首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 657 毫秒
1.
气溶胶光学厚度的分布特征及其与沙尘天气的关系   总被引:8,自引:3,他引:8  
 利用MODIS卫星遥感光学厚度资料,分析了中国大气气溶胶光学厚度的时空分布特征,并与同期沙尘天气进行了对比和相关分析,结果表明:①中国主要内陆地区的气溶胶光学厚度(Aerosol Optical Thickness,简称AOT)分布有4个高值区:①分别位于南疆盆地和青海\,甘肃、内蒙古中西部地区、四川盆地和长江黄河下游地区。②春季北方特别是西北的AOT值明显高于南方,冬季南北AOT值差别不大。③南疆盆地和内蒙古中东部地区AOT值随季节变化明显,而四川盆地、长江黄河下游地区AOT值没有明显的季节变化。④南疆盆地、青海、内蒙古等地区沙尘天气过程与AOT值同步变化。⑤在沙尘天气的多发区,气溶胶光学厚度与沙尘天气有较好的相关性;沙尘天气的少发区,气溶胶光学厚度与沙尘天气基本不相关。因此可以推断,中国北方,特别是干旱荒漠区,大气气溶胶主要来自沙尘天气过程引起的地面沙尘释放。  相似文献   

2.
段海霞  郭铌  霍文  秦贺  马玉芬 《中国沙漠》2014,34(6):1617-1623
GRAPES-SDM沙尘模式和卫星遥感监测是目前沙尘暴监测预报业务中重要的工具.本文使用天气学检验方法,对中国气象局兰州干旱气象研究所目前使用的GRAPES-SDM沙尘模式2012年春季沙尘天气预报情况以及FY-2D卫星遥感产品沙尘指数IDDI的监测效果进行检验评估.结果表明:沙尘模式在西北沙尘暴预报业务中具有很好的预报参考价值,卫星遥感沙尘指数也具有较好的监测效果,但两者均存在一定的问题.沙尘模式对大范围沙尘暴过程有较好的预报能力,但对沙尘强度预报偏强;卫星遥感沙尘指数虽然不能定性地表示沙尘强度,但是在一定程度上能够反映沙尘强度的变化,不过反映沙尘强度的数值及其分布区间还有待于进一步完善.卫星遥感在南疆盆地常会将大片深厚的沙尘气溶胶区域误判为云区,造成对沙尘天气特别是沙尘暴天气未能识别的现象,另外IDDI指数不能用于夜间沙尘监测.  相似文献   

3.
利用全球气候模式CAM5.1的20年(1991—2010年)沙尘气溶胶排放量模拟,分析全球沙尘气溶胶排放量的时空变化及其大气环流影响因子。结果表明:20年全球年平均沙尘气溶胶排放总量为1 152±28 Mt,全球沙尘气溶胶排放源主要集中在北非、阿拉伯半岛和中亚、东亚、澳大利亚及北美沙漠地区。北非沙漠地区作为全球最大的沙尘排放源区,占全球沙尘源总量的61.8%。各沙漠区均有显著的沙尘排放的季节变化和年际波动,沙尘气溶胶呈现春、夏季强排放和秋、冬季弱排放的季节循环。相对于沙尘排放的季节变化,其年际变化幅度明显偏弱。基于大气环流指数与沙尘气溶胶排放年际变化的相关显著程度,确定主要影响全球和主要沙漠地区沙尘排放量的大气环流因子:南方涛动指数SOI、北极涛动AO、南极涛动AAO、大西洋年际振荡指数AMO、北太平洋遥相关指数NP以及西太平洋指数WP。全球主要沙漠地区沙尘排放量与大气环流因子之间的相关性具有明显的区域分布特征,在同一沙漠的不同区域甚至可以表现出正负相反的相关性。热带海气相互作用的ENSO循环中,拉尼娜年(厄尔尼诺年)北非地区的沙尘排放量偏多(少),阿拉伯半岛和中亚地区的沙尘排放量偏少(多)。  相似文献   

