首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
基于地统计学的甘肃臭草群落土壤水分空间异质性   总被引:1,自引:0,他引:1  
土壤水分是植被格局形成和演变的主要因素,土壤水分的空间异质性对于认识干旱区草原植物对环境的响应机制具有重要意义.应用地统计学方法,对祁连山北坡甘肃臭草(Melica przewalskyi)退化草地土壤表层含水量的变异性进行研究.结果表明,臭草型退化草地浅层(0 ~30 cm)土壤水分符合正态分布,土壤含水量沿垂直方向逐渐增大,介于9.56% ~11.21%.各层土壤水分的变异系数分别为12.97% (0~10 cm)、8.8% (10~20 cm)和14.09% (20~30 cm),均属弱变异;0~ 30 cm土壤含水量具有高度的空间异质性,其中34.92%~42.71%的空间异质性是由空间自相关部分引起的,主要体现在16.87 ~ 69.14 m尺度上.在0~ 10 cm土层,引起土壤水分空间变异的主要因素是植被覆盖度的不同,而在10 ~ 30 cm土层,土壤水分空间变异性主要是根系分布的差异引起的.  相似文献   

2.
乌兰布和沙漠白刺灌丛土壤水分及物理特性的研究   总被引:8,自引:3,他引:5  
以乌兰布和沙漠流动沙地白刺灌丛土壤为研究对象,在灌丛阴面、阳面垂直方向挖取100cm深土壤剖面,对土壤水分及其土壤物理特性进行研究。结果表明,乌兰布和沙漠白刺灌丛阴阳面土壤水分具有季节性变化。6~9月阳面沙土含水量呈下降趋势(1.10%~0.72%),而阴面呈上升趋势(1.05%~2.90%)。阳面各土层贮水量0~20cm为1.22~4.66mm、20~60cm为3.90~6.37mm、60~100cm为5.55~7.86mm,而阴面:0~20cm为4.38~4.96mm、20~60cm为16.30~17.08mm、60~100cm为11.44~17.07mm。阳面除表层外,其他各层土壤孔隙度、田间持水量、最大持水量均低于阴面,阳面各层的土壤容重除了表层其它层均高于阴面。  相似文献   

3.
塔里木河下游典型绿洲滴灌防护林地土壤水盐时空动态   总被引:1,自引:0,他引:1  
刘新华  徐海量  凌红波  张鹏  戴岳  白元 《中国沙漠》2012,32(6):1604-1610
通过野外定位观测,对塔里木河下游典型绿洲防护林地灌溉周期内、不同滴灌年限以及不同质地类型土壤水盐动态进行监测分析。研究结果表明:①绿洲幼龄防护林地土壤水盐变化属于灌溉周期型;灌后土壤湿润体呈“半椭球型”分布,积盐区位于湿润峰附近;当前防护林(沙壤土)滴灌周期为10 d较为合适。②实施滴灌1 a、2 a和5 a林地(沙壤土)土壤水分亏缺量逐年增大;0~20 cm土层随滴灌年限的增大先脱盐后积盐,20~120 cm土层均表现为脱盐。③滴灌5 a后,粉黏土林地表层板结层的形成显著抑制40~60 cm土壤水分蒸发,盐分呈“表聚型”分布;细沙土林地土壤持水性差,各土层盐分呈“均匀型”分布;沙壤土林地持水性较细沙土林地略高,盐分呈“波动型”分布。  相似文献   

4.
季节性冻融是干旱区土壤盐碱化形成的主要驱动因子,但冻融过程中土壤水盐耦合关系及热量调控机理仍不清楚。通过分析2009年11月~2010年5月新疆玛纳斯河流域典型盐荒地季节性冻融过程中土壤剖面160 cm以内的水分、盐分和温度动态变化,探讨了不同土层冻融过程中水热盐的耦合关系。结果表明:土壤最大冻结深度为150 cm左右,表土层(0~40 cm)温度与气温关系密切;土壤剖面水分呈现“C”型垂直分布,表土层和底土层(100~160 cm)含水量较大,而心土层(40~100 cm)含水量不足10%,土层平均含水率在冻融前期增加了12.91%,而在初蒸期减少了10.01%;土壤剖面盐分在冻结期和初蒸期表聚作用明显,心土层和底土层含盐量稳定,土壤剖面含盐量表现为“积盐-脱盐-再积盐”的变化过程。水热盐之间具有高度协同性,心土层和底土层表现为水盐相随、而表土层为水去盐留的耦合特征,热量传输是调控水盐运移的关键因素。  相似文献   

