首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
秦岭太白山气温直减率时空差异性研究   总被引:12,自引:3,他引:9  
在评估山地生态系统对气候变化响应的过程中,作为气温要素的重要输入参数,气温直减率(γ)的精确性直接影响到相关科研工作的真实性和可靠性。本文基于秦岭主峰太白山(3771.2 m)11个分布于南北坡和不同海拔的标准气象站点2013-2015年连续3年实测日均温资料和25 m×25 m空间分辨率的DEM数据,研究了太白山气温直减率在不同时间尺度上的变化规律及不同坡向上的空间分布特征。结果表明:① 2013-2015年太白山年均γ北坡均大于南坡,北坡为0.513 ℃/100m,南坡为0.499 ℃/100m;北坡年均γ随海拔变化表现出一定的差异性,而南坡相对稳定。② 年内γ在不同时间尺度上均存在明显差异,且南北坡变化趋势不一致。在季尺度上,γ最大值北坡为夏季,为0.619 ℃/100m,而南坡最大出现在春季,为0.546 ℃/100m,最小值均为冬季,南北坡分别为0.449 ℃/100m和0.390 ℃/100m;春季和夏季,北坡γ均大于南坡,而冬季相反,北坡小于南坡,秋季几乎无差异。在月尺度上,气温相对高的月份γ亦较高,北坡γ变化幅度大于南坡;年始和年末(11-12月、1-2月)北坡γ小于南坡,而5-9月北坡大于南坡,且南北坡γ相差较大。③ 经数据可信度分析,所获得的γ可较为客观地反映太白山气温随海拔变化的规律性,将为山地气温空间分布规律及其生态系统响应等定量研究提供理论基础。  相似文献   

2.
青藏高原念青唐古拉峰地区气候特征初步分析   总被引:7,自引:1,他引:7  
利用青藏高原念青唐古拉峰地区扎当冰川垭口(30°28.07′N,90°39.03′E,5 800 m a.s.l.)、南坡(30°22.87′N,90°40.36′E,5 100 m a.s.l.)和北坡(30°29.06′N,90°37.46′E,5 400 m a.s.l.)三台自动气象站一年的近地层观测资料,分析了该地区温度、湿度、风速风向和辐射等气象要素的季节变化特征,探讨了南、北坡局地气候差异形成的原因。结果表明:垭口、南坡、北坡年平均气温分别为-6.9℃、-1.1℃和-3.4℃;北坡(扎当冰川)消融期气温直减率大,年平均值为0.87℃/100 m;海拔越高,气温日较差、气温直减率波动越大;垭口相对湿度最大,饱和水汽压最小;该地区相对湿度与海拔呈正向关系,而饱和水汽压与之呈反向关系;该地区局地环流特征明显;总辐射5月出现最大值,南坡辐射比北坡小,与大气所含水汽、天空云量、下垫面性质差异等因素有关。  相似文献   

3.
岷江上游雨季南北坡小气候特征比较   总被引:9,自引:5,他引:9  
利用岷江上游茂县大沟不同坡向的小气候观测资料,探讨了该地区地雨季的太阳辐射、气温、地表温、水汽压、相对湿度、风速等小气候要素的南北坡特征及其与谷底的差异。通过比较分析得出:在雨季南坡的太阳辐射量大于北坡和谷底;南北坡气温、水汽压、相对湿度在昼间有一定差异;北坡气温略高于南坡;气温垂直递减率南坡(O.71℃/100m)大于北坡(O.61℃/100m)。水汽压为北坡<南坡<谷底;而相对湿度为谷底<北坡<南坡,北坡和谷底的太阳辐射、气温、地表温、水汽压最大值比南坡早出现1h。南北坡风速均大于谷底,而南坡风速又大于北坡。由此可见,岷江上游地区即使在雨季,山地对局地气候仍有一定影响。  相似文献   

