首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electromagnetic investigations are usually intended to examine regional structures where induction takes place at a given period range. However, the regional information is often distorted by galvanic effects at local conductivity boundaries. Bahr (1985) and Groom & Bailey (1989) developed a physical distortion model for decomposing the MT impedance tensor, based upon local galvanic distortion of a regional 2-D electromagnetic field. We have extended their method to predict the magnetic variation fields created at an array of sites. The magnetic response functions at periods around 1000 s may be distorted by large-scale inhomogeneities in the upper or middle crust. In this period range, the data measured by a magnetometer array contain common information that can be extracted if the data set is treated as a unit, for example by using hypothetical event analysis. With this technique it is always possible to recover the regional strike direction from distorted data, even if a strong, spatially varying regional vertical field component is present in the data set. The determination of the regional impedance phases, on the other hand, is far more sensitive to deviations from the physical distortion model.
The approach has been used to investigate the Iapetus data set. For the array, which covers an area of 200  km × 300  km in northern England/southern Scotland, the technique revealed a common regional strike azimuth of ca . N125° E in the period range 500–2000  s. This direction differs from the strike indicated by the induction arrows, which seem influenced mainly by local current concentrations along the east–west-striking Northumberland Trough and a NE–SW-striking mid-crustal conductor. Both impedance phases are positive and differ by ca . 10°, which supports the assumptions of distortion fields in the data set and that the regional structure is 2-D.  相似文献   

2.
Summary. Many geomagnetic variation anomalies are probably caused by the channelling, through small-scale bodies, of electric currents induced in much larger conductors elsewhere. Consequently, the direct interpretation of anomalous magnetic fields by modelling the electromagnetic response of conductive structures may give misleading results. It is suggested that, rather than attempting to proceed directly from the electromagnetic fields to conductivity models, we should instead take the intermediate step of determining the distribution of anomalous current flow.
Maps of the anomalous fields over a conductive structure can be generated from inter-station transfer functions. If it is assumed that the internal currents are concentrated in a thin sheet at a specified depth, the equivalent current system in the sheet can be computed directly from the vertical magnetic field. The most straightforward method of performing this calculation is to compute the Fast Fourier Transform of the magnetic field data, and then to apply a wavenumber filter.
The presence of any vertical currents invalidates the thin sheet model. However, if the spatial distribution of a horizontal component of the anomalous magnetic field is also known, the presence of any vertical currents can be detected directly, and their position determined. The value of the methods is illustrated by applying them to the interpretation of a Geomagnetic Deep Sounding survey of the Kenya rift valley.  相似文献   

3.
The relation between the seafloor electric field and the surface magnetic field is studied. It is assumed that the fields are created by a 2-D ionospheric current distribution resulting in the E-polarization. The layered earth below the sea water is characterized by a surface impedance. The electric field at the seafloor can be expressed either as an inverse Fourier transform integral over the wavenumber or as a spatial convolution integral. In both integrals the surface magnetic field is multiplied by a function that depends on the depth and conductivity of the sea water and on the properties of the basement. The fact that surface magnetic data are usually available on land, not at the sea surface, is also considered. Test computations demonstrate that the numerical inaccuracies involved in the convolution method are negligible. The theoretical equations are applied to calculate the seafloor electric fields due to an ionospheric line current or associated with real magnetic data collected by the IMAGE magnetometer array in northern Europe. Two different sea depths are considered: 100 m (the continental shelf) and 5 km (the deep ocean). It is seen that the dependence of the electric field on the oscillation period is weaker in the 5 km case than for 100 m.  相似文献   

