sediments and limiting biogenic production in the lake. From ca. 9.0 ± 0.5 to 5.5 ± 0.5 kyr BP, highly biogenic sediments dominated by benthic mosses formed, indicating more distal glaciers or snowfields. A relatively cold and dry climate during this period caused weaker lake-water circulation and, likely, occurrence of lake ice conditions were more severe than present. The distribution of marine diatoms in the cores shows that, sometime between 8 and 5 kyr BP, limited amounts of marine water episodically penetrated to the lake, requiring a relative sea-level rise exceeding 10–11 m. During the last ca. 5.5 ± 0.5 kyr BP, sedimentation of mainly biogenic matter with a dominance of laminated microbial mats occurred in the lake under warm climatic conditions, interrupted by relative coolings: the first one around 2 kyr BP and then shortly before recent time. Between ca. 5.5 and 4 kyr BP, the drainage of numerous ice-dammed lakes took place in the southern Bunger Hills and, as a result, drier landscapes have existed here from about 4 kyr BP.  相似文献   

7.
We analysed a 620-cm-long sediment record from Lake Kotokel located in East Siberia (Russia) for subfossil diatoms, chironomids and pollen to provide a reconstruction of the climate history of the area for the last 12.2 kyr. The subfossil records show differing time lags in their responses to climate change; diatoms and chironomids were more sensitive to climate change than the pollen record. Changes in the biogenic proxies seem related with changes in insolation, the temperature of the North Atlantic and solar activity. The chironomids Chironomus plumosus-type and Einfeldia carbonaria-type and the diatom Aulacoseira granulata were interpreted as markers of warm climate condition. The proxy records were divided into four periods (A, B, C and D) suggesting differing climate in East Siberia during the Holocene. Period D (12.2–9.5 kyr BP) at the beginning of the Holocene, according to chironomid and diatom records, was characterized by warm climate with summer temperatures close to modern. However, forest vegetation had not become fully established yet. During Period C (9.5–5.8 kyr BP), the climate seemed to gradually become colder and wetter from the beginning of Period C to 7 kyr BP. From 7 to 5.8 kyr BP, the climate seemed to remain cold, but aridity increased. Period B (5.8–1.7 kyr BP) was characterised by frequent and sharp alternations between warm and cold conditions. Unstable conditions during this time are also registered in records from Lakes Baikal, Khubsugul and various other shallow lakes of the region. Optimal warm and wet conditions seemed to occur ca. 4 kyr BP. During Period A (the last 1.5 kyr) the diatom and chironomid records show evidence of cold conditions at 1.5–1 kyr BP, but the forest vegetation did not change significantly.  相似文献   

8.
Maar lakes in the Auckland Volcanic Field are important high-resolution archives of Holocene environmental change in the Southern Hemisphere mid-latitudes. Stable carbon and nitrogen isotope analyses were applied on bulk organic matter and the green alga Botryococcus from a sediment core from Lake Pupuke (Auckland, North Island, New Zealand) spanning the period since 7,165?cal.?year BP. The origin of organic matter was established using total-organic?Ccarbon-to-nitrogen ratios (TOC/TN) as well as organic carbon (??13COM) and nitrogen (??15N) isotope composition of potential modern sources. This approach demonstrated that the contribution of allochthonous organic matter to the lake sediment was negligible for most of the record. The sedimentary TOC/TN ratios that are higher than Redfield ratio (i.e. >7) are attributed to N-limiting conditions throughout the record. Variations of nitrogen and carbon isotopes during the last 7,165?years are interpreted as changes in the dominant processes in the lake. While epilimnetic primary productivity controlled isotope composition before 6,600?cal.?year BP, microbial processes, especially denitrification and methane oxidation, caused overall shifts of the ??15N and ??13C values since the Mid-Holocene. Comparisons with climate reconstructions from the Northern Island suggest that changes in the wind-induced lake overturn and a shift to more pronounced seasonality were the most likely causes for lake-internal changes since 6,600?cal.?year BP.  相似文献   

