首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The lateral propagation of faults and folds is known to be an important process during the development of mountain belts, but little is known about the manner in which along‐strike fault–fold growth is expressed in pre‐ and syntectonic (growth) strata. We use a coupled tectonic and stratigraphic model to investigate the along‐strike stratigraphic expression of fault‐related folds/uplifts that grow in both the transport and strike directions. We consider faults that propagate following a quadratic (nonself‐similar evolution) or linear (self‐similar evolution) scaling law, using different slip distributions per episode of fault propagation, under general background sedimentation. We find that the long‐strike geometry of pre‐ and syntectonic strata and the geometry of growth axial surfaces reflect the mode of fault propagation. The geometry of strata observed in the model is similar to that observed in natural contractional structures when: (1) the evolution of the fault is nonself‐similar, or (2) the fault grows as a result of thrust faulting events with similar displacements along strike that are terminated abruptly at the fault tips.  相似文献   

3.
In order to better understand the development of thrust fault‐related folds, a 3D forward numerical model has been developed to investigate the effects that lateral slip distribution and propagation rate have on the fold geometry of pre‐ and syn‐tectonic strata. We consider a fault‐propagation fold in which the fault propagates upwards from a basal decollement and along‐strike normal to transport direction. Over a 1 Ma runtime, the fault reaches a maximum length of 10 km and accumulates a maximum displacement of 1 km. Deformation ahead of the propagating fault tip is modelled using trishear kinematics while backlimb deformation is modelled using kink‐band migration. The applicability of two different lateral slip distributions, namely linear‐taper and block‐taper, are firstly tested using a constant lateral propagation rate. A block‐taper slip distribution replicates the geometry of natural fold‐thrusts better and is then used to test the sensitivity of thrust‐fold morphology to varied propagation rates in a set of fault‐propagation folds that have identical final displacement to length (Dmax/Lmax) ratios. Two stratigraphic settings are considered: a model in which background sedimentation rates are high and no topography develops, and a model in which a topographic high develops above the growing fold and local erosion, transport and deposition occur. If the lateral propagation rate is rapid (or geologically instantaneous), the fault tips quickly become pinned as the fault reaches its maximum lateral extent (10 km), after which displacement accumulates. In both stratigraphic settings, this leads to strike‐parallel rotation of the syn‐tectonic strata near the fault tips; high sedimentation rates relative to rates of uplift result in along‐strike thinning over the structural high, while low sedimentation rates result in pinchout against it. In contrast, slower lateral propagation rates (i.e. up to one order of magnitude greater than slip rate) lead to the development of along‐strike growth triangles when sedimentation rates are high, whereas when sedimentation rates are low, offflap geometries result. Overall we find that the most rapid lateral propagation rates produce the most realistic geometries. In both settings, time‐equivalent units display both nongrowth and growth stratal geometries along‐strike and the transition from growth to nongrowth has the potential to delineate the time of fault/fold growth at a given location. This work highlights the importance of lateral fault‐propagation and fault tip pinning on fault and fold growth in three dimensions and the complex syn‐tectonic geometries that can result.  相似文献   

