首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Corinth rift (Greece) is one of the world's most active rifts. The early Plio‐Pleistocene rift is preserved in the northern Peloponnese peninsula, south of the active Corinth rift. Although chronostratigraphic resolution is limited, new structural, stratigraphic and sedimentological data for an area >400 km2 record early rift evolution in three phases separated by distinct episodes of extension rate acceleration and northward fault migration associated with major erosion. Minimum total N–S extension is estimated at 6.4–7.7 km. The earliest asymmetrical, broad rift accommodated slow extension (0.6–1 mm a?1) over >3 Myrs and closed to the west. North‐dipping faults with throws of 1000–2200 m defined narrow blocks (4–7 km) with little footwall relief. A N‐NE flowing antecedent river system infilled significant inherited relief (Lower group). In the earliest Pleistocene, significant fluvial incision coincided with a 15 km northward rift margin migration. Extension rates increased to 2–2.5 mm a?1. The antecedent rivers then built giant Gilbert‐type fan deltas (Middle group) north into a deepening lacustrine/marine basin. N‐dipping, basin margin faults accommodated throws <1500 m. Delta architecture records initiation, growth and death of this fault system over ca. 800 ka. In the Middle Pleistocene, the rift margin again migrated 5 km north. Extension rate increased to 3.4–4.8 mm a?1. This transition may correspond to an unconformity in offshore lithostratigraphy. Middle group deltas were uplifted and incised as new hangingwall deltas built into the Gulf (Upper group). A final increase to present‐day extension rates (11–16 mm a?1) probably occurred in the Holocene. Fault and fault block dimensions did not change significantly with time suggesting control by crustal rheological layering. Extension rate acceleration may be due to strain softening or to regional tectonic factors.  相似文献   

2.
Quantification of allogenic controls in rift basin‐fills requires analysis of multiple depositional systems because of marked along‐strike changes in depositional architecture. Here, we compare two coeval Early‐Middle Pleistocene syn‐rift fan deltas that sit 6 km apart in the hangingwall of the Pirgaki‐Mamoussia Fault, along the southern margin of the Gulf of Corinth, Greece. The Selinous fan delta is located near the fault tip and the Kerinitis fan delta towards the fault centre. Selinous and Kerinitis have comparable overall aggradational stacking patterns. Selinous comprises 15 cyclic stratal units (ca. 25 m thick), whereas at Kerinitis 11 (ca. 60 m thick) are present. Eight facies associations are identified. Fluvial and shallow water facies dominate the major stratal units in the topset region, with shelfal fine‐grained facies constituting ca. 2 m thick intervals between major topset units and thick conglomeratic foresets building down‐dip. It is possible to quantify delta build times (Selinous: 615 kyr; Kerinitis: >450 kyr) and average subsidence and equivalent sedimentation rates (Selinous: 0.65 m/kyr; Kerinitis: >1.77 m/kyr). The presence of sequence boundaries at Selinous, but their absence at Kerinitis, enables sensitivity analysis of the most uncertain variables using a numerical model, ‘Syn‐Strat’, supported by an independent unit thickness extrapolation method. Our study has three broad outcomes: (a) the first estimate of lake level change amplitude in Lake Corinth for the Early‐Middle Pleistocene (10–15 m), which can aid regional palaeoclimate studies and inform broader climate‐system models; (b) demonstration of two complementary methods to quantify faulting and base level signals in the stratigraphic record—forward modelling with Syn‐Strat and a unit thickness extrapolation—which can be applied to other rift basin‐fills; and (c) a quantitative approach to the analysis of stacking patterns and key surfaces that could be applied to stratigraphic pinch‐out assessment and cross‐hole correlations in reservoir analysis.  相似文献   

