首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
基于遥感影像的北极海冰厚度和密集度分析方法   总被引:2,自引:0,他引:2       下载免费PDF全文
基于2003年7月至9月中国第二次北极科学考察所获取的大量海冰影像资料,完成了走航期间74.11°N-79.56°N,144.17°W-169.95°W范围内海冰厚度和密集度的提取。本文总结了从船侧录像中提取冰/雪厚度以及从航拍图像中提取冰密集度的方法,并描述了提高所取参数可靠性应采取的分析技术和现场调查的处理措施。本文方法具有一定的普适性,可以应用到渤海海冰和极地海冰的研究中。  相似文献   

2.
中国第二次北极科学考察海冰物理数据的解释   总被引:2,自引:1,他引:1       下载免费PDF全文
2003年7-9月间,为了探讨北冰洋海冰变化同气候的关系,中国第二次北极科学考察对海冰物理及其相关的物理海洋、大气边界层进行系列合作观测。观测的冰形态、海洋和气象要素将用于确定调查期间大气海冰海洋之间的热力和动力交换。本次考察获得的冰物理性质方面的原始观测数据将在中国南北极考察网公布。为了方便各方人员使用这些数据,本文给出这套资料的描述和解释。  相似文献   

3.
海冰密度是海冰和气候模型的重要物理变量,也是利用卫星测高数据估算海冰厚度的关键参数。目前各国北极科学考察虽开展了海冰物理观测,但对近期北极海冰密度现场观测资料的综合分析和挖掘应用不足。在此背景下,收集了近15年来北极海冰密度现场观测资料,分析北极海冰密度的变化特征;对海冰密度实测数据进行克里金插值,将插值结果输入静力平衡方程模型计算海冰厚度,探讨海冰密度对海冰厚度卫星测高反演的影响。结果表明, 2000—2015年北极海冰密度变化范围为750—950 kg·m–3,1—9月海冰密度总体上随月份变化呈减小的趋势;6—9月北极海冰密度随着纬度的增加而减少(75°N—90°N);通过对比分析表明,相较于使用海冰密度固定值参与估算海冰厚度,采用经现场观测数据空间插值后的海冰密度估算海冰厚度的结果更为准确。北极海冰密度现场观测资料的整理分析可为海冰与气候变化等进一步研究提供参考。  相似文献   

4.
雪和海冰作为北极地区反照率最高的地表类型,可以将大部分入射辐射能量反射回天空,其表面反照率的变化对整个地表-大气辐射平衡系统和全球气候变化都会有重要影响。在2010年中国第4次北极科学考察期间用ASD光谱仪对北极太平洋扇区不同类型的海冰表面反照率进行了现场测量,观测时段为7月27日至8月23日,地理范围在72°18′-87°20′N和152°34′-178°22′W之间。观测结果表明积雪覆盖海冰的反照率最高,干雪覆盖时均值达到0.82,融化的湿雪覆盖时反照率会有一定程度地降低。夏季北极地区存在大量融池,融池海冰按颜色划分为白冰,蓝冰和灰冰,白冰的平均反照率为0.54,蓝冰的为0.31,灰冰的只有0.20,融池水的反照率只有0.16。融池是北极夏季反照率变化的重要原因。  相似文献   

5.
可服务于北极航道的海冰与气象预报信息综合分析   总被引:1,自引:0,他引:1       下载免费PDF全文
全球气候变暖和北极海冰快速减少背景下,北极航道正在开通,提高海冰和气象预报能力是北极地区船只航行的重要保障。通过获取不同国家的北极高纬共享信息(包括观测数据、预报产品和历史分析资料),分析国际北极地区海冰和气象预报信息特点及存在的问题,能够为我国北极观测预报的常态化、业务化发展提供参考。通过对7个环北极国家、3个非北极国家以及3个信息发布平台共23家机构海冰和气象预报信息的对比,发现近年来各国北极预报水平提升,合作交流扩大,但是仍存在一些问题,如观测数据没有充分应用于预报、北极中央区的预报能力偏弱、预报信息共享度不够、信息应用时需要加以选择、仍需提升信息发布技术。通过上述分析,建议我国持续增加北极科考、国际合作、冰区安全航行预报保障技术研究等的投入,以系统提升我国的极地预报能力,为我国北极科考和极地航运事业提供更加及时有效的预报保障。  相似文献   