5.
快速、无损监测农田土壤水分含量,是智慧农业的重要研究内容。以新疆南疆阿拉尔国家农业科技园区膜下滴灌棉田为研究对象,运用EM38-MK2大地电导率仪快速、高效的获取了4组不同时期的棉田土壤表观电导率数据,并同步采集表层土壤(0~20 cm)样品,通过构建表观电导率数据与室内测定含水量数据间的反演模型获取了测点的含水量数据,并按照土壤水分干旱分级标准对研究区土壤水分进行划分,综合利用GIS软件和地统计方法对土壤水分的时空变异性进行研究。结果表明:4个时期的土壤水分反演模型决定系数均大于0.80且均方根误差(RMSE)和平均绝对百分误差(MAPE)均较小,表明反演模型精度较高,土壤表观电导率与表层土壤水分相关性较好;不同时期土壤含水量数据表明土壤水分具有很强的时间变异性,变异性由中等变异转变为弱变异再转变为中等变异;受人为灌溉等因素的影响,变异函数模型也存在差异;半方差分析中4个时期的土壤水分块金值与基台值之比均大于75%,表明土壤水分在空间上趋近于弱空间相关;高程反距离权重(IDW)插值图及水分克里格插值图表明微地形是影响土壤水分分布的重要因素。本研究可为干旱区膜下滴灌棉田土壤水分动态监测提供重要的方法支撑,从而更好地指导农业灌溉。  相似文献   

6.
科尔沁不同类型沙地土壤水分在降水后的空间变异特征   总被引:6,自引:3,他引:6  
采用地统计学的方法,研究了科尔沁沙地受轻度干扰的沙质草场、禁牧半流动沙地和受重度干扰的丘间低地在降水后的土壤含水量空间变异性。结果表明,土壤含水量变异幅度是丘间低地>半流动沙地>沙质草场。半流动沙地和丘间低地的表层与亚表层土壤水分空间结构差异较小,但土壤水分空间变异性都要高于沙质草场表层。沙质草场表层与亚表层空间结构差异明显,两层土壤含水量变程分别为181.80 m4、.55 m,分维数为1.91、1.99,表层变异性小,亚表层变异性大。半流动沙地表层、亚表层的土壤含水量由随机因素引起的空间变异性,分别占各自总空间变异性的50%和48%,主要表现在1 m以下的小尺度范围内。丘间洼地两层土壤含水量变异特征差异较小,空间变异性大,土壤水分空间格局图表现出由洼地中心向四周递减的分布趋势,但存在一定的尺度范围。由于自然环境的改变和人类活动的干扰,影响着沙地植被、地形小尺度分布格局在大尺度上的配置格局,降水后的沙地土壤水分格局也发生相应的变化,而地形状况、植被条件和小尺度的人为局部干扰在该变化中有着深远的影响。  相似文献   

7.
以流动沙地作对照,在毛乌素沙地选择半固定沙地油蒿(Artemisia ordosica)群落、具生物结皮的油蒿群落和油蒿+本氏针茅(Stipa capillata)群落设置样地,以10min间隔获取5、15、30、50、70cm深度土壤水分实时监测数据,分析生长季不同植被覆盖下沙地土壤水分动态变化特征。结果表明:(1)4个样地均为秋季储水量最大,油蒿+本氏针茅群落0~80cm层土壤储水能力最强,平均增加了30mm。(2)受土壤蒸发影响的同时,得不到春季小降水事件的补给,流动沙地20~60cm层春季土壤含水量只有4%,生长季波动明显,呈双峰型,0~20cm层和60~80cm层土壤含水量较稳定;半固定沙地油蒿群落0~60cm层土壤含水量长期处于6%左右,60~80cm层春季最低、夏季和秋季得到较好的补给,呈双峰型;具生物结皮的油蒿群落0~10cm平均土壤含水量大于10~20cm层,0~10cm层土壤水分受生物结皮影响呈双峰型,而10~60cm土壤水分较稳定,呈单峰型,60~80cm层土壤含水量在春季最低,呈双峰型;油蒿+本氏针茅群落土壤持水性有明显增加,夏季和秋季土壤含水量可长期处于12%~14%,呈明显的双峰型,而60~80cm土层得不到充分的降水补给,长期处于4%左右,呈单峰型。(3)不同植被覆盖的沙地土壤水分对30mm左右降水的响应深度不同,流动沙地可到70cm,半固定沙地油蒿群落到50cm,具生物结皮的油蒿群落到30cm,油蒿+本氏针茅群落到40cm;极端降水能够影响所有样地0~70cm土壤含水量。  相似文献   

