首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
淮河上游全新世风成黄土-土壤物质来源研究   总被引:11,自引:1,他引:11  
通过对淮河上游地区河南新郑全新世黄土—古土壤剖面磁化率和粒度的测量分析,揭示了淮河上游地区沙质黄土和古土壤的物质来源。该区黄土—古土壤磁化率明显低于黄土高原区,而粒度明显比黄土高原区粗,属于沙质黄土。通过两地区粒度分布的对比,揭示了它们有不同的粉尘源区,分属于不同的风成系统。淮河上游地区黄土是近源风尘沉积物,粉尘主要来源于孟津以东黄河冲积、洪积扇的松散河流沉积粉沙,实质是黄土高原水土流失的产物。黄河的频繁决口、改道、泛滥沉积为其提供了丰富的物源,其粗颗粒粉尘产生和搬运堆积的动力是东北风。淮河上游地区全新世早期粉尘是近源粗颗粒堆积,堆积速率可达18.6cm/ka,是黄土高原南部地区的2.3倍。  相似文献   

2.
黄河冲积扇发育研究述评   总被引:1,自引:0,他引:1  
黄河冲积扇是第四纪以来多期沉积建造的冲积扇复合体,它既是来自黄土高原的泥沙强烈堆积的地貌单元,又是历代河流决口改道的地区,也是华夏文明的发源地。在回顾了黄河冲积扇发育的研究历史的基础上,详细介绍了黄河冲积扇的形成时代、地貌类型与沉积速率,形成过程与特点等方向的研究进展,系统地论述了河道变迁、地质构造、气候变化以及人类活动等因素对黄河冲积扇形成的影响作用。并指出目前黄河冲积扇的发育研究中还存在着研究深度不够和时空的广度不完整等问题。史前黄河冲积扇的发育研究将成为今后研究中的难点。  相似文献   

3.
The dust source and transporting system are two indispensable aspects in the process of loess-palaeosol accumulation. It has been proved that the dust of the Loess Plateau mainly comes from the northwestern inland gobi and desert, transported by the East Asia monsoon systems and westerlies. However, there are little researches with respect to the dust source and deposition dynamics of the upper reaches of the Huaihe River. In the present study, we investigated and collected the YPC section with high resolution in the upper reaches of the Huaihe River. The chronological frame was reconstructed by optically stimulated luminescence (OSL) dating and correlated with the published loess time series. By comparison of the magnetic susceptibility (MS) and grain size (GS) of loess-soil profile among YPC profile, XJN profile (western Loess Plateau) and the JYC profile (southern Loess Plateau), we find similar climate change and pedogenic process between the upper reaches of the Huaihe River and the Loess Plateau, both experienced an extreme dry and the weakest pedogenesis during the last glacial, followed by a transitional episodes from the cold-dry last glacial to the warm-humid mid-Holocene and increased pedogenesis in the early Holocene, then a most humid-warm and strong pedogenesis in the mid-Holocene, and climate deterioration and decreased pedogenesis occurred during the late Holocene. But the MS of loess-soil profile sequences in the upper reaches of the Huaihe River was much lower than those in the Loess Plateau, and the GS was much coarser than those in the Loess Plateau. Comparison of GS for these three profiles revealed that there were different dust sources, which belonged to different aeolian transporting systems. The loess in the upper reaches of the Huaihe River was a wind blown deposition of near source, while the coarser dust mainly came from loose alluvial deposits of alluvial and proluvial fans of the Yellow River. The yielding and carrying dynamics of the dust in the Huaihe River is the northeast wind prevails in the winter half year.  相似文献   

4.
New estimates on the Quaternary slip rate of the active transform margin of North Anatolia are provided. We investigated the area struck by a Mw 7.1 earthquake on the 12th of November 1999 that ruptured the Düzce Fault segment of the North Anatolian Fault. In order to analyze the spectacular tectonically driven cumulative landforms and the drainage pattern settings, we carried out a 1:25,000-scale geological and geomorphological mapping along the fault trace. We reconstruct and describe, as offset geomorphic markers, right-hand stream deflections and fluvial terraces inset into alluvial fan deposits. Radiocarbon dating indicates that  100 m stream deflections were built up by the last  7000 yrs of fault activity. Conversely, two documented and correlated Late Pleistocene fluvial terraces are horizontally offset by  300 and  900 m, respectively. These were dated by means of Optically Stimulated Luminescence (OSL) to  21 ka BP and 60 ka BP. Assuming a constant rate of deformation for the Düzce Fault, ages and related offsets translate to consistent slip rates that yield an average slip rate of 15.0 ± 3.2 mm/yr for the last 60 ka. Thus, the Düzce Fault importantly contributes to the North Anatolian margin deformation, suggesting a present-day partitioning of displacement rates with the Mudurnu Fault to the south and confirming its important role in the seismic hazard of the area.  相似文献   