6.
气候系统模式对于北极海冰模拟分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用全球耦合模式对比计划第五阶段(CMIP5)模拟试验的结果,并与观测资料对比分析,评估了CMIP5模式对北极海冰的模拟效果。结果表明:多数模式可以较好地模拟出北极海冰的空间分布以及季节变化特征。1979—2005年北极海冰迅速减少,所有模式均模拟出北极海冰减少的趋势,但减少趋势大小与观测差别较大。在全球变化的背景下,全球地表气温升高1℃,北极海冰的面积减少1.02×106km2,而在模式中减少的北极海冰面积在0.62×106—1.68×106km2之间,说明模式对于北极海冰的模拟仍然存在很多不确定性。  相似文献   

7.
北极迅速变暖条件下西北航道的海冰分布变化特征   总被引:1,自引:0,他引:1       下载免费PDF全文
苏洁  徐栋  赵进平  李翔 《极地研究》2010,22(2):104-124
北极近年迅速变暖使西北航道的通航成为可能。本文利用AMSR-E的6.25km分辨率日平均海冰密集度卫星数据研究了2002-2008年北极西北航道的海冰密集度变化特征。通过统计分析沿西北航线冰障关键流段代表站点的融化期、轻冰期、无冰期、无冰天数和轻冰天数,以及海冰分布和变化的某些细节,加深了对西北航道海冰季节变化和年际变化以及空间分布的主要特征,特别是与通航相关的冰情信息的了解。研究指出西北航道南路比北路容易开通;各线路冰障流段存在的时间呈减小趋势,整条线路无冰/轻冰天数呈增加趋势;冰间湖和冰间水道的产生和发展在很大程度上可能会影响到整个航路的融冰开始时间。  相似文献   

8.
近30年北极海冰异常变化趋势   总被引:10,自引:1,他引:9       下载免费PDF全文
张璐  张占海  李群  吴辉碇 《极地研究》2009,21(4):344-352
在过去30年间,北极气候发生了前所未有的异常变化,北极海冰变化更是经历了令人瞩目的、从平缓到突变的缩减过程,因此,北冰洋及其海冰的研究得到广泛的重视。综述当前国内外有关北极海冰快速变化的研究工作,对这些大气的现场观测和卫星遥感资料的分析,以及一些全球和区域气候模拟的结果,基本上一致地指出了近3O年来北极海冰的快速衰减趋势,尤其是夏季北极海冰正以每lO年超过10%的变化幅度快速减少。从海冰的基本物理特征、与大气海洋相互作用的物理过程、及其对全球和北极气候变化的响应和反馈机制,研究形成这种快速变化的因子--海表面气温增暖,太平洋与大西洋人流的热盐性质变化,以及大气环流模态的影响等。  相似文献   

9.
冬季北极涛动和北极海冰变化对东亚气候变化的影响   总被引:30,自引:0,他引:30       下载免费PDF全文
本文简要回顾了冬季北极涛动 (北大西洋涛动 )和北极海冰面积变化对东亚气候变化的影响、研究中存在的问题以及目前亟待解决的科学问题。  相似文献   

10.
中国第二次北极科考航线海冰密集度和厚度   总被引:1,自引:0,他引:1       下载免费PDF全文
单点海冰调查是构成线、面海冰资料的基础,这些资料对于大面积海冰遥感资料的对比研究是必要的。虽然由于海冰时空变化引起一定差异,大面积统计意义上的冰情条件具有正确性。依据2003年7-9月中国第2次北极科学考察期间,沿航线进行的船舶海冰调查资料,航空海冰调查资料和浮冰站海冰调查资料,以图表形式归纳总结了航线上的冰情、海冰密集度、厚度剖面和单点厚度值;给出海冰密集度和厚度的空间分布。  相似文献   