4.
The thickness and distribution of early syn‐rift deposits record the evolution of structures accommodating the earliest phases of continental extension. However, our understanding of the detailed tectono‐sedimentary evolution of these deposits is poor, because in the subsurface, they are often deeply buried and below seismic resolution and sparsely sampled by borehole data. Furthermore, early syn‐rift deposits are typically poorly exposed in the field, being buried beneath thick, late syn‐rift and post‐rift deposits. To improve our understanding of the tectono‐sedimentary development of early syn‐rift strata during the initial stages of rifting, we examined quasi‐3D exposures in the Abura Graben, Suez Rift, Egypt. During the earliest stage of extension, forced folding above blind normal fault segments, rather than half‐graben formation adjacent to surface‐breaking faults, controlled rift physiography, accommodation development and the stratigraphic architecture of non‐marine, early syn‐rift deposits. Fluvial systems incised into underlying pre‐rift deposits and were structurally focused in the axis of the embryonic depocentre, which, at this time, was characterized by a fold‐bound syncline rather than a fault‐bound half graben. During this earliest phase of extension, sediment was sourced from the rift shoulder some 3 km to the NE of the depocentre, rather than from the crests of the flanking, intra‐basin extensional forced folds. Fault‐driven subsidence, perhaps augmented by a eustatic sea‐level rise, resulted in basin deepening and the deposition of a series of fluvial‐dominated mouth bars, which, like the preceding fluvial systems, were structurally pinned within the axis of the growing depocentre, which was still bound by extensional forced folds rather than faults. The extensional forced folds were eventually locally breached by surface‐breaking faults, resulting in the establishment of a half graben, basin deepening and the deposition of shallow marine sandstone and fan‐delta conglomerates. Because growth folding and faulting were coeval along‐strike, syn‐rift stratal units deposited at this time show a highly variable along‐strike stratigraphic architecture, locally thinning towards the growth fold but, only a few kilometres along‐strike, thickening towards the surface‐breaking fault. Despite displaying the classic early syn‐rift stratigraphic motif recording net upward‐deepening, extensional forced folding rather than surface faulting played a key role in controlling basin physiography, accommodation development, and syn‐rift stratal architecture and facies development during the early stages of extension. This structural and stratigraphic observations required to make this interpretation are relatively subtle and may go unrecognized in low‐resolution subsurface data sets.  相似文献   

5.
The Plataforma Burgalesa is a partly exposed extensional forced fold system with an intermediate salt layer, which has developed along the southern portion of the Basque‐Cantabrian Basin from Malm to Early Cretaceous as part of the Bay of Biscay‐Pyrenean rift system. Relationships between syn‐ and pre‐rift strata of the supra‐salt cover sequence and distribution of intra‐cover second‐order faults are observed both along seismic sections and at the surface. These relationships indicate an along‐strike variability of the extensional structural style. After a short period of salt mobilization and forced folding, high slip rates in the central portion of the major basement faults have rapidly promoted brittle behaviour of the salt layer, preventing further salt mobilization and facilitating the propagation of the fault across the salt layer. In contrast, at the tip regions of basement faults, slower slip rates have facilitated ductile salt behaviour, ensuring its further evaporite evacuation, preventing fault propagation across the salt layer and, in essence, allowing for a long‐living forced folding process. Our results indicate the important effect of along‐strike variation in displacement and displacement rates in controlling evaporite behaviour in extensional basins. Amount of displacement and displacement rates are key factors controlling the propagation of basement faults across evaporite layers. In addition, growth strata patterns are recognized as a powerful tool for constraining the up‐dip propagation history of basement faults in extensional fault‐related fold systems with intermediate décollement levels.  相似文献   

6.
Although fault growth is an important control on drainage development in modern rifts, such links are difficult to establish in ancient basins. To understand how the growth and interaction of normal fault segments controls stratigraphic patterns, we investigate the response of a coarse-grained delta system to evolution of a fault array in a Miocene half-graben basin, Suez rift. The early Miocene Alaqa delta complex comprises a vertically stacked set of footwall-sourced Gilbert deltas located in the immediate hangingwall of the rift border fault, adjacent to a major intrabasinal relay zone. Sedimentological and stratigraphic studies, in combination with structural analysis of the basin-bounding fault system, permit reconstruction of the architecture, dispersal patterns and evolution of proximal Gilbert delta systems in relation to the growth and interaction of normal fault segments. Structural geometries demonstrate that fault-related folds developed along the basin margin above upward and laterally propagating normal faults during the early stages of extension. Palaeocurrent data indicate that the delta complex formed a point-sourced depositional system developed at the intersection of two normal fault segments. Gilbert deltas prograded transverse into the basin and laterally parallel to faults. Development of the transverse delta complex is proposed to be a function of its location adjacent to an evolving zone of fault overlap, together with focusing of dispersal between adjacent fault segments growing towards each other. Growth strata onlap and converge onto the monoclinal fold limbs indicating that these structures formed evolving structural topography. During fold growth, Gilbert deltas prograded across the deforming fold surface, became progressively rotated and incorporated into fold limbs. Spatial variability of facies architecture is linked to along-strike variation in the style of fault/fold growth, and in particular variation in rates of crestal uplift and fold limb rotation. Our results clearly show that the growth and linkage of fault segments during fault array evolution has a fundamental control on patterns of sediment dispersal in rift basins.  相似文献   