9.
This study presents changes in diatom flora assemblage composition, TOC, TOC/N and biogenic opal in a 450 cm core of Lake Panch Pokhari, Central Nepal (4,050 m asl), indicating Late Quaternary environmental fluctuations. Four Diatom Zones (DZ) were detected, with two major changes. The first one was found in ~430 cm depth (~14.8 cal. kyr BP), where the original flora characterized by Navicula digitulus Hustedt, Pinnularia rhombarea Krammer, P. aff. viridiformis var. minor Krammer, Encyonema silesiacum (Bleisch) D. G. Mann, Cymbopleura naviculiformis (Auerswald) Krammer and Nitzschia sp. was fully replaced by an assemblage consisting of Aulacoseira alpigena (Grunow) Krammer, Diatoma hyemalis (Roth) Heib., Tabellaria flocculosa (Ehrenberg) Kützing, Brachysira brebissonii Ross and Pinnularia subgibba Krammer, creating a stable diatom assemblage for ~8 kyr (DZ3). The second change was found at ~70 cm (~2.1 cal. kyr BP) when increased nutrient inputs lead to emergence of new taxa such as Fragilaria construens var. subsalina Hustedt, F. tenera (W. Smith) Lange-Bertalot, Eunotia cf. pseudopapilio Lange-Bertalot and M. N?rpel-Schempp and Gomphonema subclavatum Grunow. In order to evaluate the past environmental conditions in the Lake Panch Pokhari, the detected diatom taxa were subjected to analyses of their autecological preferences and dominance within the specific assemblage. We also assumed that TOC/N ratios >10 indicate accelerated erosion due to the strengthening of the Summer Monsoon starting at ~14.8 and between 13.7 and 12.8 cal. kyr BP. Monsoon intensity was most pronounced during the Early Holocene and at the beginning of the Late Holocene. The fluctuations of TOC and TOC/N in the Late Glacial sediments seem to correlate temporally and climatically with oscillations in the Northern Atlantic region.  相似文献   

10.
Hala Lake is located in the Qilian Mountains, Qinghai Province, China, at 4,078?m a.s.l. Its sediments contain an archive of climate and hydrologic changes during the Late Quaternary, as it is located close to the area influenced by the East-Asian summer monsoon and westerly-driven air masses. Sedimentation patterns and depositional conditions within the lake were investigated using eight sediment cores from different water depths, and this information was used to evaluate the feasibility of using a single core to reconstruct past climate and hydrological conditions. Long core H7, from the center of the lake (65?m water depth) and core H8 from a western, near-shore location (20?m water depth), were compared in detail using sediment composition and geochemical data (X-ray fluorescence, loss-on-ignition and CNS analysis). Age models were constructed using 17 AMS radiocarbon dates and indicate negligible reservoir error for sediments from the lake center and?~1,000?year errors for the near-shore sediment core. Cores H1?CH5 and HHLS21-1 revealed a sediment succession from sand and silty clay to laminated clay on the southern side of the lake. Undisturbed, finely laminated sediments were found at water depths???15?m. Core H5 (2.5?m long), from 31?m water depth, yielded abundant green algal mats mixed with clayey lake deposits and was difficult to interpret. Algae occurred between 25 and 32?m water depth and influenced the dissolved oxygen content of the stratified lake. Comparison of cores H7 and H8 yielded prominent mismatches for different time periods, which may, in part, be attributed to internal lacustrine processes, independent of climate influence. We thus conclude that data from a single sediment core may lead to different climate inferences. Common shifts among proxy data, however, showed that major climate shifts, of regional to global significance, can be tracked and allow reconstruction of lake level changes over the last 24,000?years. Results indicate advance of glaciers into the lake basin during the LGM, at which time the lake experienced lowest levels, 25?C50?m below present stage. Stepwise refilling began at ca. 16 kyr BP and reached the ?25?m level during the B?lling/Aller?d warm phase, ca. 13.5 kyr BP. A desiccation episode falls within the Younger Dryas, followed by a substantial lake level rise during the first millennium of the Holocene, a result of climate warming, which promoted glacier melt. By ca. 7.6 kyr BP, the lake reached a stable high stand similar to the present level, which persisted until ca. 6 kyr BP. Disturbed sediments in core H7 indicate a single mass flow that was most likely triggered by a major seismic event?~8.5 kyr BP. Subsequent lake development remains unclear as a consequence of data mismatches, but may indicate a general trend to deteriorating conditions and lake level lowstands at ca. 5.0?C4.2, 2.0 and 0.5 kyr BP.  相似文献   