11.
对1979—2009年月平均的CFSR(The Climate Forecast System Reanalysis)海冰密集度(SIC)和海平面气压(SLP)资料进行多变量经验正交函数分解(MV—EOF),得出耦合主模态,并通过对温度、位势高度和风场的回归分析,进一步探寻海冰与大气环流的关系,第一模态SLP的特征为北极涛动(AO),SIC呈离散的正负中心分布但大体为东西反位相,AO正位相时,喀拉海、拉普捷夫海、东西伯利亚海和鄂霍次克海海冰减少,巴芬湾、波弗特海、楚科奇海和白令海海冰增加。耦合第二模态的SLP呈偶极子分布,负、正异常中心在巴伦支海和波弗特海,SIC在巴伦支海,弗拉姆海峡,格陵兰海,拉布拉多海和白令海,鄂霍次克海地区有正异常,在喀拉海、拉普捷夫海、东西伯利亚海、楚科齐海和波弗特海为负异常。耦合第三模态SLP在冰岛地区存在负异常中心,在拉普捷夫海地区有正异常中心,SIC在巴伦支海北部、弗拉姆海峡、格陵兰海为负异常,其余地区全为正异常。 对SLP和SIC分别进行EOF分解,并与耦合模态进行比较,SLP的EOF主模态的时空分布与耦合模态中SLP的时空分布十分相似,SIC的EOF模态的时空分布则与耦合模态中SIC的时空分布有较大差别,说明耦合模态对SIC的分布影响较大,即大气环流对海冰分布的影响为主要的过程,海冰对大尺度的大气环流的模态的影响不明显。  相似文献   

12.
南大洋海冰分布是南极考察过程中影响破冰船航行的重要因素,也是南极研究的重要内容之一。目前国际上不同机构发布的南大洋海冰分布图,大多是球面投影,不能直接用于主流的瓦片地图发布。将极方位立体投影海冰图转换为目前主流的网络墨卡托投影地图,并利用合适的图像重采样方法,按照不同级别比例尺进行瓦片切割和编号存储,最终实现海冰影像地图的发布共享是本文的主要研究内容。笔者对不同的图像重采样方法进行了比较,分析了最邻近点采样方法、双线性内插和双三次卷积重采样方法的优劣,针对本文的研究优选双线性内插方法进行影像地图瓦片的切割,并最终叠加融合在Google地图上,实现了Google底图、准实时海冰影像图与破冰船走航位置的集成显示,为雪龙船的冰区航行提供了重要的数据支撑。  相似文献   

13.
2010年夏季北极海冰数值预报试验   总被引:4,自引:0,他引:4       下载免费PDF全文
为保障我国第四次北极科学考察的顺利开展,于2010年6~8月开展了北极海冰预报预测服务。预报试验基于MITgcm (麻省理工学院通用环流模式),以NCEP GFS(美国国家环境预测中心全球预报系统)资料为大气强迫,初始化分别使用美国冰雪中心SSM/I(专用微波成像仪)或德国不莱梅大学AMSR-E(地球观测系统先进微波扫描辐射计)北极海冰密集度卫星资料。对2010年6~8月预报结果的初步评估表明,预报结果同卫星观测资料比较一致。在发生快速海冰变化的太平洋扇区,预报结果优于惯性预报,表明模式具有较好的局地海冰数值预报能力。  相似文献   