7.
Extensional faults and folds exert a fundamental control on the location, thickness and partitioning of sedimentary deposits on rift basins. The connection between the mode of extensional fault reactivation, resulting fault shape and extensional fold growth is well‐established. The impact of folding on accommodation evolution and growth package architecture, however, has received little attention; particularly the role‐played by fault‐perpendicular (transverse) folding. We study a multiphase rift basin with km‐scale fault displacements using a large high‐quality 3D seismic data set from the Fingerdjupet Subbasin in the southwestern Barents Sea. We link growth package architecture to timing and mode of fault reactivation. Dip linkage of deep and shallow fault segments resulted in ramp‐flat‐ramp fault geometry, above which fault‐parallel fault‐bend folds developed. The folds limited the accommodation near their causal faults, leading to deposition within a fault‐bend synclinal growth basin further into the hangingwall. Continued fold growth led to truncation of strata near the crest of the fault‐bend anticline before shortcut faulting bypassed the ramp‐flat‐ramp structure and ended folding. Accommodation along the fault‐parallel axis is controlled by the transverse folds, the location and size of which depends on the degree of linkage in the fault network and the accumulated displacement on causal faults. We construct transverse fold trajectories by tracing transverse fold hinges through space and time to highlight the positions of maximum and minimum accommodation and potential sediment entry points to hangingwall growth basins. The length and shape of the constructed trajectories relate to the displacement on their parent faults, duration of fault activity, timing of transverse basin infill, fault linkage and strain localization. We emphasize that the considerable wavelength, amplitudes and potential periclinal geometry of extensional folds make them viable targets for CO2 storage or hydrocarbon exploration in rift basins.  相似文献   

8.
Three‐dimensional (3D) modelling allows observation of geological features that may not be evident by classical two‐dimensional approaches. This is particularly important in the Pico del Águila anticline (Central External Sierras, Southern Pyrenees, Spain), a structure characterized by important geometrical variability in 3D. The Pico del Águila is a N–S‐trending fold, transverse to the E–W‐trending South‐Pyrenean thrust front, with well‐exposed growth strata that record the evolution of the structure and the influence of the South‐Pyrenean thrust front. Fold kinematics is complex and not precisely quantified. It is characterized by multiple folding mechanisms acting simultaneously in a heterogeneous stratigraphic sequence. To better understand the fold's structural evolution, 3D reconstruction and geomechanical restoration of the structure were performed. The restoration takes into account rock mechanical properties without assuming a specific kinematic model. Our work suggests that the growth of the structure was characterized by variable uplift/sedimentation rates through time and between fold limbs. The restoration also reveals that a combination of multiple folding mechanisms operated simultaneously in different units and structural domains during anti‐clinal growth. This has major implications in the understanding of detachment folds with associated growth strata, as such structures are described in many settings as potential traps for hydrocarbons and natural resources.  相似文献   

9.
《Basin Research》2018,30(Z1):363-381
Inversion of pre‐existing extensional fault systems is common in rift systems, back‐arc basins and passive margins. It can significantly influence the development of structural traps in hydrocarbon basins. The analogue models of domino‐style basement fault systems shown in this paper produced, on extension, characteristic hangingwall growth stratal wedges that, when contracted and inverted, formed classic inversion harpoon geometries and asymmetric hangingwall contractional fault‐propagation folds. Segmented footwall shortcut faults formed as the basement faults were progressively back‐rotated and steepened. The pre‐existing extensional fault architectures, basement fault geometries and the relative hangingwall and footwall block rotations exerted fundamental controls on the inversion styles. Digital image correlation (DIC) strain monitoring illustrated complex vertical fault segmentation and linkage during inversion as the major faults were reactivated and strain was progressively transferred onto footwall shortcut faults. Hangingwall deformation during inversion was dominated by significant back‐rotation as the inversion progressed. The mechanical stratigraphy of the cover sequences strongly influenced the fold and fault evolution of the reactivated fault systems. The implications of the experimental results for the interpretation and analysis of inversion structures are discussed and are compared with natural examples of inverted basement‐involved extensional faults observed in seismic datasets.  相似文献   