3.
The seismically and volcanically active Kivu Rift, in the western branch of the East African Rift System, is a type locale for studies of high‐elevation, humid‐climate rift basins, as well as magmatic basin development. Interpretations of offshore multi‐channel seismic (MCS) reflection data, terrestrial radar topography, lake bathymetry and seismicity data recorded on a temporary array provide new insights into the structure, stratigraphy and evolution of the Kivu rift. The Kivu rift is an asymmetric graben controlled on its west side by a ca. 110 km‐long, N‐S striking border fault. The southern basins of the lake and the upper Rusizi river basin are an accommodation zone effectively linking 1470 m‐high Lake Kivu to 770 m‐high Lake Tanganyika. MCS data in the eastern Kivu lake basin reveal a west‐dipping half graben with at least 1.5 km of sedimentary section; most of the ca. 2 km of extension in this sub‐basin is accommodated by the east‐dipping Iwawa normal fault, which bounds an intrabasinal horst. Lake Kivu experienced at least three periods of near desiccation. The two most recent of these approximately correlate to the African Megadrought and Last Glacial Maximum. There was a rapid lake level transgression of at least 400 m in the early Holocene. The line load of the Virunga volcanic chain enhances the fault‐controlled basin subsidence; simple elastic plate models suggest that the line load of the Virunga volcanic chain depresses the basin by more than 1 km, reduces flank uplift locally and broadens the depocentre. Not only do the voluminous magmatism and degassing to the lake pose a hazard to the riparian population, but our studies demonstrate that magmatism has important implications for short‐term processes such as lake levels, inflow and outlets, as well as long term modification of classic half‐graben basin morphology.  相似文献   

4.
Studies of normal fault systems in modern extensional regimes (e.g. Basin and Range), and in exhumed, ancient rift basins (e.g. Gulf of Suez Rift) have shown a link between the evolution of fault‐related footwall topography and associated erosional drainage systems. In this study, we use 3D seismic reflection data to image the footwall crest of a gravity‐driven fault system developed during late Middle Jurassic to Early Cretaceous rifting on the Halten Terrace, offshore Mid‐Norway. This 22‐km‐long fault system lacks significant footwall uplift, with hangingwall subsidence accommodating throw accumulation on the fault system. Significant erosion has occurred along the length of the footwall crest and is defined by 96 catchments characterized by erosional channels. These erosional channels consist of small, linear systems up to 750 m long located along the front of the fault footwall. Larger, dendritic channel systems extend further back (up to 3 km normal to fault strike) into the footwall. These channels are up to 7 km long, up to 50 m deep and up to 1 km wide. Fault throw varies along strike, with greatest throw in the centre of the fault decreasing towards the fault tips; localized throw minima are interpreted to represent segment linkage points, which were breached as the fault grew. Comparison of the catchment location to the throw distribution shows that the largest catchments are in the centre of the fault and decrease in size to the fault tips. There is no link between the location of the breached segment linkage points and the location and size of the footwall catchments, suggesting that the first‐order control on footwall erosion patterns is the overall fault‐throw distribution.  相似文献   

5.
《Basin Research》2018,30(3):373-394
Continental breakup between Greenland and North America produced the small oceanic basins of the Labrador Sea and Baffin Bay, which are connected via the Davis Strait, a region mostly comprised of continental crust. This study contributes to the debate regarding the role of pre‐existing structures on rift development in this region using seismic reflection data from the Davis Strait data to produce a series of seismic surfaces, isochrons and a new offshore fault map from which three normal fault sets were identified as (i) NE‐SW, (ii) NNW‐SSE and (iii) NW‐SE. These results were then integrated with plate reconstructions and onshore structural data allowing us to build a two‐stage conceptual model for the offshore fault evolution in which basin formation was primarily controlled by rejuvenation of various types of pre‐existing structures. During the first phase of rifting between at least Chron 27 (ca. 62 Ma; Palaeocene), but potentially earlier, and Chron 24 (ca. 54 Ma; Eocene) faulting was primarily controlled by pre‐existing structures with oblique normal reactivation of both the NE‐SW and NW‐SE structural sets in addition to possible normal reactivation of the NNW‐SSE structural set. In the second rifting stage between Chron 24 (ca. 54 Ma; Eocene) and Chron 13 (ca. 35 Ma; Oligocene), the sinistral Ungava transform fault system developed due to the lateral offset between the Labrador Sea and Baffin Bay. This lateral offset was established in the first rift stage possibly due to the presence of the Nagssugtoqidian and Torngat terranes being less susceptible to rift propagation. Without the influence of pre‐existing structures the manifestation of deformation cannot be easily explained during either of the rifting phases. Although basement control diminished into the post‐rift, the syn‐rift basins from both rift stages continued to influence the location of sedimentation possibly due to differential compaction effects. Variable lithospheric strength through the rifting cycle may provide an explanation for the observed diminishing role of basement structures through time.  相似文献   