4.
额济纳地区沙尘气溶胶质量浓度特征初步分析   总被引:2,自引:1,他引:1  
为更好地理解亚洲沙尘源区气溶胶特征,在巴丹吉林沙漠边缘额济纳地区进行了野外观测。通过对沙尘源区之一的额济纳地区沙尘气溶胶的长期临测,获得了其区域代表性沙尘气溶胶理化特征。其TSP年变化以5月最大,9月最小,这与气象条件密切相关。针对典型天气过程的观测结果表明,不同天气条件(背景大气、浮尘、扬沙和沙尘暴)下TSP浓度存在倍数关系和量级的差异,其质量浓度随粒径的分布特征也明显不同。总体上讲,额济纳地区清洁大气中沙尘气溶胶浓度量级为10^2μg/m^3,而浮尘,扬沙及沙尘暴期间沙尘气溶胶质量浓度量级为10^2μg/m^3,超强沙尘暴沙尘质量浓度可达量级为10^4μg/m^4,在不同风向影响下,气溶胶粒径分布呈现不同特征;与沙坡头、敦煌地区相比,具有其独特的区域特性。  相似文献   

5.
新疆沙尘源状况及其沙尘气溶胶释放条件分析   总被引:9,自引:7,他引:2  
沙尘气溶胶是干旱、半干旱区大气中重要的组成物质, 沙尘天气多发是该区域沙尘气溶胶含量高的主要原因。新疆1/4的土地被沙漠覆盖,塔里木盆地绝大部分地区沙土和沙壤土占地比率大于60%,沙漠沙以细沙为主, 特殊的下垫面为沙尘天气的形成提供了丰富的沙源;沙漠周围的边缘地带、河流两岸、古河道中的土壤类型中粒径小于2.5 μm和粒径小于10 μm的土壤颗粒物中细颗粒物分别达到了50%和20%,是大气沙尘气溶胶中细颗粒物的主要来源和潜在来源。沙尘天气的产生受大风、降水、植被覆盖度、下垫面性质以及大气环流等多种因素的影响。  相似文献   

6.
地面温度日较差(DTR)作为重要天气和气候指标,反映昼夜温差极值,比平均气温对地表辐射收支的变化更敏感,对环境变化和气候异常具有重要参考价值。沙尘气溶胶的气候效应是影响岩石圈-大气-海洋系统的重要因子,但目前的研究较少涉及沙尘气溶胶对DTR的影响机制。基于WRF-Chem模式(Weather Research and Forecasting coupled with Chemistry)揭示2002—2005年沙尘气溶胶气候效应对东亚地面温度日较差的影响。结果表明:WRF-Chem模式可以很好体现东亚气象场和沙尘气溶胶的时空分布特征。沙尘气候效应导致东亚大陆大部分地区DTR减小,沙尘直接辐射效应在其中起决定性作用。在白天,沙尘直接辐射强迫加热大气、冷却地表,减小地面总净辐射而降低日最高温度,导致DTR减小。在中国青藏高原和东北部地区,沙尘气溶胶间接效应占主导地位,导致青藏高原地区积雪覆盖减少,东北地区云水含量减小,间接导致DTR增大。  相似文献   

7.
沙尘气溶胶对直接太阳辐射的衰减研究   总被引:29,自引:19,他引:10  
基于在腾格里沙漠东南端进行的太阳辐射与气象要素观测,探讨晴空无云时沙尘气溶胶对直接太阳辐射的衰减;并利用太阳辐射观测资料,给出沙漠边缘垂直上空的大气混浊度的变化。根据4月份至9月份的观测资料,只选取天空无云(可测的太阳辐射)的气象条件,研究沙尘气溶胶造成的直接太阳辐射的衰减。结果表明,在晴好天气约为47.0%~2.6%,平均衰减约为16.9%;在沙尘天气约为90%~10%,平均衰减约为38%;沙尘天气气溶胶对太阳辐射衰减变化较大。大气混浊度(atmospheric turbidity:τa)在晴好天气下约为0.048~0.631,平均约为0.260;沙尘天气约为0.177~2.475,平均约为0.741。  相似文献   