5.
ZHAO Jingbo 《地理学报》2005,15(4):475-483
On the basis of the geomorphology, paleosol, paleoclimate and loess age, major changes of the Loess Plateau were studied. There are five major changes in the evolution of the Loess Plateau in China. Among them, the first, second, third and fourth major changes have taken place since the formation of the Loess Plateau, and the fifth major change will happen in 100 years. The first major change, which occurred at about 2.50 Ma BP, was a transition from red earth plateau to the Loess Plateau, and reflects the climate from the warm-sub-humid to the alteration between cold-and-dry and warm-and-humid. The driving force of this first major change was climate. The second major change, which took place at about 1.60 Ma BP, was a vital transition of the main rivers in this area from non-existence to existence, and represented an important change on the Loess Plateau's neotectonic uplift from the slow rising to periodically accelerated rising, and making the river's erosion go from feeble to strong. The driving force of the second major change is tectonic uplift. The third major change which occurred at about 150 ka, was a great transition of the Yellow River's inpouring from a lake outlet to a sea outlet. At that time, the Yellow River cut the Sanmen Gorge. The transition led to the transformation of loess material from internal transportation to external transportation. The driving force of the third major change was running water erosion. The fourth one that occurred at about 1.1 ka was a change of the Loess Plateau from natural erosion to erosion accelerated by human influences. The driving force of the fourth major change is mainly human activities. The fifth major change, which is the opposite change to the fourth one, in which the motive power is human activity, too.  相似文献   

6.
1 Introduction W hatim portanttransform ations have taken place during the form ation ofthe Loess Plateau in China? Research on this problem has especially im portantscientific significance forus to learn ofthe evolution oftheLoessPlateau and predictthe f…  相似文献   

7.
Flux and fate of Yangtze River sediment delivered to the East China Sea   总被引:57,自引:0,他引:57  
Numerous cores and dating show the Yangtze River has accumulated about 1.16 × 1012 t sediment in its delta plain and proximal subaqueous delta during Holocene. High-resolution seismic profiling and coring in the southern East China Sea during 2003 and 2004 cruises has revealed an elongated ( 800 km) distal subaqueous mud wedge extending from the Yangtze River mouth southward off the Zhejiang and Fujian coasts into the Taiwan Strait. Overlying what appears to be a transgressive sand layer, this distal clinoform thins offshore, from  40 m thickness between the 20 and 30 m water depth to < 1–2 m between 60 and 90 m water depth, corresponding to an across shelf distance of less than 100 km. Total volume of this distal mud wedge is about 4.5 × 1011 m3, equivalent to  5.4 × 1011 t of sediment. Most of the sediment in this mud wedge comes from the Yangtze River, with some input presumably coming from local smaller rivers. Thus, the total Yangtze-derived sediments accumulated in its deltaic system and East China Sea inner shelf have amounted to about 1.7 × 1012 t. Preliminary analyses suggest this longshore and across-shelf transported clinoform mainly formed in the past 7000 yrs after postglacial sea level reached its mid-Holocene highstand, and after re-intensification of the Chinese longshore current system. Sedimentation accumulation apparently increased around 2000 yrs BP, reflecting the evolution of the Yangtze estuary and increased land erosion due to human activities, such as farming and deforestation. The southward-flowing China Coastal Current, the northward-flowing Taiwan Warm Current, and the Kuroshio Current appear to have played critical roles in transporting and trapping most of Yangtze-derived materials in the inner shelf, and hence preventing the sediment escape into the deep ocean.  相似文献   