6.
The evolution of depositional systems in multiphase rifts is influenced by the selective reactivation of faults between subsequent rift phases. The Middle Jurassic to Palaeocene tectonic history of the Lofoten margin, a segment of the North Atlantic rift system, is characterised by three distinct rift phases separated by long (>20 Myr) inter‐rift periods. The initial rift phase comprised a distinct fault initiation and linkage stage, whereas the later rift phases were characterised by selective reactivation of previously linked through‐going faults which resulted in immediate rift climax. Using 2‐D and 3‐D seismic reflection data in conjunction with shallow core data we present a 100 Myr record of shallow to deep marine depositional environments that includes deltaic clinoform packages, slope aprons and turbidite fans. The rapid re‐establishment of major faults during the later rift phases impacts on drainage systems and sediment supply. Firstly, the immediate localisation of strain and accumulation of displacement on few faults results in pronounced footwall uplift and possible fault block rotation along those faults, which makes it more likely for any antecedent fault‐transverse depositional systems to become reversed. Secondly, any antecedent axially‐sourced depositional systems that are inherited from the foregoing rift phase(s) are likely to be sustained after reactivation because such axial systems have already been directed around fault tips. Hence, the immediate localisation of strain through selective reactivation in the later rift phases restricts fault‐transverse sediment supply more than axial sediment supply, which is likely to be a key aspect of the tectono‐sedimentary evolution of multiphase rifts.  相似文献   

7.
Rift basin tectono‐stratigraphic models indicate that normal fault growth controls the sedimentology and stratigraphic architecture of syn‐rift deposits. However, such models have rarely been tested by observations from natural examples and thus remain largely conceptual. In this study we integrate 3D seismic reflection, and biostratigraphically constrained core and wireline log data from the Vingleia Fault Complex, Halten Terrace, offshore Mid‐Norway to test rift basin tectono‐stratigraphic models. The geometry of the basin‐bounding fault and its hangingwall, and the syn‐rift stratal architecture, vary along strike. The fault is planar along a much of its length, bounding a half‐graben containing a faultward‐thickening syn‐rift wedge. Locally, however, the fault has a ramp‐flat‐ramp geometry, with the hangingwall defined by a fault‐parallel anticline‐syncline pair. Here, an unusual bipartite syn‐rift architecture is observed, comprising a lower faultward‐expanding and an upper faultward‐thinning wedge. Fine‐grained basinfloor deposits dominate the syn‐rift succession, although isolated coarse clastics occur. The spatial and temporal distribution of these coarse clastics is complex due to syn‐depositional movement on the Vingleia Fault Complex. High rates of accommodation generation in the fault hangingwall led to aggradational stacking of fan deltas that rapidly (<5 km) pinch out basinward into offshore mudstone. In the south of the basin, rapid strain localization meant that relay ramps were short‐lived and did not represent major, long‐lived sediment entry points. In contrast, in the north, strain localization occurred later in the rift event, thus progradational shorefaces developed and persisted for a relatively long time in relay ramps developed between unlinked fault segments. The footwall of the Vingleia Fault Complex was characterized by relatively low rates of accommodation generation, with relatively thin, progradational hangingwall shorelines developed downdip of the fault block apex, sometime after the onset of sediment supply to the hangingwall. We show that rift basin tectono‐stratigraphic models need modifying to take into account along‐strike variability in fault structure and basin physiography, and the timing and style of syn‐rift sediment dispersal and facies, in both hangingwall and footwall locations.  相似文献   

8.
The style of extension and strain distribution during the early stages of intra-continental rifting is important for understanding rift-margin development and can provide constraints for lithospheric deformation mechanisms. The Corinth rift in central Greece is one of the few rifts to have experienced a short extensional history without subsequent overprinting. We synthesise existing seismic reflection data throughout the active offshore Gulf of Corinth Basin to investigate fault activity history and the spatio-temporal evolution of the basin, producing for the first time basement depth and syn-rift sediment isopachs throughout the offshore rift. A major basin-wide unconformity surface with an age estimated from sea-level cycles at ca . 0.4 Ma separates distinct seismic stratigraphic units. Assuming that sedimentation rates are on average consistent, the present rift formed at 1–2 Ma, with no clear evidence for along-strike propagation of the rift axis. The rift has undergone major changes in relative fault activity and basin geometry during its short history. The basement depth is greatest in the central rift (maximum ∼3 km) and decreases to the east and west. In detail however, two separated depocentres 20–50 km long were created controlled by N- and S-dipping faults before 0.4 Ma, while since ca . 0.4 Ma a single depocentre (80 km long) has been controlled by several connected N-dipping faults, with maximum subsidence focused between the two older depocentres. Thus isolated but nearby faults can persist for timescales ca . 1 Ma and form major basins before becoming linked. There is a general evolution towards a dominance of N-dipping faults; however, in the western Gulf strain is distributed across several active N- and S-dipping faults throughout rift history, producing a more complex basin geometry.  相似文献   