10.
We employed a discrete‐element technique to investigate the effects of cover strength and fault dip on the style of fault‐propagation folding above a blind normal fault. Deformation in the cover is initially characterised by an upward‐widening monocline that is often replaced, with continued slip on the basement fault, by a single, through‐going fault. Localisation on a single fault produces hangingwall synclines and footwall anticlines as a result of breaching of the earlier monocline and which do not represent ‘drag’ against the fault. As basement fault dip decreases the width of the monocline at the surface increases. Experiments varying the strength of the overburden material illustrate the control that cover strength has on both fault propagation and folding in the cover. Reduction of the strength of the cover results in: (1) the width of the monocline above the fault tip increasing, and (2) more marked footwall thinning and hangingwall thickening of beds. In contrast, an increase in cover strength results in a narrower monocline and rapid propagation of the basement fault into the cover. In multi‐layer (variable strength) experiments simultaneous faulting of competent layers and flow of weaker layers produces complex structural relationships. Faults in the cover die out up and down section and do not link to the basement fault at depth. Similarly, complex macroscopically ductile characteristics such as footwall thinning and hangingwall thickening can be juxtaposed against simple brittle fault cut‐offs. These relationships must be borne in mind when interpreting the field and seismic expression of such structures. We discuss the modelling results in terms of their implications for structural interpretation and the surficial expression of fault‐related folding in extensional settings.  相似文献   

11.
Interactions of growing folds and coeval depositional systems   总被引:7,自引:0,他引:7  
Responses of both modern and ancient fluvial depositional systems to growing folds can be interpreted in terms of interactions among competing controlling variables which can be incorporated into simple conceptual models. The ratio of the rate of sediment accumulation to the rate of structural uplift determines whether a fold develops a topographic expression above local base level. The balance between (a) stream power and rates of upstream deposition vs. (b) bedrock resistance and rates of crestal uplift and of fold widening determines whether an antecedent stream maintains its course or is defeated by a growing structure. Modern drainage configurations in actively folding landscapes can often be interpreted in terms of these competing variables, and through analysis of digital topography, detailed topographic characteristics of these folds can be quantified. Modern examples of growing folds display both defeated and persistent antecedent rivers, deflected drainages and laterally propagating structures. The topography associated with a defeated antecedent river at Wheeler Ridge, California, is consistent with a model in which defeat results from forced aggradation in the piggyback basin, without the need to vary discharge or uplift rate. Reconstruction of the long-term interplay between a depositional system and evolving folds requires a stratigraphic perspective, such as that provided by syntectonic strata which are directly juxtaposed with ancient folds and faults. Analysis of Palaeogene growth strata bounding the Catalan Coastal Ranges of NE Spain demonstrates the synchronous growth and the kinematic history of multiple folds and faults in the proximal foreland basin. Although dominated by transverse rivers which crossed fold crests, palaeovalleys, interfan lows, structural re-entrants and saddles, and rising anticlines diverted flow and influenced local deposition. In the ancient record, drainage-network events, such as avulsion or defeat of a transverse stream, usually cannot be unambiguously attributed to a single cause. Examination of ancient syntectonic strata from a geomorphological perspective, however, permits successive reconstructions of synorogenic topography, landscapes and depositional systems.  相似文献   