8.
沙尘天气中气溶胶光学特性的时空分布特征   总被引:4,自引:9,他引:4  
选取内蒙古境内额济纳旗、乌拉特中旗、东胜、朱日和、锡林浩特5个站的几次沙尘天气过程和晴朗天气下CE-318太阳光度计资料,计算出大气气溶胶光学厚度,结合气象资料分析在沙尘天气发生过程中气溶胶光学厚度的时空分布特征。分析结果显示,在沙尘天气发生过程中,气溶胶光学厚度是一个相当敏感的变量,其随沙尘的发生、发展和消亡表现出明显不同的日变化特征,且光学厚度值随着沙尘天气的发生和发展,在其空间分布变化上与沙尘天气本身的空间分布变化具有很好的一致性,可以很好的反映沙尘输送过程。此外气溶胶光学厚度与大气稳定度也有一致的日变化趋势。因此,对于大气气溶胶光学厚度的监测可以为沙尘天气的预报提供较为准确的客观依据。  相似文献   

9.
沙坡头地区沙尘气溶胶质量浓度的试验观测研究   总被引:12,自引:7,他引:5  
中国北方沙尘气溶胶的理化特征及其气候效应受到了广泛关注,但现有的研究大都是基于较短时段和典型事件的试验观测。本项研究利用大流量采样器和安德森采样器,对沙坡头地区沙尘气溶胶的质量浓度特征进行了长达3a的监测,获得了该地区沙尘气溶胶的年变化特征,并与背景气象资料和降尘观测结果进行了对比分析;针对典型天气过程的观测结果表明,不同天气条件(背景大气、浮尘、扬沙和沙尘暴)下TSP浓度存在倍数关系和量级的差异,其质量浓度随粒径分布特征也明显不同;两种采样器观测结果的对比分析也表明,局地沙尘释放是沙坡头地区大气气溶胶的主要来源,但在沙尘暴过程中,远源沙尘输送的贡献也不容忽略。  相似文献   

10.
塔里木盆地区域沙尘气溶胶特征分析   总被引:1,自引:7,他引:1  
沙尘天气是塔里木盆地地区常见的天气现象,对大气沙尘气溶胶的分析表明,沙尘暴期间,沙尘气溶胶浓度远大于非尘暴期间。由于两地地理环境的差异,沙尘暴期间,策勒站细颗粒质量百分比呈下降趋势;阿克苏站细颗粒质量百分比呈上升趋势。说明尘暴期间由于当地沙尘源丰富,细粒物质较多,当风速达到起沙风速时,细粒物质迅速被携带到高空,成为沙尘气溶胶的主要来源。阿克苏站大气气溶胶中Al等元素在不同高度的谱分布呈单峰型,浓度最大值出现在4.7-7.0μm范围内,说明当地大气气溶胶颗粒主要来源于地表沙源。富集因子分析表明,阿克苏站和策勒站沙尘暴和扬尘天气的各地壳元素含量均高于浮尘和背景大气,而且能见度愈小,高出的比例愈大;各种沙尘天气发生时,均以亲地元素的浓度为最高。  相似文献   

11.
沙尘源区与沉降区气溶胶粒子的理化特征   总被引:8,自引:6,他引:2  
在沙尘源区 ,大气气溶胶粒子主要是地面沙尘来源 ,沙尘暴发生时气溶胶粒子的浓度大增 ,浓度峰值向粗粒径范围移动 ;在沙尘沉降区日本 ,当浮尘期时气溶胶粒子有地面沙尘和工业排放物两个来源 ,形成双峰型分布 ,当非浮尘期时气溶胶粒子主要以工业排放来源为主 ,在 <2 .1um细粒径范围形成一个峰值。水溶性成分也不相同 ,沙尘源区粒子以Ca2 +、SO42 -、Na+、Cl-等沙尘来源离子为主 ,在 3.3~ 4 .7um形成浓度峰值 ;沙尘沉降区以NH4+、SO42 -、NO3 -等工业来源离子为主 ,在 0 .6 5~ 1.0 1um形成峰值。在日本即使是当浮尘时期 ,大气中的气溶胶粒子浓度也远远比不上沙尘源区沙尘暴发生时的大气气溶胶浓度。这说明能够到达日本沉降区的气溶胶粒子只是沙尘源区大气气溶胶中的很少一部分  相似文献   