8.
This study focuses on the upper part of the Muskegon River system in north-central Lower Michigan and is the first to reconstruct the post-glacial history of fluvial landform development in the core of North America's Great Lakes region. Results indicate that the upper Muskegon River valley contains four alluvial terraces and numerous paleomeanders. Radiocarbon dating of peats within these old channels provides a good chronology for stream behavior and landform development. The T-4 terrace is a paired Pleistocene outwash/lacustrine surface that probably formed about 12,500 years ago. The T-3 terrace is a fill-strath surface that was cut between about 12,000 and perhaps 9500 years ago. The geometry of macromeanders on this surface suggests that stream discharge was  8 times greater than during the Holocene.The Pleistocene/Holocene transition is marked by a major period of downcutting that likely began as the climate warmed/dried and sediment yield diminished. This period of downcutting potentially lasted through the drier middle Holocene, creating a 6-m-high escarpment in the valley. The Muskegon River then began to aggrade when the climate became wetter. Subsequently the river again incised, creating the paired T-2 terrace, about 3400 years ago when the climate became still wetter. T-2 paleomeanders indicate that stream discharge at this time was consistent with the modern river. In the past 2500 years, the stream has constructed a poorly defined complex of T-1 terraces. These surfaces likely formed due to complex response associated with more variable climate. This study demonstrates that the upper Muskegon River has a similar post-glacial history as streams on deglacial and periglacial landscapes elsewhere in the world.  相似文献   

9.
In catchments adjacent to the Great Barrier Reef World Heritage Area in Queensland, Australia, there is a growing concern that sediments and nutrients being exported from the land are having a detrimental effect on coral reef communities. There is a need to determine the processes and rates of erosion from the major land use types, so that management intervention can be initiated to reduce sediment yields where required. This paper presents a sediment budget for Weany Creek, a 13.5 km2 grazed semi-arid sub-catchment of the Burdekin River catchment, Australia. A range of field methods was used to measure erosion from hillslopes, gullies and stream banks, as well as identify the amount of sediment being deposited and remobilised on the bed of gullies and the stream network. The data suggests that at least during drought conditions, the primary erosion source in this catchment is gully erosion. However, the largest source of sediment in the budget is actually associated with the remobilisation of in-channel sediment stores. Overall, the sediment budget is comprised of  81% coarse material and 19% fine sediment and an agreement between the fine sediment yield estimated in the sediment budget and the yield measured at the catchment outlet is within 10%. The total sediment yield estimated for this catchment is  4205 t yr− 1 and is much lower than expected for a catchment of this size. This may reflect the drought conditions during the measurement period; however, there is also the possibility that the primary erosion sources have been exhausted, and the rates of sediment loss may be much lower now than they may have been in the past. Nonetheless, the results show that stored sediment, which may have been deposited in the channel many decades ago, is an important contributor to end of catchment sediment yields and warrants further investigation.  相似文献   

10.
黄土高原的形成与发展   总被引:19,自引:9,他引:10  
根据黄土高原古地理及气候演变、黄土地层年代学和侵蚀期与堆积期的资料分析,得出黄土高原出现之前为红土高原,气候以温暖半湿润弱波动为特征,250×104 a来的黄土高原可分3个阶段。第一阶段出现在250×104~140×104 a之间,为高原内部弱侵蚀循环期,气候冷暖振动幅度较小。第二阶段出现在140×104~0.4×104 a之间,侵蚀动力加强,为高原自然侵蚀加强时期,气候冷暖振动幅度较大;第三阶段出现在4000 a以来,为高原异常加速侵蚀外流期。未来200 a黄土高原有向冷干发展的表现,这对黄土高原的治理是不利的,但不会发生大的自然变化。通过人类活动的积极作用,黄土高原的加速侵蚀向自然侵蚀或小于自然侵蚀的变化将会发生。可以预测,未来200 a的黄土高原仍是适于人类生存的好地方。  相似文献   

11.
胡春生  潘保田  苏怀 《地理科学》2012,(9):1131-1135
根据黄土高原地区黄河阶地的形态特征和成因分析,认为其形成主要是地面抬升所致并且在黄河达到均衡状态下形成,可以推断黄土高原的地面抬升。根据对黄土高原地区黄河0.8 Ma阶地的研究并结合相关文献资料,选取兰州段、黑山峡段、晋陕峡谷段和三门峡段作为典型研究区域,得出黄土高原0.8 Ma以来的地面抬升存在显著的时空特征,即空间特征表现为地面抬升量有西大东小的规律,时间特征表现为地面抬升速率有后期加速趋势、特别是晚更新世以来。并认为黄土高原0.8 Ma以来的地面抬升与青藏高原的构造抬升有成因上的联系。  相似文献   