12.
Forward modeled, balanced cross sections that account for the flexural response to thrust loading and erosional unloading can verify and refine the kinematic sequence of deformation in fold‐thrust belts as well as help assess the validity of a balanced cross section. Results from flexural‐kinematic reconstructions that indicate either the cross section, the kinematic order or both are invalid include: (a) a predicted final topography that is dramatically different from the actual topography; (b) large normal fault or thrust fault bounded synorogenic basins that are not present in the mapped geology; and/or (c) an exhumation history that is not consistent with provenance records in the basin or measured thermochronometers. Where detailed measured foreland basin sections exist, flexural‐kinematic modeling of fold‐thrust belt deformation, including out‐of‐sequence (OOS) faults can predict a foreland basin evolution that can be compared to measured data. The modeling process creates a “pseudostratigraphy” in the modeled foreland. The pseudostratigraphy and predicted provenance of each modeled stratigraphic increment can be directly compared to measured stratigraphic sections. We present a case study using two cross sections through the Himalaya of far western Nepal (Api and Simikot) to assess the validity of the section geometries and the resulting kinematic histories, displacement rates, flexural wave response and predicted provenance for both sections. Insights from combining the flexural‐kinematic models with existing stratigraphic data include: (a) Changing the order of proposed OOS and normal faults to earlier in the evolution of the fold‐thrust belt was necessary to reproduce the foreland provenance data. We argue that OOS thrust and normal faults in the Api section occurred between 11 and 4 Ma. (b) Published shortening estimates for the Simikot cross section are too high (>50 km), resulting in unrealistic shortening rates up to 80 mm/yr between 25 and 20 Ma. (c) Flexural forward models with and without an additional sediment loading modeling step indicate that while sediment loading does not have a measurable effect on the magnitude and location of erosion within the fold‐thrust belt, it does have a small effect on accumulation rates and thus the predicted age of stratigraphic boundaries when compared to measured stratigraphic thicknesses and age. Thickness difference range from 0.2 to 0.5 km and can result in predicted age differences of ca. 1 Ma. Accounting for both flexural isostacy and erosion can eliminate unviable kinematic sequences and when combined with provenance data from measured stratigraphic sections, can provide insight into the order, age and rate of deformation.  相似文献   

13.
The thrust sheets of the Northern Calcareous Alps were emplaced during Late Cretaceous thrust‐dominated transpression expressed by thrust sheets segmented by closely spaced tear faults. Thrust sheet‐top sediments were deposited during thrusting and associated fold growth and were controlled by active folding and tearing. We observe two types of angular unconformities: (1) Angular unconformities above folds between tear faults conform with the model of progressive unconformities. Across these unconformities dip decreases upsection. (2) Here, we define progressive unconformities that are related to tear faults and are controlled by both folding and tearing. Across these unconformities both strike and dip change. In growth strata overlying folds dissected by high‐angle faults, such unconformities are expected to be common. We used analogue modelling to define the geometry of the tear faults and related unconformities. Within the syn‐tectonic sediments, a steep, upward flattening thrust within a broader, roughly tulip‐shaped drag zone develops. The thrust roots in the tear fault in pre‐tectonic deposits and is curved upward toward the downthrown block. Vertical offset on the thrust is related to differential vertical uplift caused by, for example, growth of folds with different wavelength and amplitude on either side of the tear fault. Formation of progressive unconformities is governed by the relationship between the rates of deposition and vertical growth of a structure. Fault‐related progressive unconformities are additionally controlled by the growth of the vertical step across the tear fault. When the rates of vertical growth of two neighbouring folds separated by a tear fault are similar, the rate of growth across the tear fault is small; if the first differ, the latter is high. Episodic tear fault activity may create several angular unconformities attached to a tear fault or allow the generation of angular unconformities near tear faults in sedimentary systems that have a rate of deposition too high to generate classical progressive unconformities between the tear faults.  相似文献   