12.
一次强沙尘暴过程中沙尘气溶胶空间分布的初步分析   总被引:9,自引:2,他引:7  
申莉莉  盛立芳  陈静静 《中国沙漠》2010,30(6):1483-1490
利用地面观测资料分析了2008年5月25日至29日沙尘天气的发生、发展情况,利用Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations(CALIPSO)资料分析了沙尘气溶胶在传输过程中的垂直分布状况,结合HYSPLIT模式,对此次沙尘天气过程中沙尘气溶胶的传输路径做了分析。结果表明,此次沙尘天气过程是由蒙古气旋造成的,沙尘由低空急流向远方输送;地面沙尘天气主要发生在气旋和反气旋之间强烈的北风或西北风气流中;在此次沙尘天气过程中,沙尘气溶胶的退偏振比在0.10~0.38之间,沙尘主要分布在海拔2 km到4 km之间,最高可达到5 km。  相似文献   

13.
中国北方一次强沙尘暴爆发的数值模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 利用意大利国际理论物理研究中心发展的耦合了沙尘模块的区域气候模式(RegCM3)对发生在中国北方2006年4月9~11日期间的一次强沙尘暴的爆发进行了数值模拟研究。与实际观测相比,RegCM3成功地模拟出了本次沙尘暴爆发区域、天气形势及相应的沙尘气溶胶光学厚度(AOD)分布。4月9日6时,沙尘暴首先爆发于塔里木和吐鲁番盆地。受蒙古气旋的影响,24 h后甘肃中部及内蒙古西部地区也开始爆发沙尘暴。源区地面起沙率大于3 mg·m-2·s-1,单位面积上的沙尘载荷量高于3 000 mg/m2。对流层中低层沙尘主要向东输送,可影响我国华北绝大部分地区,本次沙尘暴过程造成中国北方主要城市空气质量的下降。模拟的AOD分布特征与地面起沙率和载荷量分布特征相对应,并与TOMS 卫星观测的气溶胶指数(AI)的区域和中心值具有较好的一致性。AOD分布由西向东呈递减的趋势,且有两个大于2的高值中心,一个位于新疆塔里木、吐鲁番盆地和古尔班通古特沙漠地区;另一个位于河西走廊和内蒙古交界地区。对比他人研究结果,RegCM3对沙尘的起沙、传输等过程以及AOD的时空分布模拟合理。  相似文献   

14.
2002年春季中国沙尘天气与物理量场的相关分析   总被引:20,自引:14,他引:6  
通过对2002年春季中国沙尘暴、扬沙、浮尘天气的综合分析,给出了各沙尘区沙尘天气发生的频率。并分析了沙尘天气分别与850 hPa全风速、散度,500 hPa全风速、散度、涡度、总能量、垂直速度,不稳定度指数KiKySi,300~850 hPa两层之间的风切变等11个物理量场的相关性。结果表明:2002年春季沙尘天气,除了具有往年的阶段性特点外,还具有明显的区域特点,即南疆区浮尘较多;河套区扬沙较多;蒙古区沙尘暴较为明显。沙尘天气与各物理量场的相关分析进一步证实,风是影响沙尘天气发生的最主要的气象要素,它与浮尘的出现有一定关系,但不是决定因素;而扬沙和沙尘暴的发生,风确是先决条件。  相似文献   