4.
近地表气温直减率是推测近地表气温空间分布的重要参数。中国幅员辽阔,气候和地形地貌条件复杂,直接使用反映对流层平均状况的单一气温直减率(0.65℃/100 m)很难表征中国近地表气温直减率的季节和类型差异。本文利用中国839个国家气象站点2000-2013年的近地表气温数据,分别在国家尺度和综合自然区划尺度上使用多元回归分析方法计算各个季节的平均气温直减率(lrmeanT)、平均最低气温直减率(lrminT)和平均最高气温直减率(lrmaxT),并借助空间插值算法对气温直减率的可靠性进行了验证,最后分析了其季节和类型的差异。结果表明:①在国家尺度上,3种气温直减率均小于0.65℃/100 m;lrminTlrmeanTlrmaxT的季节差异分别为0.05、0.13和0.24℃/100 m,且一般有夏季最大、冬季最小的季节规律;春、夏、秋、冬季气温直减率的类型差异分别为0.12、0.05、0.11和0.26℃/100m,且有lrminT>lrmeanT>lrmaxT的规律。②在综合自然区划尺度上,气温直减率大多低于0.65℃/100 m,且存在明显的地域差异;夏季气温直减率一般大于冬季气温直减率,季节差异大多超过0.10℃/100 m;气温直减率类型差异半数区域超过或等于0.10℃/100 m,在春、夏、秋季,半数左右的区域lrmaxT >lrminT,在冬季,多数区域的lrminT >lrmaxT,lrmeanT一般处于lrmaxTlrminT之间。  相似文献   

5.
利用实测的念青唐古拉山脉南坡海拔4800 m和5333 m,以及北坡5400 m的土壤温、湿度和地表气温一年的数据,对该地区水热特征作了初步分析,结果表明:地、气温差冬季大夏季小,且相对邻近地区偏大。同时地温与气温有良好相关,但随深度增加,相关系数减小。土壤热力梯度的方向低海拔由下而上,高海拔则相反。土壤湿度高海拔略大于低海拔,干季和湿季分别受冻融过程和印度洋季风降水影响。高海拔冻结期比低海拔长3~4个月,其下层土壤湿度在冻融交替期表现一个剧烈的跃变现象。念青唐古拉山南、北坡海拔相近区域相同层位土壤温度差异在0~8℃之间。南坡土壤温度年平均高于北坡3~4℃。南坡冻结比北坡晚而融化比北坡早,上层土壤湿度南坡小于北坡,而下层土壤湿度南坡大于北坡,南北坡水热过程存在明显差异。  相似文献   

6.
祁连山冷龙岭南坡小气候及植被分布特征   总被引:1,自引:0,他引:1  
在祁连山冷龙岭南坡3 200 m到4 200 m建立样带,每200 m为梯度设置7个样地,利用微气象自动观测仪观测气温和土壤温度,同时调查样带植物群落、种类组成及地上生物量等.结果表明,气温日变化幅度随海拔的升高而减小,气温随海拔增加降低明显,年平均气温直减率0.51℃/100 m,不同季节直减率有所不同.日平均气温稳定≥0℃、≥3℃和≥5℃的积温直减率几乎相同,为92%℃/100 m,持续天数直减率9 d/100 m.土壤表层温度随海拔变化具有与气温相近的变化趋势.依植被景观及气候特点可将祁连山冷龙岭南坡分为亚高山高寒草甸、亚高山灌丛、高山草甸及高山冰雪稀疏植被气候带.观测植被区地上生物量表明,植被地上年净初级生产力随海拔升高而降低.  相似文献   

7.
山地气温的实测数据是相关学科极其重要的基础资料,其垂直变化特征是研究山地气温的重要内容之一。本研究使用HOBO Onset自动温度记录仪于2017年6月—2018年6月对重庆金佛山西坡14个海拔高度的气温进行30 min间隔的连续监测,分析了金佛山西坡气温的时序差异和垂直变化规律。结果如下:(1)金佛山西坡年平均气温直减率为0.53℃/100 m,气温直减率的月份间差异较小;(2)平均最高气温、平均最低气温及年平均气温随海拔升高而线性降低,极端高温沿海拔梯度的变化不明显;(3)月平均日较差随海拔升高呈二次曲线变化;(4)日平均气温≥0℃、≥5℃和≥10℃的积温随海拔升高而降低,积温递减率几乎相同(约184.2℃/100 m),相应积温持续天数随海拔升高以平均5 d/100 m的速率递减;(5)各监测点实测气温较气温地理分布模型求得的气温值偏小,而较基于WorldClim数据库所得的插值气温整体偏大。  相似文献   