9.
Seismic reflection profiles and well data are used to determine the Cenozoic stratigraphic and tectonic development of the northern margin of the South China Sea. In the Taiwan region, this margin evolved from a Palaeogene rift to a latest Miocene–Recent foreland basin. This evolution is related to the opening of the South China Sea and its subsequent partial closure by the Taiwan orogeny. Seismic data, together with the subsidence analysis of deep wells, show that during rifting (~58–37 Ma), lithospheric extension occurred simultaneously in discrete rift belts. These belts form a >200 km wide rift zone and are associated with a stretching factor, β, in the range ~1.4–1.6. By ~37 Ma, the focus of rifting shifted to the present‐day continent–ocean boundary off southern Taiwan, which led to continental rupture and initial seafloor spreading of the South China Sea at ~30 Ma. Intense rifting during the rift–drift transition (~37–30 Ma) may have induced a transient, small‐scale mantle convection beneath the rift. The coeval crustal uplift (Oligocene uplift) of the previously rifted margin, which led to erosion and development of the breakup unconformity, was most likely caused by the induced convection. Oligocene uplift was followed by rapid, early post‐breakup subsidence (~30–18 Ma) possibly as the inferred induced convection abated following initial seafloor spreading. Rapid subsidence of the inner margin is interpreted as thermally controlled subsidence, whereas rapid subsidence in the outer shelf of the outer margin was accompanied by fault activity during the interval ~30–21 Ma. This extension in the outer margin (β~1.5) is manifested in the Tainan Basin, which formed on top of the deeply eroded Mesozoic basement. During the interval ~21–12.5 Ma, the entire margin experienced broad thermal subsidence. It was not until ~12.5 Ma that rifting resumed, being especially active in the Tainan Basin (β~1.1). Rifting ceased at ~6.5 Ma due to the orogeny caused by the overthrusting of the Luzon volcanic arc. The Taiwan orogeny created a foreland basin by loading and flexing the underlying rifted margin. The foreland flexure inherited the mechanical and thermal properties of the underlying rifted margin, thereby dividing the basin into north and south segments. The north segment developed on a lithosphere where the major rift/thermal event occurred ~58–30 Ma, and this segment shows minor normal faulting related to lithospheric flexure. In contrast, the south segment developed on a lithosphere, which experienced two more recent rift/thermal events during ~30–21 and ~12.5–6.5 Ma. The basal foreland surface of the south segment is highly faulted, especially along the previous northern rifted flank, thereby creating a deeper foreland flexure that trends obliquely to the strike of the orogen.  相似文献   

10.
《Basin Research》2018,30(Z1):228-247
The Himalayan‐Tibetan Plateau is Earth's highest topographic feature, and formed largely during Cenozoic time as India collided with and subducted beneath southern Asia. The >1300 km long, late Oligocene‐early Miocene Kailas basin formed within the collisional suture zone more than 35 Ma after the onset of collision, and provides a detailed picture of surface environments, processes and possible geodynamic mechanisms operating within the suture zone during the ongoing convergence of India and Asia. We present new geochronological, sedimentological, organic geochemical and palaeontological data from a previously undocumented 400 km long portion of the Kailas basin. The new data demonstrate that this part of the basin was partly occupied by large, deep, probably meromictic lakes surrounded by coal‐forming swamps. Lacustrine facies include coarse‐ and fine‐grained turbidites, profundal black shales and marginal Gilbert‐type deltas. Organic geochemical temperature proxies suggest that palaeolake water was warmer than 25 °C, and cyprinid fish fossils indicate an ecology capable of supporting large fish. Our findings demonstrate a brief period of low elevation in the suture zone during Oligocene‐Miocene time (26–21 Ma) and call for a geodynamic mechanism capable of producing a long (>1000 km) and narrow basin along the southern edge of the upper, Asian plate, long after the onset of intercontinental collision. Kailas basin deposits presently are exposed at elevations >6000 m, requiring dramatic elevation gain in the region after Kailas deposition, without strongly shortening the upper crust. Episodic Indian slab rollback, followed by break‐off and subsequent renewal of flat‐slab subduction, can account for features of the Kailas basin.  相似文献   