15.
一次强沙尘暴活动对中国城市空气质量的影响   总被引:5,自引:1,他引:4  
张加云  刘晓东 《中国沙漠》2008,28(1):161-169
对2006年4月8—12日发生在中国北方地区的一次强沙尘暴天气过程及其对中国大陆城市空气质量的影响进行了分析研究。结果表明:①造成此次沙尘天气过程的直接原因是伴随着西伯利亚强冷空气南下的冷锋自西北向东南方向的移动。沙尘暴鼎盛时期卫星观测的中国境内大气沙尘气溶胶指数(AI)的分布存在一个高值区和两个次高值区。高值区位于内蒙古西部地区、河西走廊和河套地区;两个次高值区分别位于塔克拉玛干沙漠及华北至东北地区。与此同时,地面观测的最小能见度小于10 km的气象站点分布最密集的地区也主要分布在上述3个区域。AI的分布与最小能见度的分布之间有着很好的一致性。②这次沙尘天气过程的影响范围主要在33°N以北。从西到东沙尘天气影响的程度逐渐减轻,受污染最严重的城市集中在西北地区东部。根据锋面过境时间与发生大气污染事件时间的对比可将受沙尘天气影响的城市大致分为两类:第一类城市大气污染事件发生在冷锋过境期间(Ⅰ类城市),第二类城市大气污染事件发生在冷锋过境前(Ⅱ类城市)。Ⅰ类城市受沙尘过程影响发生空气污染事件的持续时间相对较短,空气污染事件主要出现在锋面过境前后。Ⅱ类城市受沙尘过程影响发生空气污染事件的持续时间相对较长,空气污染事件的出现时间要明显超前于锋面过境时间。两类城市的共同特征是能见度与空气污染指数(API)之间存在着良好的反位相关系。  相似文献   

16.
周坚华  Y F ZHOU  周杰 《中国沙漠》2009,29(6):1186-1195
大气环流动力条件是沙尘暴发生、发展的重要影响因素之一。提出了一种新的沙尘暴分析预测模式,它以TOMS-EP卫星逐日大气气溶胶指数(Aerosol Index)数据提取区域气溶胶指数积分强度和以西风急流表征的大气环流动力条件,通过给出两者的相关性,来实现分析预测沙尘暴的目的。与此前有关沙尘暴预报的研究相比,有如下进展:①提出和试验了通过TOMS-EP数据提取大气环流动力条件的方法;②修正了区域气溶胶指数积分强度的定义和改善其提取精度;③提出和试验了表现扬沙强度的气溶胶指数积分强度与环流大气环流动力条件之间较稳定的统计相关形式,和试验分析了季节对这种相关关系的影响;④试验和分析了沙尘暴起尘的环流动力条件。本研究提出的模式/方法有可能为分析预报沙尘暴的发生时间和强度提供新的参考数据。  相似文献   

17.
中亚干旱区是全球重要的粉尘源区,是全球变化与区域响应研究的关键区域之一。中亚粉尘形成搬运沉积过程一直是全球变化研究的热点科学问题。本文选取位于伊犁盆地北部、北天山南麓不同地形和气候条件下的两处黄土剖面,对其沉积速率最高的层段进行了粒度测试分析,结合聚类分析和粒度分布曲线拟合两种方法,重建了黄土粉尘的堆积过程。伊犁盆地黄土主要由远源和近源物质组成,分别由高空西风和中尺度的区域风搬运而来。高空西风所携带的远源粘粒级矿物颗粒对盆地东部降雨较高地区有一定的贡献,而在盆地西部不容易沉降下来。中尺度区域风所搬运的近源物质组成了黄土沉积物的主体,而近源区沉积物的可用性在黄土的形成过程中扮演着重要角色。另外,非风暴过程中(沙尘暴过后)出现的浮尘在沙尘暴天气频率减少的时期对黄土的发育有重要贡献,而在沙尘暴天气频发的时期,较差的植被覆盖度能够使得已经沉降下来的浮尘组分重新被扬起至大气中。由此建立了一个粉尘堆积的概念模型。认识黄土粉尘的堆积过程对现代沙尘天气的治理和人类生存环境的改善具有重要作用。  相似文献   