8.
念青唐古拉山脉西段雪线高度变化遥感观测   总被引:3,自引:0,他引:3  
张其兵  康世昌  张国帅 《地理科学》2016,36(12):1937-1944
利用Landsat TM/ETM+/8 OLI和HJ1A遥感影像资料作为数据源,通过目视解译方法,提取念青唐古拉山脉西段雪线高度变化值,同时对研究区周边气温与降水变化趋势进行分析,研究其与冰川变化的关系。结果表明:2004~2013年北坡13条冰川和南坡15条冰川的雪线高度都呈升高的趋势;从整体上来考察,北坡雪线高度升高值为14 m/a,南坡升高值为4.9 m/a,北坡升高速度比南坡快;自1964年以来,研究区气温升高趋势显著,降水增加不明显,气候变暖是冰川退缩的主要原因;北坡冰川比南坡冰川经历更大的物质负平衡,主要是由于气温的升高率北坡比南坡快所致。  相似文献   

9.
贵州高原复杂地形下月平均日最高气温分布式模拟   总被引:4,自引:1,他引:3  
在前人研究的基础上,对以前的模型进行改进,考虑了坡度、坡向和地形相互遮蔽作用对复杂地形下天文辐射的影响,基于数字高程模型(DEM)数据,建立以天文辐射为起始数据的复杂地形下月平均日最高气温的分布式模型,在模型中考虑了海拔高度、复杂地形下太阳总辐射、日照百分率对月平均日最高气温的影响.以贵州高原为例.应用100m×100m分辨率的DEM数据.1960-2000年贵州省及周边102个气象站常规气象要素观测资料以及NOAA-AVHRR观测资料,10个气象站的太阳辐射量资料,计算了贵州高原各月及年平均日最高气温精细空间分布.结果表明:(1)坡度、坡向、地形遮蔽对月平均日最高气温的影响较大,由于局地地形因子的影响,复杂地形下月平均日最高气温的空间分布具有明显的地域分布特征,局地地形对月平均日最高气温的影响是不容忽视的.(2)季节不同,局地地形因子对复杂地形下月平均日最高气温空间分布的影响不同,冬半年大于夏半年.月平均日最高气温随海拔高度的增加而降低.南坡随坡度的增大而升高:北坡随坡度的增大而降低.在坡向影响上,1-5月、10-12月偏北坡月平均日最高气温偏低,偏南坡月平均日最高气温偏高;7-8月因太阳高度较高,因此出现相反的情况.北坡高于南坡.  相似文献   

10.
巴颜喀拉山是较典型的高海拔多年冻土区。南、北坡迥异的气候、土壤及地表景观控制和影响其多年冻土空间分布。2008~2012年冻土调查及测温资料表明,该山以高温冻土(>-1℃)为主。海拔是冻土主要影响因素。年均地温随海拔升高而降低的高程递减率在北坡6℃/km,南坡4℃/km。北坡查拉坪及巴颜喀拉山口一带,活动层厚度约1 m,活动层随海拔降低而增厚;南坡活动层厚度受局地因素影响较大,与海拔无明显相关。  相似文献   

11.
1960-2013年秦岭陕西段南北坡极端气温变化空间差异   总被引:1,自引:0,他引:1  
张扬  白红英  苏凯  黄晓月  孟清  郭少壮 《地理学报》2018,73(7):1296-1308
作为气候变化研究的重要内容,极端气温研究对生态环境保护和灾害事件预警具有重要意义。根据1960-2013年秦岭32个气象站点的逐日气温资料,采用RClimDex软件、克里格插值法、线性倾向估计法和相关性分析法,研究秦岭山地陕西段(简称秦岭)气温的空间分布特点,以及极端气温的空间变化特征。结果表明:① 1960-2013年秦岭年平均气温、年最高气温和年最低气温分别为10.48 ℃、16.44 ℃和6.18 ℃;秦岭北坡气温在低海拔区高于南坡,在中、高海拔区低于南坡;南北坡的气温差值在低海拔区域最小,中海拔区域最大。② 秦岭极端气温的频率、强度和持续时间均表现为增加趋势,极端气温变化的敏感区域位于南坡的镇安、柞水和北坡的周至、户县。③ 秦岭北坡极端气温频率的变化更明显,秦岭南坡极端气温强度和持续时间的变化更明显;且北坡的增温主要发生在夜间,南坡的增温主要发生在白昼。④ 秦岭极端气温的变暖速率随海拔升高而增大,高海拔区域极端气温频率和强度的变化最明显,中海拔区域极端气温持续时间的变化最明显。  相似文献   