11.
Stable isotope measures in organic matter are frequently used as indicators of past climate change. Although such analyses can provide valuable information, there is considerable uncertainty associated with studies of organic-rich sediments, especially those from Arctic lakes and bogs. We studied stable isotopes of carbon and nitrogen, and magnetic properties in a sediment core from a small alkaline lake with a high sedimentation rate, Lake Nattmålsvatn, Norway. There is good correspondence among the different sediment variables during the late glacial, and they seemingly reflect major climate variations such as the Allerød Interstade and the Younger Dryas, as well as the transition into the current interglacial. During the early Holocene, however, these relationships are more complex and δ13C and δ15N values do not stabilize until ~7,500 cal year BP. A significant excursion in all variables occurs between 6,850 and 6,500 cal year BP and is interpreted to represent climate deterioration. Holocene δ13C values vary little and indicate that isotopically-depleted dissolved inorganic carbon (DIC) in the lake, possibly influenced by methanotrophy and high pCO2, dominated the lake’s carbon cycle. Holocene δ15N is similarly muted, likely due to the availability of abundant dissolved nitrogen. Bulk organic matter is probably dominated by phytoplankton remains produced beneath the ice cover in late spring and during ice breakup when isotopically-depleted DIC, pCO2 and ammonium availability were maximal. Thus, use of δ13C and δ15N as indicators of Holocene paleoclimate and paleoproductivity variation can be challenging in a lake such as Nattmålsvatn, where ice cover isolates the basin for large parts of the year, allowing dissolved respiratory gases to accumulate in the water column. In contrast, magnetic variables appear to better track climate variations. In particular, runoff-driven influx of minerogenic sediments shows high variability that can be attributed to regional changes in Holocene winter precipitation. The most striking shifts occur between 4,000 and 2,300 cal year BP.  相似文献   

12.
Western Poland is located in the central European climatic transition zone, which separates the mild and humid Atlantic climate of Western Europe and the East European continental climate. This region is sensitive to lateral shifts of the European climate zones and is particularly suitable for reconstructing Holocene climate variability. This paper presents detailed analyses of the sedimentary record from Lake Strzeszyńskie since the Late Pleistocene. These include smear-slide and thin-section observations, X-ray fluorescence core scanning, magnetic susceptibility measurements, pollen analyses, and radiocarbon dating. The sediment record reveals three distinct sedimentary units consisting of: (1) an alternation of sand layers and laminated silt and clay deposits accumulated prior to 14,600 cal yr BP; (2) faintly laminated calcareous sediments intercalated with organic matter-rich layers deposited between 14,600 and 10,200 cal yr BP; and (3) massive calcareous mud deposited after 10,200 cal yr BP. The Holocene period is marked by nine phases of organic-rich sedimentation and enhanced Fe deposition, which occurred at ca. 10.1, 9.3, 6.4–6.1, 5.5–5.1, 4.7–4.5, 2.7–2.4, 1.3–1.2, 0.8–0.6, 0.4–0.2 kyr cal BP. These phases are associated with high lake levels and correspond with wet periods recognized in several other records from Poland and central Europe. These phases partly coincide with North Atlantic cold periods, which may suggest that high lake levels are triggered by an ocean-continent linking mechanism.  相似文献   