11.
Abstract During the migration of the back arc extension from central to western Greece the Corinth and Patras grabens are being formed. Orthogonal opening of these graben zones is accomplished by WNW listric normal faults and NNE transfer faults which produce an along-axis fragmentation. The listric faults show an increase in the dip of the fault plane westwards as well as a decrease in the maximum extension rate from 50% to the east in the Corinth graben, to 10% to the west in the Patras graben. Similarly, towards the west, Plio-Quaternary deposits become thinner whereas Pliocene sediments thin-out indicating a westward rift propagation.
As the back arc extension migrates westwards it is interacting or is being superimposed above another orthogonal fault system consisting of NNW and ENE normal faults. These faults have been formed during general uplift behind the orogenic front which has been migrating from western Greece to the Ionian islands. The ENE-trending Rio graben which belongs to his orthogonal system connects the Patras graben to the Corinth graben and has subsequently been active as a transfer fault between them.
Plio-Quaternary geodynamic processes in central continental Greece are quite similar to those earlier processes observed in the central Aegean region which reflect the initial stage of continental break-up behind a migrating orogenic front.  相似文献   

12.
Tectonic subsidence in rift basins is often characterised by an initial period of slow subsidence (‘rift initiation’) followed by a period of more rapid subsidence (‘rift climax’). Previous work shows that the transition from rift initiation to rift climax can be explained by interactions between the stress fields of growing faults. Despite the prevalence of evaporites throughout the geological record, and the likelihood that the presence of a regionally extensive evaporite layer will introduce an important, sub‐horizontal rheological heterogeneity into the upper crust, there have been few studies that document the impact of salt on the localisation of extensional strain in rift basins. Here, we use well‐calibrated three‐dimensional seismic reflection data to constrain the distribution and timing of fault activity during Early Jurassic–Earliest Cretaceous rifting in the Åsgard area, Halten Terrace, offshore Mid‐Norway. Permo‐Triassic basement rocks are overlain by a thick sequence of interbedded halite, anhydrite and mudstone. Our results show that rift initiation during the Early Jurassic was characterised by distributed deformation along blind faults within the basement, and by localised deformation along the major Smørbukk and Trestakk faults within the cover. Rift climax and the end of rifting showed continued deformation along the Smørbukk and Trestakk faults, together with initiation of new extensional faults oblique to the main basement trends. We propose that these new faults developed in response to salt movement and/or gravity sliding on the evaporite layer above the tilted basement fault blocks. Rapid strain localisation within the post‐salt cover sequence at the onset of rifting is consistent with previous experimental studies that show strain localisation is favoured by the presence of a weak viscous substrate beneath a brittle overburden.  相似文献   

13.
Our current understanding on sedimentary deep-water environments is mainly built of information obtained from tectonic settings such as passive margins and foreland basins. More observations from extensional settings are particularly needed in order to better constrain the role of active tectonics in controlling sediment pathways, depositional style and stratigraphic stacking patterns. This study focuses on the evolution of a Plio-Pleistocene deep-water sedimentary system (Rethi-Dendro Formation) and its relation to structural activity in the Amphithea fault block in the Corinth Rift, Greece. The Corinth Rift is an active extensional basin in the early stages of rift evolution, providing perfect opportunities for the study of early deep-water syn-rift deposits that are usually eroded from the rift shoulders due to erosion in mature basins like the Red Sea, North Sea and the Atlantic rifted margin. The depocentre is located at the exit of a structurally controlled sediment fairway, approximately 15 km from its main sediment source and 12 km basinwards from the basin margin coastline. Fieldwork, augmented by digital outcrop techniques (LiDAR and photogrammetry) and clast-count compositional analysis allowed identification of 16 stratigraphic units that are grouped into six types of depositional elements: A—mudstone-dominated sheets, B—conglomerate-dominated lobes, C—conglomerate channel belts and sandstone sheets, D—sandstone channel belts, E—sandstone-dominated broad shallow lobes, F—sandstone-dominated sheets with broad shallow channels. The formation represents an axial system sourced by a hinterland-fed Mavro delta, with minor contributions from a transverse system of conglomerate-dominated lobes sourced from intrabasinal highs. The results of clast compositional analysis enable precise attribution for the different sediment sources to the deep-water system and their link to other stratigraphic units in the area. Structures in the Amphithea fault block played a major role in controlling the location and orientation of sedimentary systems by modifying basin-floor gradients due to a combination of hangingwall tilt, displacement of faults internal to the depocentre and folding on top of blind growing faults. Fault activity also promoted large-scale subaqueous landslides and eventual uplift of the whole fault block.  相似文献   