4.
For studying the auroral electrojet and for examining the effects it can produce in power systems on the ground, it is useful to be able to calculate the magnetic and electric fields that the electrojet produces at the surface of the Earth. Including the effects of currents induced in the Earth leads to a set of integral expressions, the numerical computation of which is complicated and demanding of computer resources. An approximate solution can be achieved by representing the induced currents by an image current at a complex depth. We present a simple derivation of the complex-image expressions and use them to calculate the fields produced by the auroral electrojet at the surface of an earth represented by layered conductivity models. Comparison of these results with ones obtained using the exact integral solution show that the errors introduced are insignificant compared to the uncertainties in the parameters used. The complex-image method thus provides a simple, fast and accurate means of calculating the magnetic and electric fields.  相似文献   

5.
Summary. Single-station and inter-station transfer functions are derived from data recorded by a magnetometer array in and around the Kenya Rift Valley. Different methods of presentation of the transfer function estimates are compared in terms of their ability to define lateral variations in electrical conductivity. When, as in East Africa, the conductivity structure is complex and three-dimensional, by far the most useful method of presentation is to use the transfer functions to simulate the anomalous internal fields associated with regional current flow at a particular azimuth. The use of inter-station rather than single-station transfer functions is almost essential where the amplitudes of anomalous horizontal fields are of the same size or greater than the normal fields. Horizontal field transfer functions prove to be just as useful as those usually calculated for the vertical component, and provide strong additional constraints on the internal current system.
Maps of simulated vertical and horizontal fields of internal origin indicate the importance of current channelling around the Rift Valley. A conductor just to the east of Nairobi apparently funnels regionally induced currents into two conductors associated with the Rift and dome; one at shallow depths beneath the Rift floor, and a deeper body to the east.  相似文献   

6.
Summary. Analysis of geomagnetic data has shown that the superposed northward magnetic field, which reduces the S q( H ) amplitude at northern mid-latitude stations on Abnormal Quiet Days, and increases the amplitude at stations on the equatorward side of the S q focus, builds up in amplitude over four to five days before the AQD occurs, and subsides over a similar period after the AQD. It is inferred indirectly that the azimuthal component By of the interplanetary magnetic field varies similarly. Data for the opposite meridian show that the imposed field reverses to a southward direction at lower latitudes. The inferred currents to account for these fields are believed to flow in the ionosphere, but to arise from magnetospheric electric fields induced by the solar wind-transported IMF.  相似文献   

7.
Summary. We have analysed a thirty-six day recording of the natural electric and magnetic field variations obtained on the deep ocean floor north-east of Hawaii. The electromagnetic fields are dominated by tides which have an appreciable oceanic component, especially in the east electric and north magnetic components. The techniques of data analysis included singular value decomposition (SVD) to remove uncorrelated noise. There are three degrees of freedom in the data set for periods longer than five hours, indicating a correlation of the vertical magnetic field and the horizontal components, suggesting source field inhomogeneity. Tensor response functions were calculated using spectral band averaging with both SVD and least squares techniques and rotated to the principal direction. One diagonal component, determined mainly by the north electric and east magnetic fields, is not interpretable as a one-dimensional induction phenomenon. The other diagonal term of the response function indicates a rapid rise in conductivity to 0.05 mho m−1 near 160 km. No decrease in conductivity below this depth is resolvable. Polarization analysis of the magnetic field indicates moving source fields with a wavelength near 5000 km. Model studies suggest that the two dimensionality in the response function may be caused by motion in the ionospheric current system.  相似文献   

8.
Summary. Laplace and Bessel Transforms are used to solve for the transient behaviour of the electromagnetic fields after switching off a steady current in a grounded infinitesimal horizontal dipole on the surface of a uniformly conducting half-space. Simple analytic expressions, which are valid for times sufficiently long after the switch that displacement terms can be ignored, are obtained on the surface of the half-space for the electric field and the time derivative of the magnetic field. At the instant of switching an infinitesimally long image becomes established directly under the source dipole. It is the diffusion of this image which gives the vertical magnetic field and horizontal electric fields their transient behaviour. During the transient, there is also a decaying charge distribution on the surface.  相似文献   