13.
The character and impact of climate change since the last glacial maximum (LGM) in the eastern Mediterranean region remain poorly understood. Here, two new diatom records from the Ioannina basin in northwest Greece are presented alongside a pre-existing record and used to infer past changes in lake level, a proxy for the balance between precipitation and evaporation. Comparison of the three records indicates that lake-level fluctuations were the dominant driver of diatom assemblage composition change, whereas productivity variations had a secondary role. The reconstruction indicates low lake levels during the LGM. Late glacial lake deepening was underway by 15.0 cal kyr BP, implying that the climate was becoming wetter. During the Younger Dryas stadial, a lake-level decline is recorded, indicating arid climatic conditions. Lake Ioannina deepened rapidly in the early Holocene, but long-term lake-level decline commenced around 7.0 cal kyr BP. The pattern of lake-level change is broadly consistent with an existing lake-level reconstruction at Lake Xinias, central Greece. The timing of the apparent change, however, is different, with delayed early Holocene deepening at Xinias. This offset is attributed to uncertainties in the age models, and the position of Xinias in the rain shadow of the Pindus Mountains.  相似文献   

14.
Total organic carbon (TOC) content, total nitrogen (TN) content, stable nitrogen isotope (δ15N) and stable organic carbon isotope (δ13Corg) ratios were continuously analysed on a high resolution sediment profile from Lake Sihailongwan (SHL), covering the time span between 16,500 and 9,500 years BP. Strong variations of the investigated proxy parameters are attributed to great climatic fluctuations during the investigated time period. Variations in organic carbon isotope ratios and the ratio of TOC/TN (C/N ratio) are discussed with respect to changing proportions of different organic matter (OM) sources to bulk sedimentary OM. Phases of high TOC content, high TN content, depleted δ13Corg values and high δ15N values are interpreted as times with increased productivity of lacustrine algae in relation to input of terrigenous organic matter. Two distinct phases of enriched nitrogen isotope ratios from 14,200 to 13,700 and 11,550 to 11,050 years BP point towards a reduced phytoplankton discrimination against 15N due to a diminished dissolved inorganic nitrogen pool. The combination of geochemical (TOC, TN, C/N ratio) and isotopic (δ13Corg, δ15N) proxy parameters points to a division of climate development into four stages. A cold and dry stage before 14,200 years BP, a warm optimum stage with high phytoplankton productivity from 14,200 to 12,450 BP, a colder and drier stage from 12,450 to 11,600 BP and a stage of climatic amelioration with high variability in TOC and TN contents after 11,600 BP. These results are discussed in relation to monsoon variability and Northern Hemisphere climate development of the late glacial.  相似文献   

15.
A consequence of predicted climate warming will be tree-line advance over large areas of the Russian tundra. Palaeolimnological techniques can be used to provide analogues of how such changes in tree-line advance and subsequent retreat affected lake ecosystems in the past. A Holocene sediment core taken from Kharinei Lake (Russia) was dated radiometrically and used for multi-proxy analyses with the aim of determining how climate and tree-line dynamics affected the productivity, community structure, carbon cycling and light regime in the lake. Pollen and macrofossil analyses were used to determine the dates of the arrival and retreat of birch and spruce forest. C:N ratios and percent loss-on-ignition were used to infer past changes in sediment organic matter. Visible-near-infrared spectroscopy and diatom analysis were used to infer past changes in lake-water carbon. Algal pigments and aquatic macrophytes were used to determine changes in lake productivity and light. Chironomids together with remains of the aquatic flora and fauna were used to provide information on past July temperature and continentality. Lake sedimentation was initiated shortly before 11,000 cal. years BP, when both chironomid- and pollen-inferred temperature reconstructions suggest higher summer temperatures than present, between 1 and 2°C warmer, and lake productivity was relatively high. A few trees were already present at this time. The spruce forest expanded at 8,000 cal. year BP remaining in the vicinity of the lake until 3,500 cal. year BP. This period coincided with a high concentration of organic material in the water column, and relatively high benthic productivity, as indicated by a high benthic: planktonic diatom ratio. After tree-line retreat, the optical transparency of the lake increased, and it became more open and exposed, and was thus subject to greater water-column mixing resulting in a higher abundance of diatom phytoplankton, especially heavily silicified Aulocoseira species. The colder climate resulted in a shorter ice-free period, the lake was less productive and there was a loss of aquatic macrophytes. Increased wind-induced mixing following forest retreat had a greater influence on the lake ecosystem than the effects of decreasing organic matter concentration and increased light penetration.  相似文献   