14.
Established models indicate that, before being breached, relay zones along rift borders can evolve either by lengthening and rotating during progressive overlap of growing fault segments (isolated fault model), or, by simply rotating without lengthening before breaching (coherent fault model). The spatio‐temporal distribution of vertical motions in a relay zone can thus be used to distinguish fault growth mechanisms. Depositional relay zones that develop at sea level and accommodate both deposition on the ramp itself as well as transfer of sediments from the uplifting footwall into the hangingwall depocentres and provide the most complete record of vertical motions. We examine the development of a depositional relay ramp on the border of the active Corinth rift, Greece to reconstruct fault interaction in time and space using both onshore and offshore (2D seismic lines) data. The Akrata relay zone developed over a period of ca. 0.5 Myr since the Middle Pleistocene between the newly forming East Helike Fault (EHF) that propagated towards the older, more established Derveni Fault (DF). The relay zone captured the Krathis River, which deposited prograding Gilbert‐type deltas on the sub‐horizontal ramp. Successive oblique faults record progressive linkage and basinward migration of accommodation along the ramp axis, whereas marine terraces record diachronous uplift in their footwalls. Although early linkage of the relay zone occurs, continuous propagation and linkage of the EHF onto the static DF is recorded before final beaching. Rotation on forced folds above the upward and laterally propagating normal faults at the borders of the relay zone represents the ramp hinges. The Akrata relay zone cannot be compared directly to a simple fault growth model because (1) the relay zone connects two fault segments of different generations; (2) multiple linkages during propagation was facilitated by the presence of pre‐existing crustal structures, inherited from the Hellenide fold and thrust belt. The linkage of the EHF to the DF contributed to the westward and northward propagation of the southern rift border.  相似文献   

15.
Models to explain alluvial system development in rift settings commonly depict fans that are sourced directly from catchments formed in newly uplifted footwalls, which leads to the development of steep-sided talus-cone fans in the actively subsiding basin depocentre. The impact of basin evolution on antecedent drainage networks orientated close to perpendicular to a rift axis, and flowing over the developing hangingwall dip slope, remains relatively poorly understood. The aim of this study is to better understand the responses to rift margin uplift and subsequent intrabasinal fault development in determining sedimentation patterns in alluvial deposits of a major antecedent drainage system. Field-acquired data from a coarse-grained alluvial syn-rift succession in the western Gulf of Corinth, Greece (sedimentological logging and mapping) has allowed analysis of the spatial distribution of facies associations, stratigraphic architectural elements and patterns of palaeoflow. During the earliest rifting phase, newly uplifted footwalls redirected a previously established fluvial system with predominantly southward drainage. Footwall uplift on the southern basin margin at an initially relatively slow rate led to the development of an overfilled basin, within which an alluvial fan prograded to the south-west, south and south-east over a hangingwall dip slope. Deposition of the alluvial system sourced from the north coincided with the establishment of small-scale alluvial fans sourced from the newly uplifted footwall in the south. Deposits of non-cohesive debris flows close to the proposed hangingwall fan apex pass gradationally downstream into predominantly bedload conglomerate deposits indicative of sedimentation via hyperconcentrated flows laden with sand- and silt-grade sediment. Subsequent normal faulting in the hangingwall resulted in the establishment of further barriers to stream drainage, blocking flow routes to the south. This culminated in the termination of sediment supply to the basin depocentre from the north, and the onset of underfilled basin conditions as signified by an associated lacustrine transgression. The evolution of the fluvial system described in this study records transitions between three possible end-member types of interaction between active rifting and antecedent drainage systems: (a) erosion through an uplifted footwall, (b) drainage diversion away from an uplifted footwall and (c) deposition over the hangingwall dip slope. The orientation of antecedent drainage pathways at a high angle to the trend of a developing rift axis, replete with intrabasinal faulting, exerts a primary control on the timing and location of development of overfilled and underfilled basin states in evolving depocentres.  相似文献   