9.
We present a semi-analytical, unifying approach for modelling the electromagnetic response of 3-D bodies excited by low-frequency electric and magnetic sources. We write the electric and magnetic fields in terms of power series of angular frequency, and show that to obey Maxwell's equations, the fields must be real when the exponent is even, and imaginary when it is odd. This leads to the result that the scattering equations for direct current fields and for fields proportional to frequency can both be explicitly formulated using a single, real dyadic Green's function. Although the underground current flow in each case is due to different physical phenomena, the interaction of the scattering currents is of the same type in both cases. This implies that direct current resistivity, magnetometric resistivity and electric and magnetic measurements at low induction numbers can all be modelled in parallel using basically the same algorithm. We make a systematic derivation of the quantities required and show that for these cases they can all be expressed analytically. The problem is finally formulated as the solution of a system of linear equations. The matrix of the system is real and does not depend on the type of source or receiver. We present modelling results for different arrays and apply the algorithm to the interpretation of field data. We assume the standard dipoledipole resistivity array for the direct current case, and vertical and horizontal magnetic dipoles for induction measurements. In the case of magnetometric resistivity we introduce a moving array composed of an electric dipole and a directional magnetometer. The array has multiple separations for depth discrimination and can operate in two modes. The mode where the predominant current flow runs along the profile is called MMR-TM. This mode is more sensitive to lateral variations in resistivity than its counterpart, MMR-TE, where the mode of conduction is predominantly perpendicular to the profile.  相似文献   

10.
summary . An ocean-coast model which consists of a uniformly conducting half-space screened by a perfectly conducting half-plane (the model ocean) is studied. On the land the electric field decreases continuously to zero as the coast is approached. The horizontal magnetic field component is found to vary rapidly, but remains finite; the vertical component on the other hand, increases to infinity at the coast. On the surface of the model ocean as well as on the sea floor, electric field and vertical magnetic field are both nil, but the horizontal magnetic field becomes singular as the seashore is approached. This horizontal magnetic field however, is different on the sea floor and at the ocean surface, because the integrated ocean current is finite, even growing to infinity as the shore is approached. The very large ocean currents near the shore act as an extremely long line antenna, which radiates far afield. This antenna feature explains the very long range of the ocean-coast effects observed under E -polarization induction, compared to the corresponding H -polarization effects where no such antenna-like feature occurs. A similarly large difference of ranges can be expected for all shallow structures with large lateral conductivity contrasts. The present study may therefore be of some interest in relation to geomagnetic depth soundings by the inductive and magnetotelluric methods, as well as in understanding the ocean-coast effect known for some time from records of coastal observatories.  相似文献   

11.
While the inversion of electromagnetic data to recover electrical conductivity has received much attention, the inversion of those data to recover magnetic susceptibility has not been fully studied. In this paper we invert frequency-domain electromagnetic (EM) data from a horizontal coplanar system to recover a 1-D distribution of magnetic susceptibility under the assumption that the electrical conductivity is known. The inversion is carried out by dividing the earth into layers of constant susceptibility and minimizing an objective function of the susceptibility subject to fitting the data. An adjoint Green's function solution is used in the calculation of sensitivities, and it is apparent that the sensitivity problem is driven by three sources. One of the sources is the scaled electric field in the layer of interest, and the other two, related to effective magnetic charges, are located at the upper and lower boundaries of the layer. These charges give rise to a frequency-independent term in the sensitivities. Because different frequencies penetrate to different depths in the earth, the EM data contain inherent information about the depth distribution of susceptibility. This contrasts with static field measurements, which can be reproduced by a surface layer of magnetization. We illustrate the effectiveness of the inversion algorithm on synthetic and field data and show also the importance of knowing the background conductivity. In practical circumstances, where there is no a priori information about conductivity distribution, a simultaneous inversion of EM data to recover both electrical conductivity and susceptibility will be required.  相似文献   