14.
Well-preserved, actively deforming folds in the Tien Shan of Kyrgyzstan provide a natural laboratory for the study of the evolution of thrust-related folds. The uplifted limbs of these folds comprise weakly indurated Cenozoic strata that mantle well-lithified Palaeozoic bedrock. Their contact is a regionally extensive unconformity that provides a persistent and readily traceable marker horizon. Based on the deformation of this marker, preserved fold geometries support simple geometric models for along-strike gradients in fold amplitude and displacement along the underlying faults, linkage among multiple structures, transfer of displacement among folds and evolution of the folds as geomorphic entities. Subsequent to initial uplift and warping of the unconformity surface, steeply dipping reverse faults cut the forelimbs of many of these folds. Wind gaps, water gaps, recent faulting and progressive stripping of the more readily eroded Cenozoic strata indicate the ongoing lateral propagation and vertical growth of fault-related folds. The defeat of formerly antecedent rivers coincides in several places with marked increases in erosional resistance where their incising channels first encountered Palaeozoic bedrock. Persistent dip angles on the backlimbs of folds indicate strikingly uniform geometries of the underlying faults as they propagate both laterally and vertically through the crust. Deformation switches irregularly forward and backward in both time and space among multiple active faults and folds with no systematic pattern to the migration of deformation. This distributed deformation appears characteristic of the entire Kyrgyz Tien Shan.  相似文献   

15.
We analyse a regional 2D seismic section of the Mexican Ridges foldbelt (MRFB), western Gulf of Mexico, and construct excess‐area diagrams for each of the structures comprising the foldbelt to estimate shortening, the onset of folding and the degradation of the folded seafloor. From the chronostratigraphy, we derive rates of tectonic and superficial mass transport and illustrate how they change across the MRFB. The resulting tectonic transport in the MRFB is 11.8 km forming a train of twelve buckle folds above a detachment at a depth of ca. 6 s of two‐way travel time, with an average strain of ca. 10%. The fold train grew at a mean uplift rate of ca. 0.21 mm year?1. Cross‐sectional balancing demonstrates that shortening balances the down‐slip motion of the Quetzalcoatl extensional system (QES), suggesting that horizontal compaction, volume loss and other penetrative deformation mechanisms are negligible. By assuming steady‐state denudation, we are able to distinguish sediments derived locally from sediments transported from distant sources. The constant of mass diffusivity, a parameter controlling the degradation rate, is ca. 0.42 m2 year ?1, which is characteristic of rapid, episodic, superficial mass movements. The combined sedimentation rate from both, local and distal sources is ca. 0.23 mm year ?1. Those values are not constant; structures proximal to the continental shelf are rising rapidly and are being degraded more intensely than those in the distal part of the MRFB, where sedimentation outweighs tectonic uplift. Our results indicate deformation initiated up to 3 Myr earlier than estimated from stacking patterns. Moreover, we find deformation started synchronously during the Late Miocene throughout the MRFB and not in two episodes as the stacking relations suggest. The discrepancy can be explained by a delay in the sedimentary response to folding. During early fold growth, nearly constant thickness strata are deposited before a progressive unconformity and other converging geometries develop. The development of growth strata is fast in the folds near the QES, which are being uplifted rapidly and degraded vigorously. Under these conditions, the stratigraphic relations give only a broad estimate of the pretectonic/syntectonic limit when compared to the excess‐area method. On the other hand, the development of growth strata took twice as much time for folds near the abyssal plain, which are being uplifted at a slower rate and where degradation is less intense. Consequently, the delay takes more time, and the use of stratigraphic relations introduces an even more pronounced bias towards younger ages in the identification of the onset of folding.  相似文献   