8.
禹城沙地水分动态规律及其影响因子   总被引:27,自引:5,他引:22  
冯起  高前兆 《中国沙漠》1995,15(2):151-157
通过对禹城沙河地沙土土壤水分动态监测,分析其土壤水分剖面变化,得出本沙地土壤水分动态变化规律:依据降水、植被、地下水和土壤将土壤水分垂直剖面划分为表层0-10m或0-20cm干沙层,20-40cm土壤水分变化剧烈层,40-80cm土壤水分活跃层,80-120cm以下土壤水分深部稳定层;沙地土壤水分随季节变化划分为,春季水分变化较微──弱失水阶段,夏季水分剧烈变化──降水补给阶段,秋季水分变化缓慢——失水阶段,冬季水分变化较微弱──调整阶段。  相似文献   

9.
东北黑土区土壤剖面地温和水分变化规律   总被引:3,自引:1,他引:2  
东北黑土区土壤侵蚀的结果使土壤在坡面上发生再分配,土壤腐殖质层厚度的空间变异增大。腐殖质层厚度的变化又引起地温和土壤水分等土壤物理性质的变化,地温和水分是影响和反映冻融侵蚀作用的重要因子,也是影响地表和土壤剖面物质运移的重要因素。本文通过实测不同厚度腐殖质层剖面的地温和土壤水分,分析了地温和水分随时间和土壤剖面深度的变化规律。结果显示腐殖质层厚度对土壤温度和含水量有显著影响,腐殖质层较厚的剖面解冻速度比薄层黑土区要慢,不同深度土层温度到达0℃的日期也不相同,腐殖质层较厚的剖面冻结时间要滞后1周左右。同时,腐殖质层较厚的黑土区土壤含水量明显大于薄层黑土区,土壤水分运移的深度范围也大。  相似文献   

10.
青海湖西吉尔孟附近土壤水分研究   总被引:2,自引:0,他引:2  
根据对青海湖北刚察县吉尔孟乡草地土壤含水量测定和粒度分析,研究了土壤水分变化等问题。研究区土层上部粒度成分以粗粉砂为主,下部以细砂为主。2009年该区草地土壤重力水分布深度达到了60 cm左右。土壤上部含水量丰富,下部水分严重不足。在土层约80 cm深度之下出现了中等干层和部分严重干层。该区土壤干层的发育阻隔了大气降水向地下深处的入渗,属于异常水分循环类型。该区土壤水分处于负平衡状态,指示当地的降水量并不能充分满足草原植被生长的需要。吉尔孟乡土壤蓄水量较少,易于发生生态环境的退化。  相似文献   