18.
浑善达克沙地春季沙尘暴期间沙尘启动及传输特性研究   总被引:18,自引:15,他引:3  
岳平  牛生杰  刘晓云 《中国沙漠》2008,28(2):227-230
沙尘暴是一种强烈的风蚀过程,同时又加剧了荒漠化进程。沙尘气溶胶的生态环境及气候效应已成为国际社会关注的焦点问题。采用“IMGRASS”春季野外实验期间在内蒙古浑善达克沙地东南部的桑根达来观测点得到的沙尘气溶胶的粒谱,计算了该沙地10 m高度的沙粒启动速度,并估算了该沙地沙尘气溶胶的传输距离。  相似文献   

19.
基于WRF-IWEMS耦合模型对2016年3月1~9日发生在蒙古高原的强沙尘天气过程进行数值模拟,着重模拟了尘源、粉尘传播路径以及粉尘扩散过程中浓度变化和影响范围,并采用卫星影像、站点监测数据与模型结果进行对比分析。结果表明:此次风沙天气过程的尘源分布在新疆哈密地区、阿拉善高原、中蒙边境戈壁地区以及浑善达克沙地部分地区,粉尘自源区分别沿河西走廊、贺兰山区、张家口等地扩散至华北和京津地区。蒙古高原土壤风蚀可使华北地区来自自然源的大气颗粒物PM10、PM2.5浓度分别达到1 000 μg·m-3、200 μg·m-3以上,还可使华北地区大气颗粒物浓度高于200 μg·m-3的天气持续48 h以上。  相似文献   

20.
In recent years, the physical and chemical properties of dust aerosols from the dust source area in northern China have attracted increased attention. In this paper, Thermo RP 1400a was used for online continuous observation and study of the hinterland of Taklimakan, Tazhong, and surrounding areas of Kumul and Hotan from 2004 to 2006. In combination with weather analysis during a sandstorm in the Tazhong area, basic characteristics and influencing factors of dust aerosol PM10 have been summarized as below: (1) The occurrence days of floating dust and blowing dust appeared with an increasing trend in Kumul, Tazhong and Hotan, while the number of dust storm days did not significantly change. The frequency and intensity of dust weather were major factors affecting the concentration of dust aerosol PM10 in the desert. (2) The mass concentration of PM10 had significant regional distribution characteristics, and the mass concentration at the eastern edge of Taklimakan, Kumul, was the lowest; second was the southern edge of the desert, Hotan; and the highest was in the hinterland of the desert, Tazhong. (3) High values of PM10 mass concentration in Kumul was from March to September each year; high values of PM10 mass concentration in Tazhong and Hotan were distributed from March to August and the average concentration changed from 500 to 1,000 g/m3, respectively. (4) The average seasonal concentration changes of PM10 in Kumul, Tazhong and Hotan were: spring > summer > autumn > winter; the highest average concentration of PM10 in Tazhong, was about 1,000 g/m3 in spring and between 400 and 900 g/m3 in summer, and the average concentration was lower in autumn and winter, basically between 200 and 400 g/m3. (5) PM10 concentration during the sandstorm season was just over two times the concentration of the non-sandstorm season in Kumul, Tazhong and Hotan. The average concentrations of sandstorm season in Tazhong were 6.2 and 3.6 times the average concentrations of non-sandstorm season in 2004 and 2008, respectively. (6) The mass concentration of PM10 had the following sequence during the dust weather: clear day < floating dust < floating and blowing dust < sandstorm. The wind speed directly affects the concentration of PM10 in the atmosphere, the higher the wind speed, the higher the mass concentration. Temperature, relative humidity and barometric pressure are important factors affecting the strength of storms, which could also indirectly affect the concentration change of PM10 in the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号