16.
Established models indicate that, before being breached, relay zones along rift borders can evolve either by lengthening and rotating during progressive overlap of growing fault segments (isolated fault model), or, by simply rotating without lengthening before breaching (coherent fault model). The spatio‐temporal distribution of vertical motions in a relay zone can thus be used to distinguish fault growth mechanisms. Depositional relay zones that develop at sea level and accommodate both deposition on the ramp itself as well as transfer of sediments from the uplifting footwall into the hangingwall depocentres and provide the most complete record of vertical motions. We examine the development of a depositional relay ramp on the border of the active Corinth rift, Greece to reconstruct fault interaction in time and space using both onshore and offshore (2D seismic lines) data. The Akrata relay zone developed over a period of ca. 0.5 Myr since the Middle Pleistocene between the newly forming East Helike Fault (EHF) that propagated towards the older, more established Derveni Fault (DF). The relay zone captured the Krathis River, which deposited prograding Gilbert‐type deltas on the sub‐horizontal ramp. Successive oblique faults record progressive linkage and basinward migration of accommodation along the ramp axis, whereas marine terraces record diachronous uplift in their footwalls. Although early linkage of the relay zone occurs, continuous propagation and linkage of the EHF onto the static DF is recorded before final beaching. Rotation on forced folds above the upward and laterally propagating normal faults at the borders of the relay zone represents the ramp hinges. The Akrata relay zone cannot be compared directly to a simple fault growth model because (1) the relay zone connects two fault segments of different generations; (2) multiple linkages during propagation was facilitated by the presence of pre‐existing crustal structures, inherited from the Hellenide fold and thrust belt. The linkage of the EHF to the DF contributed to the westward and northward propagation of the southern rift border.  相似文献   

17.
Salt tectonics have markedly influenced the rapid evolution of the Upper Palaeozoic Cumberland Basin of Atlantic Canada, including the ca. 5 km‐thick Mississippian – Pennsylvanian stratigraphic succession exposed along the UNESCO World Heritage coastline at Joggins, Nova Scotia. A diapiric salt wall is exposed in the Minudie Anticline to the north of the Joggins section on the Maringouin Peninsula of New Brunswick, which corresponds to the fault‐bounded northern margin of the Cumberland Basin. The salt wall is of Visean evaporites of the Windsor Gp that originally were buried by red‐beds of the Mabou Gp in the Serpukhovian, and later by fluvial and floodplain strata (Boss Point Fm, Cumberland Gp) in the Yeadonian (mid‐Bashkirian, Early Pennsylvanian). Folds and faults in the Boss Point and overlying basal Little River formations are truncated by an angular unconformity at the base of overlying red‐beds of the Grande Anse Fm. Re‐evaluation of the palynological data delimits the Grande Anse Fm as Langsettian, providing a tight constraint of less than 2 myr on the timing of deformation. Diversion of palaeoflows by the rising salt structure, noted in previous work on the upper Boss Point Fm, occurs to the north of the diapiric anticline. This is interpreted to signify the development of a mini‐basin on commencement of diapirism once a ~1.5 km‐thick succession of clastic strata had buried the salt. Faults and folds in the succession below the unconformity indicate an initial phase of dextral transpressive strike‐slip motion, which may have promoted halokinesis. Reverse faults indicate shortening associated with northward development and overturn of the Minudie Anticline during transpression; subsequent normal faulting was associated with collapse of the sediment pile and underlying salt structure.  相似文献   

18.
Well‐calibrated seismic interpretation in the Halten Terrace of Mid‐Norway demonstrates the important role that structural feedback between normal fault growth and evaporite mobility has for depocentre development during syn‐rift deposition of the Jurassic–Early Cretaceous Viking and Fangst Groups. While the main rift phase reactivated pre‐existing structural trends, and initiated new extensional structures, a Triassic evaporite interval decouples the supra‐salt cover strata from the underlying basement, causing the development of two separate fault populations, one in the cover and the other confined to the pre‐salt basement. Detailed displacement–length analyses of both cover and basement fault arrays, combined with mapping of the component parts of the syn‐rift interval, have been used to reveal the spatial and temporal evolution of normal fault segments and sediment depocentres within the Halten Terrace area. Significantly, the results highlight important differences with traditional models of normal fault‐controlled subsidence, including those from parts of the North Sea where salt is absent. It can now be shown that evaporite mobility is intimately linked to the along‐strike displacement variations of these cover and basement faults. The evaporites passively move beneath the cover in response to the extension, such that the evaporite thickness becomes greatest adjacent to regions of high fault displacement. The consequent evaporite swells can become large enough to have pronounced palaeobathymetric relief in hangingwall locations, associated with fault displacement maxima– the exact opposite situation to that predicted by traditional models of normal fault growth. Evaporite movement from previous extension also affects the displacement–length relationships of subsequently nucleated or reactivated faults. Evaporite withdrawal, on the other hand, tends to be a later‐stage feature associated with the high stress regions around the propagating tips of normal faults or their coeval hangingwall release faults. The results indicate the important effect of, and structural feedback caused by, syn‐rift evaporite mobility in heavily modifying subsidence patterns produced by normal fault array evolution. Despite their departure from published models, the results provide a new, generic framework within which to interpret extensional fault and depocentre development and evolution in areas in which mobile evaporites exist.  相似文献   