11.
Research for changes of soil water and salt is an important content of land sciences and agriculture sciences in arid and semi arid regions. In this paper, sampling in actual agricultural fields, laboratory analysis of soil samples and statistical analysis methods are used to quantitatively analyze soil salinity changes under different irrigation methods throughout the cotton growing season in Shihezi reclamation area. The results show that irrigation methods play an important role in soil salt content in the surface soil (0-20 cm) and sub-deep soil (40-60 cm), followed by deep soil layer (60-100 cm) and root soil layer (20-40 cm). Furrow irrigation yields the maximum soil salt content in deep layer (60-100 cm) or sub-deep layer (40-60 cm) and the maximum salinity occurs in the first half of the cotton growing season (June or earlier). In contrast, drip irrigation yields the maximum soil salinity in the root layer (20-40 cm) or sub-deep (40-60 cm), and this usually appears in the second half growing season (July or after). The ratio of chloride ion to sulfate ion (Cl-/SO42-) and its change in the soil are on the rise under furrow irrigation, while the value first increased and then decreased with a peak point in June under drip irrigation. This suggests that furrow irrigation may shift the type of soil salinization to chloride ion type moreso than drip irrigation. Potassium and sodium ion contents of the soil show that soil sodium+potassium content will drop after the first rise under furrow irrigation and the value is manifested by fluctuations under drip irrigation. Potassium+sodium content change is relatively more stable in the whole cotton growth period under irrigation methods. The maximum of sodium and potassium content of the soil usually occur in deep soil layer (60-100 cm) or sub-deep soil layer (40-60 cm) in most sample points under furrow irrigation while it is inconsistent in different sample points under drip irrigation. A nonparametric test for paired samples is used to analyze differences of soil salt content under different irrigation methods. This analysis shows that the impact of irrigation on soil salinity is most significant in July, followed by August, June, May, and April in most sample points. The most significant impact of irrigation methods occurs in the surface soil layer (0-20 cm), followed by deep layer (60-100 cm), root layer (20-40 cm) and sub-deep (40-60 cm). These conclusions will be benefitial for mitigation of soil salinization, irrigation and fertilization and sustainable land use.  相似文献   

12.
张海威  张飞  李哲 《干旱区地理》2017,40(3):606-613
由于不同的环境背景下环境机制不同,所以导致了水盐(主要指水分、盐分)空间变异存在很大差异,在此背景下分析艾比湖地区含水量与含盐量空间变异,有助于更加合理的了解土壤含水量与含盐量一体化规律。以艾比湖为中心把艾比湖区域分为三个靶区:绿洲、荒漠、湖区,运用统计学方法,分析三个区域的土壤水分、盐分差异性特征。结果表明:绿洲、荒漠、湖区这三个区域表层土壤盐分积聚严重,其含盐量大小依次为:荒漠→绿洲→湖区,而含水量却相反;绿洲、荒漠和湖区土壤含盐量的变异系数均在85%~150%之间,属高强度变异,含水量变异系数均介于55%~75%之间,属中强度变异。说明荒漠区域盐分含量的水平分布不均匀,空间异质性较强;而水分含量的水平相对较为均匀,空间异质性较弱。绿洲、荒漠、湖区土壤层10~20 cm与20~40 cm土壤层含盐量的存在显著性相关性(p<0.01),即绿洲的相关系数0.913,荒漠的相关系数0.966,湖区的相关系数0.941,绿洲与湖区土壤表层与亚层含水量存在显著性相关性(p<0.01)相关系数分别为0.851 和0.908。说明绿洲与湖区土壤层0~10 cm与10~20 cm土壤含水量存在水分转移现象,荒漠区域这种现象不明显,可能与沙漠炎热地表环境和土壤性质等因素有关。研究结果揭示了艾比湖地区不同环境背景下秋季的土壤含水量与含盐量分布特征,为艾比湖地区农作物灌溉管理及土壤盐渍化治理提供了科学依据。  相似文献   

13.
选取黑龙江省鹤山农场面积为0.91 km2的典型黑土区的坡耕地作为研究样地。按横纵100 m间隔共采集101个样点,运用地理信息系统和地统计学相结合的方法研究分析0~15 cm土层有机质空间变异及其与土壤侵蚀的关系。结果表明:位于典型黑土区样地的有机质含量集中在3%~5%范围内,均值为4.13%,高于黑龙江省的有机质平均水平。有机质含量空间变异明显,且主要受土壤侵蚀的影响:高侵蚀区对应低有机质区,中度侵蚀区对应中等有机质区,沉积区对应高有机质区。顺坡种植平均坡度2.2°时,每侵蚀1 000 t/km2土壤,有机质含量降低0.8%。土壤有机质空间变异可采用球状模型表达,自相关明显,进一步表明土壤侵蚀导致的再分布。对比分析确定200 m采样间距能够能准确表达该区表层有机质含量的空间特征,为精准施肥提供了采样依据。  相似文献   