12.
豫西山地植被NDVI及其气候响应的多维变化   总被引:3,自引:1,他引:2  
豫西山地是秦岭山系在河南境内的余脉,处于亚热带向暖温带的过渡区域,是气候变化的敏感区。利用S-G滤波算法重构2000-2013年MODIS-NDVI时序影像,结合DEM、气温和降水数据,运用趋势分析、相关性分析等方法探讨豫西山地NDVI及其气候响应的多维变化。结果表明:(1)14年来豫西山地NDVI呈增长态势,增速为0.041/10a。NDVI值随山地海拔升高先增后降,随坡度增加而增大,在各坡向的分布相差不大。(2)植被在1100 m海拔区恢复概率最高,在1700 m区域退化概率最高;在10°~20°坡度区域恢复概率最高,在0°~5°区域退化概率最高;坡向对植被变化的分异作用不明显。(3)不同海拔、坡度、坡向上的植被所受影响因素不同,高海拔区植被动态主要受降水控制;不同坡度上的植被NDVI与气温的相关性均大于与降水的;在不同坡向上差异不明显。(4)崤山、熊耳山、伏牛山三大山脉北坡NDVI增速均大于南坡;北坡植被对降水变化较敏感,而南坡植被对气温变化较敏感。这些都是在全球变化背景下该区生态环境响应的重要信号,反映了过渡带生态响应因子对山地生态系统的重要性。  相似文献   

13.
研究不同地形下的山地气候变化对于植被生长、不同动物种群的生存习性及对气候的应激性有重要意义。本文基于陕西秦岭地区1959—2016年32个国家站的日气温和降水资料,采用Anusplin插值法、标准化降水蒸散指数(SPEI)、稳健回归和Theil-sen回归法等方法分析了山区地形对气候变化的影响。结论如下:(1)58年来秦岭四个坡向上年均温度随着海拔的升高呈现显著下降趋势,年降水随着海拔的升高呈现不同程度的上升趋势。温度随坡度的增加表现出下降趋势;除秦岭南坡西段外,降水随着坡度的增加呈现出上升趋势,但均不显著。(2)年尺度上,秦岭山地南坡和南坡东段的气温呈显著增温趋势,南坡西段和北坡呈不显著增温趋势;四个方向上的降水均呈显著下降趋势。秦岭山地四个方向上的干湿等级为正常,北坡和南坡西段的干湿状况一致,58年年均SPEI均为0.07,南坡东段较暖湿(0.08),南坡较暖干(0.05)。(3)季节尺度上,秦岭山地四个方向上除了夏季外,其他季节的气温均表现出不同程度的升温趋势,降水均呈下降趋势。秦岭四个方向上四季干湿变化属于正常等级。秦岭北坡出现春季干暖化趋势;南坡秋季较暖湿;南坡东段和西段的冬季呈暖湿化特征;南坡西段夏季呈现暖干化特征。  相似文献   

14.
豫西山地是秦岭山系在河南境内的余脉,处于亚热带向暖温带的过渡区域,是气候变化的敏感区。利用S-G滤波算法重构2000-2013年MODIS-NDVI时序影像,结合DEM、气温和降水数据,运用趋势分析、相关性分析等方法探讨豫西山地NDVI及其气候响应的多维变化。结果表明:(1)14年来豫西山地NDVI呈增长态势,增速为0.041/10a。NDVI值随山地海拔升高先增后降,随坡度增加而增大,在各坡向的分布相差不大。(2)植被在<1100 m海拔区恢复概率最高,在>1700 m区域退化概率最高;在10°~20°坡度区域恢复概率最高,在0°~5°区域退化概率最高;坡向对植被变化的分异作用不明显。(3)不同海拔、坡度、坡向上的植被所受影响因素不同,高海拔区植被动态主要受降水控制;不同坡度上的植被NDVI与气温的相关性均大于与降水的;在不同坡向上差异不明显。(4)崤山、熊耳山、伏牛山三大山脉北坡NDVI增速均大于南坡;北坡植被对降水变化较敏感,而南坡植被对气温变化较敏感。这些都是在全球变化背景下该区生态环境响应的重要信号,反映了过渡带生态响应因子对山地生态系统的重要性。  相似文献   