16.
The ca. 13 m long sediment core PG1351, recovered in 1998 from the central part of Lake El’gygytgyn, NE Siberia, was investigated for lithostratigraphy, water content, dry bulk density (DBD), total organic carbon (TOC), total nitrogen (TN), total sulphur (TS) and biogenic silica (opal) contents, and for TOC stable isotope ratios (δ13CTOC). The event stratigraphy recorded in major differences in sediment composition match variations in regional summer insolation, thus confirming a new age model for this core, which suggests that it spans the last 250 ka BP. Four depositional units of contrasting lithological and biogeochemical composition have been distinguished, reflecting past environmental conditions associated with relatively warm, peak warm, cold and dry, and cold but more moist climate modes. A relatively warm climate, resulting in complete summer melt of the lake ice cover and seasonal mixing of the water column, prevailed during the Holocene and Marine Isotope Stages (MIS) 3, 5.1, 5.3, 6.1, 6.3, 6.5, 7.1–7.3, 7.5, 8.1 and 8.3. MIS 5.5 (Eemian) was characterized by significantly enhanced aquatic primary production and organic matter supply from the catchment, indicating peak warm conditions. During MIS 2, 5.2, 5.4, 6.2 and 6.4 the climate was cold and dry, leading to perennial lake ice cover, little regional snowfall, and a stagnant water body. A cold but more moist climate during MIS 4, 6.6, 7.4, 8.2 and 8.4 is thought to have produced more snow cover on␣the perennial ice, strongly reducing light penetration and biogenic primary production in␣the lake. While the cold–warm pattern during␣the past three glacial–interglacial cycles is probably controlled by changes in regional summer insolation, differences in the intensity of the warm phases and in the degree of aridity (changing snowfall) during cold phases likely were due to changes in atmospheric circulation patterns. This is the seventh in a series of eleven papers published in this special issue dedicated to initial studies of El'gygytgyn Crater Lake and its catchment in NE Russia. JulieBrigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

17.
对新疆伊犁河谷可克达拉剖面(TKP)晚全新世沉积粒度参数及其气候意义分析结果表明:总体为植被较好、输沙势较弱的沉积环境。可以划分为5个气候变化阶段:3.71~3.06 ka B.P.风力由强到弱,气候暖由干到凉湿;3.06~2.78 ka B.P.风力很强、气候暖干;2.78~2.10 ka B.P.风力较弱,气候湿润;2.10~0.5 ka B.P.前期风力振荡频繁,气候较湿润;后期风力减弱、气候冷湿、成壤作用较强;0.50 ka B.P.以来,以相对冷湿为主,最近100 a来风力加强、气候趋于暖干。各阶段起止与全球气候变化基本一致,但受西风环流传递北高纬大西洋区域气候变化的影响,各气候期水热组合呈现典型西风带模式特征。  相似文献   