12.
Summary. The paper reports studies of the three-dimensional magnetospheric—ionospheric current systems which produced polar magnetic substorms on 1974 September 7 and September 18. The data were magnetic perturbation fields observed with a two-dimensional array of 23 three-component magnetometers located in western Canada beneath the auroral oval. In an earlier study of a substorm of September 11 (Bannister & Gough) the fields fitted calculated field for a Boström Type 1 current loop with field-aligned currents at east and west ends of the ionospheric segment, and with uniform current density across the width. The substorms here reported could not be modelled with uniform current density. An inverse method due to Oldenburg was therefore used to estimate current density distributions, and satisfactory fits of calculated to observed field resulted. Each substorm was modelled at six representative epochs. In general the principal ionospheric current seem by the array was westward. At four epochs of the September 7 substorm and throughout the September 18 substorm, significant eastward ionospheric current (or its equivalent in terms of the fields produced) was observed north of the westward electrojet. Northwestward bends in the ionospheric current segments were found at four epochs on September 7 and at three epochs on September 18. As in the September 11 substorm (Paper 1), these bends were either west of or close to magnetic midnight. In some cases the bends may follow the auroral oval, but in others they are sharper and may be associated with the Harang discontinuity. East of geomagnetic the ionospheric currents tend to run in a constant geomagnetic midnight latitude range. The developments of the three substorms, of September 7, 11 (Paper 1) and 18, are compared. They showed a variety of shifts in longitude, though all moved eastward relative to magnetic midnight.  相似文献   

13.
Summary. The northward component of the induced magnetic field due to the equatorial electrojet at the Earth's surface is calculated using a more realistic local time variaton of the external field due to the electrojet than is provided for by models of the electrojet currently used in induction calculations. It is seen that appreciable induction effects can be expected about an hour before local noon for the kind of local time variation considered. Our results are in qualitative agreement with direct observations of Earth currents in the equatorial region in Nigeria. At local times when observable induction effects are present, the magnetic field due to the electrojet is necessarily three-dimensional; hence in order to obtain the internal part directly from the observed total field due to the electrojet at the Earth's surface, a three-dimensional formulation is required.  相似文献   

14.
Summary. Most of the Earth's magnetic field and its secular change originate in the core. Provided the mantle can be treated as an electrical insulator, stochastic inversion enables surface observations to be analysed for the core field. A priori information about the variation of the field at the core boundary leads to very stringent conditions at the Earth's surface. The field models are identical with those derived from the method of harmonic splines (Shure, Parker & Backus) provided the a priori information is specified appropriately.
The method is applied to secular variation data from 106 magnetic observatories. Model predictions for fields at the Earth's surface have error estimates associated with them that appear realistic. For plausible choices of a priori information the error of the field at the core is unbounded, but integrals over patches of the core surface can have finite errors. The hypothesis that magnetic fields are frozen to the core fluid implies that certain integrals of the secular variation vanish. This idea is tested by computing the integrals and their standard and maximum errors. Most of the integrals are within one standard deviation of zero, but those over the large patches to the north and south of the magnetic equator are many times their standard error, because of the dominating influence of the decaying dipole. All integrals are well within their maximum error, indicating that it will be possible to construct core fields, consistent with frozen flux, that satisfy the observations.  相似文献   

15.
The Antarctic magnetic anomaly map compiled marine and airborne surveys collected south of 60°S through 1999 and used Magsat data to help fill in the regional gaps between the surveys. Ørsted and CHAMP satellite magnetic observations with greatly improved measurement accuracies and temporal and spatial coverage of the Antarctic, have now supplanted the Magsat data. We combined the new satellite observations with the near-surface survey data for an improved magnetic anomaly map of the Antarctic lithosphere. Specifically, we separated the crustal from the core and external field components in the satellite data using crustal thickness variations estimated from the terrain and the satellite-derived free-air gravity observations. Regional gaps in the near-surface surveys were then filled with predictions from crustal magnetization models that jointly satisfied the near-surface and satellite crustal anomalies. Comparisons in some of the regional gaps that also considered newly acquired aeromagnetic data demonstrated the enhanced anomaly estimation capabilities of the predictions over those from conventional minimum curvature and spherical harmonic geomagnetic field models. We also noted that the growing number of regional and world magnetic survey compilations involve coverage gaps where these procedures can contribute effective near-surface crustal anomaly estimates.  相似文献   