15.
中国比辐射率空间分布特征分析   总被引:1,自引:0,他引:1  
使用2003-2013年MOD/MYD11C3地表比辐射率光谱数据、MOD/MYD13C2植被指数光谱数据,合成全国各月地表比辐射率、NDVI(Normalized Difference Vegetation Index)。基于DEM数据分析比辐射率与NDVI随海拔、坡向的变化规律。结果表明:(1)比辐射率低值段(0.960~0.970)主要分布在我国西北荒漠地区,面积比例全年变化不显著,代表了干燥裸土下低比辐射率的特征;中值段(0.970~0.975)分布于我国大部分植被覆盖地区,面积比例夏高冬低,代表植被覆盖下混合像元的中比辐射率特征;高值段(0.975~0.980)位于我国部分高海拔和高纬度地区,面积比例冬高夏低,代表冰雪与植被混合像元的高比辐射率特征。(2)比辐射率与NDVI随坡向变化呈明显的"双峰双谷"分布。东南坡、西坡为峰值,最大值位于东南坡;南坡、北坡为谷值,最小值位于北坡。两者变化一致性很高。受不同坡向太阳方位角下的地形敏感性与植被覆盖综合影响,比辐射率表现出随坡向的峰谷变化规律。(3)随海拔升高,比辐射率呈垂直地带性变化。存在3个下降区:250 m~1250 m、2500 m~3000 m和4750 m~6000 m;3个上升区:1250 m~2500 m、3000 m~4750 m和6000 m~6500 m。这与NDVI随海拔变化特征类似,反映垂直下垫面植被变化对比辐射率空间分布的影响。  相似文献   

16.
以西昌市为例,选取2010年和2015年 Landsat系列遥感影像,在“3S”技术的支持下,采用监督分类中的最大似然法,并结合Google Earth高分辨率影像和GPS野外实地验证数据获取西昌市2010年和2015年土地利用信息;再利用大气校正法反演获得西昌市2010年和2015年地表温度,并对反演结果中的高温异常区进行实地调研验证;最后,采用地理探测器定量分析了坡度、总辐射、坡向、海拔、年均降水量、年均气温、植被类型、土壤类型以及土地利用类型9个影响因子对地表温度影响的解释力。结果表明:(1)地表温度空间分布存在显著差异。(2)影响因子对地表温度的影响存在差异,其中海拔和年均气温对地表温度的影响较大,而总辐射影响最小。(3)不存在单一因素或是单一性质的因素影响地表温度。不同影响因子之间存在交互作用,对地表温度的影响是相互增强或非线性增强的。(4)部分影响因子对地表温度具有显著性差异影响,并且地表温度均值最大时,对应着影响因子不同的范围或类型。  相似文献   

17.
陆福志  鹿化煜 《地理学报》2019,74(5):875-888
本文建立了秦岭—大巴山高分辨率(~29 m×29 m)的气候格点数据集,包括逐月气温和降水、年均温和年降水、春夏秋冬气温和降水。空间插值方法采用国际上较为先进的ANUSPLIN软件内置的薄盘光滑样条函数,以经度、纬度和海拔为独立变量。空间插值结果与流行的WorldClim 2.0气候格点数据集具有一致性,但是比后者更精确、分辨率更高、细节更突出。本文揭示和证实:秦岭南麓是最冷月气温的0 ℃分界线。秦岭—大巴山气温具有明显的垂直地带性。6月气温直减率最大,为0.61 ℃/100 m;12月气温直减率最小,为0.38 ℃/100 m;年均气温直减率为0.51 ℃/100 m。夏季和秋季降水从西南向东北递减,强降水中心出现在大巴山西南坡。冬季降水从东南向西北递减。大巴山是年降水1000 mm分界线,夏季降水500 mm分界线;秦岭是年降水800 mm分界线,夏季降水400 mm分界线。与大尺度大气环流对比揭示:秦岭—大巴山气温和降水空间分布主要受到东亚季风和地形因子的控制。本文进一步明确了秦岭和大巴山的气候意义:大巴山主要阻挡夏季风北上,影响降水空间分布;秦岭主要阻挡冬季风南下,影响冬季气温空间分布。本文建立的高分辨率气候格点数据集,加深了对区域气候的认识,并将有多方面的用途。  相似文献   