18.
The Holocene sedimentary diatom record from Otasan Lake, Alberta, has been analyzed to determine the development of this presently slightly acidic lake. The changes in the lake have been linked to the development of the Sphagnum-dominated catchment. Analysis of the stratigraphic data revealed four distinct zones. The lake record began ca. 8200 yrs BP with a benthic and alkaline diatom assemblage dominated by Ellerbeckia arenaria (Moore) Crawford. At ca. 7300 yrs BP planktonic species began to increase and dominate indicating increased water levels, decreased turbidity, and increased nutrient levels. Throughout the Holocene the peatland in the catchment encroached toward the modern lake margin and by ca. 5000 yrs BP lake acidity had changed sufficiently such that acidic diatom species dominated. Tabellaria flocculosa (Roth) Kütz.v. flocculosa Strain IIIp sensu Koppen dominated the record from ca. 5000 to ca. 3100 yrs BP. The lowest lake water pH was inferred for this zone. From ca. 3100 yrs BP to the present Fragilaria species, primarily F. construens v. venter (Ehr.) Hustedt, dominated the diatom assemblage. Diatom productivity and inferred pH were interpreted as stable. From correspondence analysis of the fossil samples, and from species assemblages, underlying gradients of pH, nutrient level, and water depth were inferred. The change from alkaline to slightly acidic conditions took place between ca. 8200 and ca. 5000 yrs BP. From ca. 3000 yrs BP to the present, lake water pH has remained fairly constant. Nutrient levels and water depth were inferred to have altered together. After ca. 8200 yrs BP, nutrients and water level began to increase until ca. 6000 yrs BP. Then, there was a gradual decline in these variables over the most acidic zone until ca. 3000 yrs BP, after which they, too, have remained fairly constant. Dominant Boreal Upland Vegetation was established by ca. 7200 yrs BP, and it was inferred that dominant climate patterns had been established at that time, but small changes in climate have occurred and the landscape in northeastern Alberta has only been stable for the last 3000 years.  相似文献   

19.
中晚全新世毛乌素沙地东南部气候变化过程   总被引:5,自引:5,他引:0  
位于中国北方半干旱区的毛乌素沙地对气候变化响应敏感,是研究气候变化的理想区域。通过对毛乌素沙地东南部锦界剖面磁化率、有机质含量、CaCO3含量的分析,重建了7.5 ka BP以来的气候变化过程。结果显示:中晚全新世毛乌素沙地东南部环境与气候变化可分为3个阶段:7.5~4.6 ka BP,夏季风占主导,气候暖湿,与全新世大暖期对应;4.6~3.3 ka BP,气候突变为干冷并波动频繁;3.3~2.5 ka BP气候以干冷为主。另外,存在5次千年尺度的干旱事件:7.0~6.8 ka BP、6.6~5.7 ka BP、4.6~4.1 ka BP、3.7~3.5 ka BP、3.3~2.5 ka BP。研究区气候变化与全球具有较好的一致性。  相似文献   

20.
华北平原晚冰期以来气候环境演变研究对该地区社会发展、灾害风险评估和科学应对未来全球增温背景下极端降水和洪涝事件具有重要意义。本文以华北平原中部白洋淀地区高阳剖面(BG-2019)为研究对象,通过高精度AMS14C、OSL定年技术和高分辨率孢粉组合、粒度组分分析,恢复和重建了白洋淀地区晚冰期以来(距今13710 a—今)区域植被演替和气候环境变化历史。结果显示:BG-2019剖面在距今10270~13710 a和距今4630~5400 a发育湖相沉积,距今3470~3700 a发育沼泽相沉积;距今7130~8000 a发育河流—入湖三角洲相沉积,距今3700~4630 a和距今3230~3470 a发育河流相沉积;距今8000~10270 a和距今5400~7130 a存在明显的沉积间断/地层缺失;表明采样剖面所在位置缺乏连续的湖相地层。晚冰期白洋淀为局地小湖沼;中全新世湖沼较发育、范围广,但也不是连续广袤的湖相沉积;晚全新世湖泊范围收缩。晚冰期和全新世白洋淀流域植被景观存在显著差异;晚冰期气候寒冷干燥,平原发育以蒿属、藜亚科、禾本科和菊科等为主的草地,周围山地森林覆盖度低;中全新世气候温暖湿润,平原大部仍发育以蒿属、藜亚科和禾本科为主的草地,湖区水蕨和水生植物繁盛,周围山地生长松属、栎属为主的针阔混交林,森林覆盖度增高;晚全新世气候温和偏干,平原仍是以蒿属、藜亚科和禾本科等为主的草地,西部山地生长以松属为主的针阔混交林,森林覆盖度较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号