16.
A comprehensive interpretation of single and multichannel seismic reflection profiles integrated with biostratigraphical data and log information from nearby DSDP and ODP wells has been used to constrain the late Messinian to Quaternary basin evolution of the central part of the Alboran Sea Basin. We found that deformation is heterogeneously distributed in space and time and that three major shortening phases have affected the basin as a result of convergence between the Eurasian and African plates. During the Messinian salinity crisis, significant erosion and local subsidence resulted in the formation of small, isolated, basins with shallow marine and lacustrine sedimentation. The first shortening event occurred during the Early Pliocene (ca. 5.33–4.57 Ma) along the Alboran Ridge. This was followed by a major transgression that widened the basin and was accompanied by increased sediment accumulation rates. The second, and main, phase of shortening on the Alboran Ridge took place during the Late Pliocene (ca. 3.28–2.59 Ma) as a result of thrusting and folding which was accompanied by a change in the Eurasian/African plate convergence vector from NW‐SE to WNW‐ESE. This phase also caused uplift of the southern basins and right‐lateral transtension along the WNW‐ENE Yusuf fault zone. Deformation along the Yusuf and Alboran ridges continued during the early Pleistocene (ca. 1.81–1.19 Ma) and appears to continue at the present day together with the active NNE‐SSW trending Al‐Idrisi strike‐slip fault. The Alboran Sea Basin is a region of complex interplay between sediment supply from the surrounding Betic and Rif mountains and tectonics in a zone of transpression between the converging African and European plates. The partitioning of the deformation since the Pliocene, and the resulting subsidence and uplift in the basin was partially controlled by the inherited pre‐Messinian basin geometry.  相似文献   

17.
Stratigraphic data from petroleum wells and seismic reflection analysis reveal two distinct episodes of subsidence in the southern New Caledonia Trough and deep‐water Taranaki Basin. Tectonic subsidence of ~2.5 km was related to Cretaceous rift faulting and post‐rift thermal subsidence, and ~1.5 km of anomalous passive tectonic subsidence occurred during Cenozoic time. Pure‐shear stretching by factors of up to 2 is estimated for the first phase of subsidence from the exponential decay of post‐rift subsidence. The second subsidence event occured ~40 Ma after rifting ceased, and was not associated with faulting in the upper crust. Eocene subsidence patterns indicate northward tilting of the basin, followed by rapid regional subsidence during the Oligocene and Early Miocene. The resulting basin is 300–500 km wide and over 2000 km long, includes part of Taranaki Basin, and is not easily explained by any classic model of lithosphere deformation or cooling. The spatial scale of the basin, paucity of Cenozoic crustal faulting, and magnitudes of subsidence suggest a regional process that acted from below, probably originating within the upper mantle. This process was likely associated with inception of nearby Australia‐Pacific plate convergence, which ultimately formed the Tonga‐Kermadec subduction zone. Our study demonstrates that shallow‐water environments persisted for longer and their associated sedimentary sequences are hence thicker than would be predicted by any rift basin model that produces such large values of subsidence and an equivalent water depth. We suggest that convective processes within the upper mantle can influence the sedimentary facies distribution and thermal architecture of deep‐water basins, and that not all deep‐water basins are simply the evolved products of the same processes that produce shallow‐water sedimentary basins. This may be particularly true during the inception of subduction zones, and we suggest the term ‘prearc’ basin to describe this tectonic setting.  相似文献   

18.
The Andean Orogen is the type‐example of an active Cordilleran style margin with a long‐lived retroarc fold‐and‐thrust belt and foreland basin. Timing of initial shortening and foreland basin development in Argentina is diachronous along‐strike, with ages varying by 20–30 Myr. The Neuquén Basin (32°S to 40°S) contains a thick sedimentary sequence ranging in age from late Triassic to Cenozoic, which preserves a record of rift, back arc and foreland basin environments. As much of the primary evidence for initial uplift has been overprinted or covered by younger shortening and volcanic activity, basin strata provide the most complete record of early mountain building. Detailed sedimentology and new maximum depositional ages obtained from detrital zircon U–Pb analyses from the Malargüe fold‐and‐thrust belt (35°S) record a facies change between the marine evaporites of the Huitrín Formation (ca. 122 Ma) and the fluvial sandstones and conglomerates of the Diamante Formation (ca. 95 Ma). A 25–30 Myr unconformity between the Huitrín and Diamante formations represents the transition from post‐rift thermal subsidence to forebulge erosion during initial flexural loading related to crustal shortening and uplift along the magmatic arc to the west by at least 97 ± 2 Ma. This change in basin style is not marked by any significant difference in provenance and detrital zircon signature. A distinct change in detrital zircons, sandstone composition and palaeocurrent direction from west‐directed to east‐directed occurs instead in the middle Diamante Formation and may reflect the Late Cretaceous transition from forebulge derived sediment in the distal foredeep to proximal foredeep material derived from the thrust belt to the west. This change in palaeoflow represents the migration of the forebulge, and therefore, of the foreland basin system between 80 and 90 Ma in the Malargüe area.  相似文献   