18.
黄河源区多年冻土温度及厚度研究新进展   总被引:5,自引:0,他引:5  
利用新布设的冻土孔及原有冻土资料,分析黄河源区冻土温度和厚度的空间分布。源区实测多年冻土年均地温最低为-1.81℃,冻土最厚74 m,均位于巴颜喀拉山北坡的查拉坪。214国道(K445-K604段)沿线多为高温多年冻土(年均地温>-1℃),但巴山北坡海拔4 520 m、布青山海拔4 300 m以上,年均地温低于-0.5℃。巴山北坡海拔4 610 m、布青山海拔4 420 m以上,年均地温低于-1℃。巴山北坡海拔每升高100 m,年均地温减少0.47~0.75℃,冻土厚度增加16~25 m;纬度向北增加1°,年均地温减少0.85℃,冻土厚度增加20~30 m。  相似文献   

19.
基于多源遥感数据的玛纳斯河流域冰川物质平衡变化   总被引:3,自引:0,他引:3  
冰川物质平衡变化是连接气候和水资源的重要纽带,对河川径流有重要的调节功能。本文采用MOD11C3和TRMM 3B43等多源遥感数据驱动度日模型,模拟了2000—2016年玛纳斯河(简称玛河)流域冰川物质平衡过程,并分析了冰川融水对径流的补给规律。结果表明: ① 通过构建气温及降水反演模型能有效校正气象遥感原数据的精度,且经降尺度后能较精细刻画冰川区气候变化特征。冰川区年均气温和降水量分别为-7.57 ℃和410.71 mm,海拔4200 m处为气候变化剧烈地带,气温直减率以其为界上下分别为-0.03 ℃/100 m和-0.57 ℃/100 m,降水梯度分别为-2.66 mm/100 m和4.8 mm/100 m,海拔大于4700 m后降水又以5.17 mm/100 m递增。② 研究期内流域冰川持续呈负平衡状态,累积物质平衡达-9811.19 mm w.e.,年均物质平衡介于-464.85~-632.19 mm w.e.之间。垂向物质平衡在消融区和积累区分别以244.83 mm w.e./100 m、18.77 mm w.e./100 m递增。2000—2002年、2008—2010年冰川消融减缓,2002—2008年、2010—2016年消融加剧,其中2005—2009年期间冰川亏损最为强烈。③ 年内河川径流对冰川物质平衡变化响应强烈,尤以7月、8月物质平衡亏损最为严重占全年总量的75.4%,使得同期河川径流量占全年径流总量的55.1%。年际冰川融水补给率波动于19%~31%之间,可能是不同年份降水和积雪融水补给率差异较大所致。玛河与天山北坡其他河流冰川融水贡献率非常接近,也进一步证实了本研究物质平衡估算结果的可靠性。本研究可为其他流域冰川物质平衡研究提供借鉴和参考。  相似文献   

20.
1971-2009 年珠穆朗玛峰地区尼泊尔境内气候变化   总被引:3,自引:0,他引:3  
利用珠穆朗玛峰南坡尼泊尔境内(科西河流域) 的10 个气象站1971-2009 年月平均气温、月平均最高、最低气温和逐月降水资料, 采用线性趋势、Sen 斜率估计、Mann-Kendall 等方法分析区域气候变化状况及其时空特征, 并与珠穆朗玛峰北坡地区气候进行比较, 分析了珠穆朗玛峰地区气候变化的特征与趋势。结果表明:(1) 1971-2009 年间, 珠穆朗玛峰南坡年平均气温为20.0℃, 线性升温率为0.25℃/10a, 与北坡主要受年平均最低气温影响相反, 增幅主要受年平均最高气温升高的影响, 并且在1974 年及1992 年间出现两次显著增温, 增温特别明显的月份为2 月和9 月;(2) 该地区降水变化的局地性较强, 近40 年间年平均降水量为1729.01 mm, 年平均降水量以每年约4.27 mm的线性增幅有所增加, 但并不显著, 且降水月变化和季变化特征均不明显;(3) 由于珠穆朗玛峰南坡受到季风带来暖湿气流和喜马拉雅山阻挡的双重影响, 珠峰南坡的年平均降水量远高于北坡;(4) 珠穆朗玛峰南坡气温变暖的海拔依赖性并不明显, 且南坡地区的变暖趋势并没有北坡变暖趋势明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号