12.
黄土高原泥流灾害成因及特征   总被引:2,自引:2,他引:0  
黄土泥流是戴土地区一类重要的灾害地貌过程,是泥石流的一个特殊类型,是水土流失的一种特殊形式,也是山地环境恶化、水土流失极严重的标志。本文在对黄土泥流这一黄土高原特有的严重水土流失现象的分布、成因、物质组成、动静力学性质、堆积形态等全面系统研究的基础上,对其和一般泥石流与高含沙水流做了初步对比和分析,揭示了黄土泥流灾害的形成规律、运动机制和沉积特征。  相似文献   

13.
Variations in the coupling of sediment transfer between different parts of a fluvial catchment, e.g., hillslope to axial stream, can hamper understanding but are an integral part of the geomorphological record. Depositional environments respond to a combination of land use, climate, storms (floods), and autogenic conditioning. The distribution of sediment in the upland landscapes of NW England is out of equilibrium with contemporary climate and geomorphological processes; more a function of peri- and paraglacial mobilisation of glacigenic deposits. Soil and vegetation development after deglaciation have interrupted any progression toward sediment exhaustion with sediment release controlled largely by extrinsic perturbation, with late Holocene anthropogenic activity, climate and extreme hydrological events the likely candidates. This paper presents a new radiocarbon-dated Holocene geomorphological succession for the River Hodder (NW England), alongside evaluating new palaeoecological and geoarchaeological data to discern the impacts of human activity. These data show a late Holocene expansion in human occupation and use of the landscape since the Iron Age (700–0 cal. B.C.), with more substantial changes in the character and intensity of upland land use in the last 1300 years. The geomorphological responses in the uplands were the onset of considerable and widespread hillslope erosion (gullying) and associated alluvial fan development. Interpretation of the regional radiocarbon chronology limits gullying to four, more extensive and aggressive phases after 500 cal. B.C. The downstream alluvial system has responded with considerable valley floor deposition and lateral channel migration that augmented sediment supply by remobilising the existing floodplain terraces and led to the aggradation of a series of inset alluvial terraces. The timing of these changes between states of aggradation and incision in alluvial reaches reflects the increased connectivity between the hillslope and alluvial systems. Aspects of both the regional climate and land use histories are conducive to increasing discharge and sediment flux, but the region wide lowering of erosion thresholds appears a key driver conditioning these sediment-rich conditions and producing a landscape that was more susceptible to erosion under lower magnitude flows.  相似文献   

14.
The Yellow River is unique among the major rivers of the world because of its extremely heavy sediment load in relation to its small discharge. The Yellow River has changed courses numerous times during the past 5000 to 6000 years. With its large sediment load, most of which comes from the Loess Plateau of central China, the river has created a number of deltas along the coast of northern China. The abandoned deltas are eroding, whereas the present delta being formed in Bohai Bay is growing rapidly. Human activity, including extensive agriculture, heavy water consumption, the use of river-control structures, and war, has been responsible for many of the changes occurring in the Yellow River and its delta. [Key words: hydrology, loess, floods, Yellow River, Bohai Bay, China.]  相似文献   

15.
Alpa Sridhar   《Geomorphology》2007,88(3-4):285-297
This paper attempts to quantify contemporary and palaeo-discharges and changes in the hydrologic regime through the mid–late Holocene in the alluvial reach of the arid Mahi River basin in western India. The occurrence of terraces and pointbars high above active river levels and change in the width/depth ratio can be regarded as geomorphic responses to changes in discharge. Discharge estimates are made based on the channel dimensions and established empirical relations for the three types of channels: mid–late Holocene, historic (the channel that deposited extensive pointbars above the present-day average flow level) and the present ones. The bankfull discharge of the mid–late Holocene channel was  55 000 m3 s− 1 and that of the historic channel was  9500 m3 s− 1, some  25 times and  5 times greater than that of the present river (2000 m3 s− 1), respectively. Since the mid–late Holocene, the channel form has changed from wide, large-amplitude meanders to smaller meanders, and decreases in the width/depth ratio, unit stream power and the bed shear stresses have occurred. It can be inferred that there has been a trend of decreasing precipitation since the mid–late Holocene.  相似文献   