16.
Summary. From 1883 to 1901 magnetic elements were continuously recorded at the French Saint-Maur observatory. From 1893 to 1895, Earth potentials along two 15 km long orthogonal lines were also recorded. Moreover, from 1884 to 1885, Blavier,'Ingénieur des Télégraphes', used several some hundred kilométre long telegraphic lines to measure and record Earth potentials. Using this set of data we will study the daily variations of the telluric and magnetic fields and the way according to which these two fields are correlated.
The observed magnetotelluric tensor is antisymmétric when the long telluric lines are considered. It is not the case for the short lines. But, making use of a correction derived from the formalism developed by Le Mouel & Menvielle in the static distortion approximation, one can derive an impedance whose phase is equal to the phase of the impedance derived from the long line data.  相似文献   

17.
Summary. Babour & Mosnier's results showing no frequency dependence between the anomalous horizontal magnetic field above a conductor and the difference between the horizontal magnetic fields above and below the conductor over a wide range of frequencies led them to conclude that this effect is due to current channelling. A two-dimensional numerical model of a conductive channel, with a uniform horizontal source field, shows the same effect over a wide range of frequencies. Thus local induction can show the same effect.  相似文献   

18.
The geomagnetic power spectrum   总被引:1,自引:0,他引:1  
Combining CHAMP satellite magnetic measurements with aeromagnetic and marine magnetic data, the global geomagnetic field has now been modelled to spherical harmonic degree 720. An important tool in field modelling is the geomagnetic power spectrum. It allows the comparison of field models estimated from different data sets and can be used to identify noise levels and systematic errors. A correctly defined geomagnetic power spectrum is flat (white) for an uncorrelated field, such as the Earth's crustal magnetic field at long wavelengths. It can be inferred from global spherical harmonic models as well as from regional grids. Marine and aeromagnetic grids usually represent the anomaly of the total intensity of the magnetic field. Appropriate corrections have to be applied in estimating the geomagnetic power spectrum from such data. The comparison of global and regional spectra using a consistently defined azimuthally averaged geomagnetic power spectrum facilitates quality control in field modelling and should provide new insights in magnetic anomaly interpretation.  相似文献   

19.
Summary. Various numerical procedures have been developed to study the electric currents which are produced by induction in the ocean. In nearly all these methods difficulties arise near the coastline where the electric field changes significantly over a small distance. In this paper a new one-sided correction for the electric field near the edge of the ocean is obtained. The results contain a multiplicative constant which may be determined by a suitable matching technique at an oceanic point. The anomalous magnetic field due to this edge correction is also given.  相似文献   

20.
Summary. Evidence of a conductivity anomaly in the Rhine-Graben was first given about 15 years ago and consequently led to the definition of various models of induction in the region for periods ranging from a few minutes to a few hours. These models reflect two antagonistic ways of explaining the observed anomalous variations of the magnetic field: direct induction in a two-dimensional (2-D) structure or static distortion of telluric currents by the resistive crystalline Vosges (France) and Schwarzwalde (Germany) massifs. We discuss the two approaches using a simple formalism. In particular, we show that the self-induction related to the anomalous currents flowing in the Rhine-Graben is negligible for periods larger than 1000 s, and that, even though the static distortion of telluric currents does account for the observed anomaly, 2-D models can explain some of its features. We also show how the channelled currents are induced in the large sedimentary basins surrounding the area under study.
An experimental verification of this result is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号