19.
The thickness and distribution of early syn‐rift deposits record the evolution of structures accommodating the earliest phases of continental extension. However, our understanding of the detailed tectono‐sedimentary evolution of these deposits is poor, because in the subsurface, they are often deeply buried and below seismic resolution and sparsely sampled by borehole data. Furthermore, early syn‐rift deposits are typically poorly exposed in the field, being buried beneath thick, late syn‐rift and post‐rift deposits. To improve our understanding of the tectono‐sedimentary development of early syn‐rift strata during the initial stages of rifting, we examined quasi‐3D exposures in the Abura Graben, Suez Rift, Egypt. During the earliest stage of extension, forced folding above blind normal fault segments, rather than half‐graben formation adjacent to surface‐breaking faults, controlled rift physiography, accommodation development and the stratigraphic architecture of non‐marine, early syn‐rift deposits. Fluvial systems incised into underlying pre‐rift deposits and were structurally focused in the axis of the embryonic depocentre, which, at this time, was characterized by a fold‐bound syncline rather than a fault‐bound half graben. During this earliest phase of extension, sediment was sourced from the rift shoulder some 3 km to the NE of the depocentre, rather than from the crests of the flanking, intra‐basin extensional forced folds. Fault‐driven subsidence, perhaps augmented by a eustatic sea‐level rise, resulted in basin deepening and the deposition of a series of fluvial‐dominated mouth bars, which, like the preceding fluvial systems, were structurally pinned within the axis of the growing depocentre, which was still bound by extensional forced folds rather than faults. The extensional forced folds were eventually locally breached by surface‐breaking faults, resulting in the establishment of a half graben, basin deepening and the deposition of shallow marine sandstone and fan‐delta conglomerates. Because growth folding and faulting were coeval along‐strike, syn‐rift stratal units deposited at this time show a highly variable along‐strike stratigraphic architecture, locally thinning towards the growth fold but, only a few kilometres along‐strike, thickening towards the surface‐breaking fault. Despite displaying the classic early syn‐rift stratigraphic motif recording net upward‐deepening, extensional forced folding rather than surface faulting played a key role in controlling basin physiography, accommodation development, and syn‐rift stratal architecture and facies development during the early stages of extension. This structural and stratigraphic observations required to make this interpretation are relatively subtle and may go unrecognized in low‐resolution subsurface data sets.  相似文献   

20.
Rifted margins are created as a result of stretching and breakup of continental lithosphere that eventually leads to oceanic spreading and formation of a new oceanic basin. A cornerstone for understanding what processes control the final transition to seafloor spreading is the nature of the continent‐ocean transition (COT). We reprocessed multichannel seismic profiles and use available gravity data to study the structure and variability of the COT along the Northwest subbasin (NWSB) of the South China Sea. We have interpreted the seismic images to discern continental from oceanic domains. The continental‐crust domain is characterized by tilted fault blocks generally overlain by thick syn‐rift sedimentary units, and underlain by fairly continuous Moho reflections typically at 8–10 s twtt. The thickness of the continental crust changes greatly across the basin, from ~20 to 25 km under the shelf and uppermost slope, to ~9–6 km under the lower slope. The oceanic‐crust domain is characterized by a highly reflective top of basement, little faulting, no syntectonic strata and fairly constant thickness (over tens to hundreds of km) of typically 6 km, but ranging from 4 to 8 km. The COT is imaged as a ~5–10 km wide zone where oceanic‐type features directly abut or lap on continental‐type structures. The South China margin continental crust is cut by abundant normal faults. Seismic profiles show an along‐strike variation in the tectonic structure of the continental margin. The NE‐most lines display ~20–40 km wide segments of intense faulting under the slope and associated continental‐crust thinning, giving way to a narrow COT and oceanic crust. Towards the SW, faulting and thinning of the continental crust occurs across a ~100–110 km wide segment with a narrow COT and abutting oceanic crust. We interpret this 3D structural variability and the narrow COT as a consequence of the abrupt termination of continental rifting tectonics by the NE to SW propagation of a spreading centre. We suggest that breakup occurred abruptly by spreading centre propagation rather than by thinning during continental rifting. We propose a kinematic evolution for the oceanic domain of the NWSB consisting of a southward spreading centre propagation followed by a first narrow ridge jump to the north, and then a younger larger jump to the SE, to abandon the NWSB and create the East subbasin of the South China Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号