16.
黄河中游土壤侵蚀与下游古河道三角洲演化的过程响应   总被引:10,自引:7,他引:10  
根据黄土高原土壤侵蚀的周期特点,结合华北平原古河道,古三角洲的演化过程,应用泥沙输移的过程响应,分析了晚更新世以来黄河中游黄土高原土壤侵蚀与下游古河道,三角洲演化的关系,在人类历史之前,黄土高原土壤侵蚀基本上遵循自在生态环境演化规律,强裂侵蚀期发生在干冷向湿湿气候转化的过渡期,在强裂侵蚀的初期是古道形成期,强烈侵蚀期发生在干冷向温湿气候转化的过渡期,在强裂侵蚀的期是古河道形成期,强烈侵蚀的外营力迭加了人为作用,黄河下游河游泳以改道,三角洲横向扩展发生在强烈侵蚀的衰退期,人类历史时期,土壤侵蚀的外营力迭加了人为作用,破坏了地质历史时期的规律性,土壤侵蚀强度越来越强,基本上按照旱涝变化频率而演化,干冷期降雨不均匀系数增加,土训侵蚀加重,径流量较少,河床以淤积为主,是古河道形成期,正常年黄河泥少输移比接近于一,是三角洲进积期,温湿期降雨量增加,径流量加大,下游河流改道,三角洲横向发展。  相似文献   

17.
Rivers draining to the Great Barrier Reef are receiving increased attention with the realisation that European land use changes over the last  150 years may have increased river sediment yields, and that these may have adversely affected the reef environment. Mitigation of the effects associated with such changes is only possible if information on the spatial provenance and dominant types of erosion is known. To date, very few field-based studies have attempted to provide this information. This study uses fallout radionuclide (137Cs and 210Pbex) and geochemical tracing of river bed and floodplain sediments to examine sources over the last  250 years for Theresa Creek, a subcatchment of the Fitzroy River basin, central Queensland, Australia. A Monte Carlo style mixing model is used to predict the relative contribution of both the spatial (geological) sources and erosion types. The results indicate that sheetwash and rill erosion from cultivated basaltic land and channel erosion from non-basaltic parts of the catchment are currently contributing most sediment to the river system. Evidence indicates that the dominant form of channel erosion is gully headcut and sidewall erosion. Sheetwash and rill erosion from uncultivated land (i.e., grazed pasture/woodland) is a comparatively minor contributor of sediment to the river network. Analysis of the spatial provenance of floodplain core sediments, in conjunction with optical dating and 137Cs depth profile data, suggests that a phase of channel erosion was initiated in the late nineteenth century. With the development of land underlain by basalt in the mid-twentieth century the dominant source of erosion shifted to cultivated land, although improvements in land management practices have probably resulted in a decrease in sediment yield from cultivated areas in the later half of the twentieth century. On a basin-wide scale, because of the limited spatial extent of cultivation, channel sources are likely to be the largest contributor of sediment to the Fitzroy River. Accordingly, catchment management measures focused on reducing sediment delivery to the Great Barrier Reef should focus primarily on decreasing erosion from channel sources.  相似文献   

18.
We analyze remarkable examples of the large ( 10,000 km2) and local-scale ( 100 km2) landscape forms related to Late Cenozoic geomorphologic evolution of the Andean forearc region in the Southern Atacama Desert. We also consider the continental sedimentary deposits, so-called “Atacama Gravels”, which are related to the degradation of the landscape during the Neogene. Our analysis integrates 1:50,000 field cartography, Landsat TM images observations,  1:1000 sedimentary logging data, and 50 m horizontal resolution topographic data to reconstruct the Late Cenozoic geomorphologic evolution of this region and discuss the factors that control it, i.e., Miocene aridification of the climate and Neogene Central Andean uplift. We determine that the Precordillera was already formed in the Oligocene and most of the present-day altitude of the Precordillera was reached before that time. Afterward, five episodes of geomorphologic evolution can be differentiated: (1) the development of an Oligocene deep incised drainage system cutting the uplifted Precordillera (up to 2000 m of vertical incision) and connecting it to the Ocean; followed by (2) the infilling of deep incised valleys by up to 400 m of Atacama Gravels. This infill started in the Early Miocene with the development of fluvial deposition and finished in the Middle Miocene with playa and playa lake depositions. We propose that playa-related deposition occurs in an endorheic context related to tectonic activity of the Atacama Fault System and Coastal Cordillera uplift. However, the upward sedimentologic variation in the Atacama Gravels evidences a progressive aridification of the climate. Subsequently, we have identified the effects of the Middle–Upper Miocene slow tectonic deformation: the Neogene Andean uplift is accommodated by a tilting or flexuring of the inner-forearc (Central Depression and Precordillera) related to some hundreds of meters of uplift in the Precordillera. This tilting or flexuring results in (3) the Middle Miocene re-opening of the valley network to the Pacific Ocean. Upper Miocene aridification, from arid to hyperarid, induces alluvial fans backfilling in the Central Depression (4) resulting in up to 50 m of Atacama Gravel deposition. Finally, in response to an increase in the rate of tilting, a new phase of vertical incision (up to 800 m in the Precordillera) allows the development of the canyon that crosses the forearc (5).  相似文献   