14.
北冰洋海冰和海水变异对海洋生态系统的潜在影响   总被引:2,自引:0,他引:2       下载免费PDF全文
最近30年来,北冰洋海冰和海水发生了急剧变化:海冰覆盖面积减少、冰层变薄、水温升高、淡水输入增加、污染加剧,正威胁着现有与海冰关系密切的生态系统。预期随着变化的持续,与海冰相关的食物链将在部分海域消失并被较低纬度的海洋物种所取代、总初级生产力有望增加并为人类带来更多的渔获量、而北极熊和海象等以海冰作为栖息和捕食场所的大型哺乳动物的生存前景堪忧。今后人类将更为重视对北冰洋生态环境变化规律的认识并加以运用、关注北冰洋特有物种的命运并加以力所能及的保护、评估北冰洋生态系统的变化对人类社会经济的影响以期及早采取应对措施。数据积累是目前制约北极研究的最大障碍,但随着 SEARCH 等大型国际研究计划的实施,对北冰洋生态系统的监测和研究将更为系统和全面。  相似文献   

15.
HY-2是中国自主研发的海洋卫星。 本文研究了利用HY-2卫星扫描微波辐射计亮温数据反演北极海冰密集度的方法。参考NASA TEAM方法,我们对典型海区光谱梯度率和极化梯度率进行了统计分析,确定了计算海冰密集度所需的亮温特征值;利用天气滤波器有效去除了开阔海域由于大气中水蒸气、云中液态水、降雨等现象引起的海冰密集度计算错误。本文计算了2012年全年的北极海冰密集度产品并对产品精度进行了初步验证,验证结果表明:三个海冰类型已知区域的海冰密集度结果与理想值比较接近,多年冰密集度的反演精度需要进一步提高;本文结果与美国冰雪数据中心和德国不来梅大学提供的两种业务化海冰密集度产品一致。本研究为利用HY-2卫星监测极区海冰密集度变化,发布实时产品奠定了基础。  相似文献   

16.
本文将南极海冰分为4个区:SPI1(0°-120°E),东南极海冰;SPI2(120°E-120°W),以罗斯海为主体的海冰区;SPI3(120°W-0°),以威德尔海为主体的海冰区;SPI4,全南极海冰区。北极海冰区分为3个区:NPI1(90°E-180°-90°W),太平洋侧冰区;NPI2(90°W-0°-90°E),大西洋侧冰区;NPI3,全北极冰区。本文使用了WDC-A的SIGRID海冰资料,以分析南极和北极各冰区之间的相互关系。发现两极各冰区之间存在着非常复杂的相互作用。其中最突出的特征是:两极海冰之间相互作用的振源是NPI2。SPI3是影响南极海冰的正反馈中心。SPI2则是南北两极海冰的负反馈中心。NPI2,SPI3和SPI2之间的相互作用最强,形成涛动关系。这种涛动关系不是同时期的,而是有较长的滞后时间差。两极海冰形成周期变化,其周期为5-6年,正与NPI2和SPI3自身变化周期一致。另外还有更长的循环周期9-11年  相似文献   

17.
北冰洋浮冰和开阔海面上的能量平衡特征   总被引:4,自引:1,他引:3       下载免费PDF全文
利用中国首次北极考察队于 1 999年 8月 1 9日~ 2 4日在北冰洋浮冰区获得的大气近地层垂直廓线和辐射等资料 ,依据相似理论方法 ,对比分析了北冰洋无冰海面和冰面上热平衡参数的变化特征。结果表明 ,海面与大气和冰面与大气之间相互作用的边界层物理过程差异十分明显。冰面吸收的净辐射仅为海面的 6%左右 ,主要消耗于感热输送和冰面融化过程 ,不足部分由水汽在冰面上凝结释放的潜热和冰中的热通量来补充。海面吸收的净辐射主要消耗于潜热输送过程 ,占净辐射的 50 % ,其余热量传向水体深层和用于感热输送 ,分别占净辐射的 2 6%和 2 4 %。由此可见 ,在北冰洋夏季 ,无冰海面有大量的水汽向大气输送 ,这对研究北冰洋地区大气边界层的季节变化过程是至关重要的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号