19.
In the mid‐Cretaceous Lasarte sub‐basin (LSB) [northeastern Basque‐Cantabrian Basin (BCB)] contemporaneous and syn‐depositional thin‐ and thick‐skinned extensional tectonics occur due to the presence of a ductile detachment layer that decoupled the extension. Despite the interest in extension modes of rift basins bearing intra‐stratal detachment layers, complex cases remain poorly understood. In the LSB, field results based on mapping, stratigraphic, sedimentological and structural data show the relationship between growth strata and tectonic structures. Syn‐depositional extensional listric faults and associated folds and faults have been identified in the supra‐detachment thin‐skinned system. But stratigraphic data also indicate the activation of sub‐detachment thick‐skinned extensional faults coeval with the development of the thin‐skinned system. The tectono‐sedimentary evolution of the LSB, since the Late Aptian until the earliest Late Albian, has been interpreted based on thin‐ and thick‐skinned extensional growth structures, which are fossilized by post‐extensional strata. The development of the thin‐skinned system is attributed to the presence of a ductile detachment layer (Upper Triassic Keuper facies) which decoupled the extension from deeper sub‐detachment basement‐involved faulting under a regional extensional/transtensional regime.  相似文献   

20.
A central question in structural geology is whether, and by what mechanism, active faults (and the folds often associated with them) grow in length as they accumulate displacement. An obstacle in our understanding of these processes is the lack of examples in which the lateral growth of active structures can be demonstrated definitively, as geomorphic indicators of lateral propagation are often difficult, or even impossible to distinguish from the effects of varying lithology or non‐uniform displacement and slip histories. In this paper we examine, using the Zagros mountains of southern Iran as our example, the extent to which qualitative analysis of satellite imagery and digital topography can yield insight into the growth, lateral propagation, and interaction of individual fold segments in regions of active continental shortening. The Zagros fold‐and‐thrust belt contains spectacular whaleback anticlines that are well exposed in resistant Tertiary and Mesozoic limestone, are often >100 km in length, and which contain a large proportion of the global hydrocarbon reserves. In one example, Kuh‐e Handun, where an anticline is mantled by soft Miocene sediments, direct evidence of lateral fold propagation is recorded in remnants of consequent drainage patterns on the fold flanks that do not correspond to the present‐day topography. We suggest that in most other cases, the soft Miocene and Pliocene sediments that originally mantled the folds, and which would have recorded early stages in the growth histories, have been completely stripped away, thus removing any direct geomorphic evidence of lateral propagation. However, many of the long fold chains of the Zagros do appear to be formed from numerous segments that have coalesced. If our interpretations are correct, the merger of individual fold segments that have grown in length is a major control on the development of through‐going drainage and sedimentation patterns in the Zagros, and may be an important process in other regions of crustal shortening as well. Abundant earthquakes in the Zagros show that large seismogenic thrust faults must be present at depth, but these faults rarely reach the Earth's surface, and their relationship to the surface folding is not well constrained. The individual fold segments that we identify are typically 20–40 km in length, which correlates well with the maximum length of the seismogenic basement faults suggested from the largest observed thrusting earthquakes. This correlation between the lengths of individual fold segments and the lengths of seismogenic faults at depth suggest that it is possible, at least in some cases, that there may be a direct relationship between folding and faulting in the Zagros, with individual fold segments underlain by discrete thrusts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号