14.
基于区域变量理论,在GPS和GIS技术支持下,通过地统计学的半变异函数和Kriging空间插值,以岳普湖绿洲为例,定量分析塔里木河源流区绿洲不同层次土壤盐分的空间异质性。结果表明:0~30cm、30~60cm和60~100cm土壤盐分半方差函数的理论分布模型属于指数模型,100~200cm属于球状模型。不同土层之间的空间自相关范围具有明显的差异,由表层至深层,土壤盐分的自相关范围逐渐增大。土壤盐分的空间格局分析表明,在水平方向上,研究区各层土壤盐分的高值区主要集中分布在人类活动强烈、靠近河渠水源和地势较为低洼区域;在垂直方向上,土壤表层盐分含量最高,向深层逐渐减少。  相似文献   

15.
伊犁河流域林业生态建设基地淡灰钙土土壤特征研究   总被引:7,自引:0,他引:7  
在伊犁河流域林业生态建设基地,随机挖土壤剖面11个,依照土壤发生层分层取样,同时观察其颜色、结构、干湿度、松紧度、孔隙大小及植物根系的分布等生态特征,以此来鉴别土壤质地、土壤发育状况,并测定土壤中的盐分和养分。分0~10 cm、10~20 cm、20~30 cm、30~40 cm共4层取样,测定土壤容重,并分别在灌水前及灌水后不同日期测定了土壤含水量。实验结果表明:在伊犁河流域林业生态建设基地淡灰钙土土壤剖面发育微弱;含盐量低;有机质含量平均只有0.80%,全N、全P含量较少,全K含量较高,速效N、速效P含量较低,速效K含量较高;0~10 cm和10~20 cm的土壤容重分别为1.35~1.62 g/cm3和1.36~1.50 g/cm3之间。灌水后土壤含水量普遍都有所提高,其中0~10 cm土层土壤含水量比灌水前增加了59.31%,10~20 cm、20~30cm和30~40 cm土层的土壤含水量分别比灌水前增加了37.74%、27.29%和6.36%。  相似文献   

16.
黄翠华  薛娴  彭飞  尤全刚  王涛 《中国沙漠》2013,33(2):590-596
通过野外试验和室内分析相结合的方法,研究了民勤绿洲农田不同矿化度(0.8g·L-1、2.0g·L-1和5.0g· L-1)地下水灌溉对土壤环境的影响.结果表明:随着灌溉水矿化度的增加,生长季水分消耗量逐渐降低,土壤总孔隙度和土壤有机质含量逐渐下降,而土壤有效水含量和土壤电导率则逐渐增加.当灌溉水矿化度为0.8g·L-1时,收获后土壤中上层(0~60 cm)电导率比播种前明显降低,而底层(60~90 cm)电导率略有增加,即淡水灌溉的淋溶作用明显;当灌溉水矿化度为2.0g,L-1时,生长季中的灌水依然对土壤盐分有淋溶作用,但明显弱于淡水的淋溶效果,收获后土壤盐分有明显的表聚现象;当灌溉水矿化度为5.0g·L-1时,收获后在0~60 cm深度电导率明显增加,在60~90 cm深度没有明显变化.  相似文献   

17.
Characterizing spatial and temporal variability of soil salinity is tremendously important for a variety of agronomic and environmental concerns in arid irrigation areas. This paper reviews the characteristics and spatial and temporal variations of soil salinization in the Ili River Irrigation Area by applying a geostatistical approach. Results showed that:(1) the soil salinity varied widely, with maximum value of 28.10 g/kg and minimum value of 0.10 g/kg, and was distributed mainly at the surface soil layer. Anions were mainly SO_4~(2-) and Cl~-, while cations were mainly Na~+ and Ca~(2+);(2) the abundance of salinity of the root zone soil layer for different land use types was in the following order: grassland cropland forestland. The abundance of salinity of root zone soil layers for different periods was in the following order: March June September;(3) the spherical model was the most suitable variogram model to describe the salinity of the 0–3 cm and 3–20 cm soil layers in March and June, and the 3–20 cm soil layer in September, while the exponential model was the most suitable variogram model to describe the salinity of the 0–3 cm soil layer in September. Relatively strong spatial and temporal structure existed for soil salinity due to lower nugget effects; and(4) the maps of kriged soil salinity showed that higher soil salinity was distributed in the central parts of the study area and lower soil salinity was distributed in the marginal parts. Soil salinity tended to increase from the marginal parts to the central parts across the study area. Applying the kriging method is very helpful in detecting the problematic areas and is a good tool for soil resources management. Managing efforts on the appropriate use of soil and water resources in such areas is very important for sustainable agriculture, and more attention should be paid to these areas to prevent future problems.  相似文献   