19.
The impact of large twentieth century floods on the riparian vegetation and channel morphology of the relatively wide anabranching and braided Nahal Arava, southern Israel, was documented as part of developing tools to (a) identify recent large floods, (b) determine these flood's respective magnitudes in alluvial ungauged streams, and (c) determine long-term upper bounds to flood stages and magnitudes. Along most of its course Nahal Paran, a major tributary that impacts the morphology, floods and sediments of Nahal Arava at the study reach, is a coarse-gravel, braided ephemeral stream. Downstream of the Arava–Paran confluence, aeolian and fluvial sand delivered from eastern Arava valley alters the channel morphology. The sand has accreted up to 2.5 m above the distinct current channels, facilitating the recording of large floods. This sand enhances the establishment of denser riparian vegetation (mainly Tamarix nilotica and Haloxylon persicum) that interacts with floods and affects stream morphology. A temporal association was found between specific floods recorded upstream and tree-ring ages of re-growth of flood-damaged tamarix trees (‘Sigafoos trees’) in the past 30 years. This association can be utilized for developing a twentieth century flood chronology in hyperarid ungauged basins in the region. The minimum magnitude of the largest flood that covered the entire channel width, estimated from flood deposits, is approximately 1700–1800 m3s− 1. This is a larger magnitude than the largest gauged flood of 1150 m3s− 1 that occurred in 1970 about 30 km upstream in Nahal Paran. Our estimation agrees with flood magnitude estimated from the regional envelope curve of the largest floods. Based on Holocene alluvial stratigraphy and OSL dating in the study reach we also conclude that flood stages did not reach the late Holocene ( 2.2 ka) surface and therefore we estimate a non-exceedance upper bound of  2000 m3s− 1 flood magnitudes for Nahal Arava during that interval. This study indicates that in unfavorable areas the combination of hydrology, fluvial morphology and botanic evidence can increase our understanding of ungauged basins and give information crucial for hydrology planning.  相似文献   

20.
通过对青藏高原东北部黄河源开展广泛细致的野外考察,选择位于玛曲段黄河左岸第二级河流阶地(T2)之上,赋存典型风成黄土-古土壤序列的达尔琼东(DEQ-E)剖面进行系统采样。在室内对采集样品进行了磁化率、烧失量、吸湿水、粒度、土壤微形态、地球化学元素和光释光(OSL)测年等综合分析,结论表明:① 黄河源玛曲段DEQ-E剖面地层序列由上至下依次为现代草甸土层(MS)-全新世中期古土壤层(S0)-全新世早期过渡性黄土层(Lt)-阶地漫滩相沉积层(T2-al);② 黄河源玛曲段DEQ-E剖面风成黄土-古土壤序列风化成壤强度呈现出全新世中期古土壤层(S0)>全新世早期过渡性黄土层(Lt)>现代草甸土层(MS)的变化特征;③ 黄河源全新世的古气候演变可分为3个阶段:全新世早期(11000 a BP—9000 a BP),西风势力减弱,东亚夏季风逐步增强,气温趋于变暖,降水有所增加;全新世中期(9000 a BP—3100 a BP),东亚夏季风作用强盛,气候整体温暖湿润;全新世晚期(3100 a BP以来),东亚夏季风衰退,西风势力有所增强,导致气候转向干冷。该研究成果有助于理解青藏高原东北缘的古气候演化机制,同时对于预测未来区域气候变化具有重要的科学意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号