18.
塔里木河下游地区滴灌沙枣防护林地土壤盐分分布特征   总被引:4,自引:0,他引:4  
赵新风  王炜  张涛  白元  徐海量 《中国沙漠》2012,32(3):763-770
为了研究不同滴灌措施对极端干旱区防护林土壤盐分的淋洗作用,以沙枣(Elaeagnus angustifolia)防护林作为研究对象,对塔里木河下游喀拉米吉绿洲沙枣防护林开展了灌溉与不灌溉、不同滴头距离、不同滴灌年限处理的试验。结果表明:①不灌溉林地土壤盐分含量与流动沙丘相似,流动沙丘土壤盐分分布的空间异质性大于不灌溉林地。滴灌林地土壤含盐量低于不灌溉林地。②1.5 m滴头距离处理与其他处理相比压盐碱效果显著(P<0.01)。1.5 m与3 m滴头距离处理在50 cm土体中含盐量差异达极显著水平(P<0.01),前者比流动沙丘低30.5%~32.7%、后者比流动沙丘高17.1%~13.3%。与3 m滴头距离处理相比,1.5 m滴头距离处理产生水盐运移的“互作”影响,盐峰下移。③滴灌后的第1、2、3年,林地的土壤盐分分别下降至30 cm、50 cm和70 cm以下,基本对沙枣根系生长没有影响。随着滴灌次数增加,根系生物量逐渐增大,根系附近土壤盐分逐渐减少。滴灌能使防护林的根系分布上移,大部分在10~65 cm土层内,土层越深,林木的根系越少。④灌水季节末期,不同林龄的防护林在120 cm土体的含盐量表现为:1 a林>2 a林>6 a林,说明滴灌对林龄大的防护林淋洗效果更为明显;非灌溉季节里,防护林的林龄越大,其土壤盐分表聚现象越明显。  相似文献   

19.
 塔里木沙漠公路防护林生态工程全长436 km,位于极端干旱的塔克拉玛干沙漠,造林树种以抗逆性较强的沙拐枣属(Calligonum L.)、柽柳属(Tamarix L.)、梭梭属(Haloxylon Bunge)等优良防风固沙灌木为主,防护林植物的蒸腾耗水和灌溉管理是防护林可持续的核心问题。为探求适合塔里木沙漠公路防护林的节水技术,利用微型蒸渗仪研究了塔克拉玛干沙漠腹地咸水灌溉条件下Guilspare(浓度1.5 % v/v)施用量对土壤蒸发和水盐垂直分布的影响。结果表明:(1)Guilspare对土壤蒸发有显著影响,其施用量与累积蒸发量间呈对数关系。当施用量小于4.0 L/m2时,土壤日蒸发量在试验初期均表现为对照组(CK)大于处理组,试验中后期却相反;当施用量大于4.0 L/m2时,日蒸发量始终小于CK。(2)Guilspare施用量为6.0 L/m2的抑制效率最大,与其他处理(除7.0 L/m2)间差异达到显著水平(p﹤0.05)。(3)施用Guilspare对土壤蒸发第一阶段的蒸发强度有明显的减弱作用,其减弱程度与施用量的大小有密切关系,当施用量为6.0 L/m2时,蒸发强度最弱。(4)相同初始含水量条件下,表层土壤含水量和土壤浸提液电导率(除7.0 L/m2)均随着施用量的增大而变小;其他土层(除10~14 cm),两者均随着施用量的增大而变大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号