首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
This study tests the hypothesis that Fourier-transform infrared spectroscopy (FTIRS) of lake sediments can be used to infer past changes in tree-line position and total organic carbon (TOC) content of lake water. A training set of 100 lakes from northern Sweden spanning a broad altitudinal and TOC gradient from 0.7 to 14.9 mg/l was used to assess whether vegetation zones and TOC can be modelled from FTIR spectra of surface sediments (0–1 cm) using principal component analysis (PCA) and partial least squares (PLS) regression. Preliminary results show that FTIRS of lake sediments can be used to reconstruct past changes in tree line and the TOC content of lake water, which is hardly surprising since FTIRS registers the properties of organic and minerogenic material derived from the water mass and the drainage area. The FTIRS model for TOC gives a root mean squared error (RMSECV) of calibration of 1.4 mg/l (10% of the gradient) assessed by internal cross-validation (CV) yielding an Rcv2 of 0.64. This should be compared with a near-infrared spectroscopy (NIRS) and diatom transfer function for TOC from the same set of lakes, which have a Rcv2 of 0.61 and 0.31, and RMSECV of 1.6 and 2.3 mg/l, respectively. The FTIRS-TOC model was applied to a Holocene sediment core from a tree-line lake and the results show similar trends as inferences from NIRS and pollen from the same core. Overall, the results indicate that changes in FTIR spectra from lake sediments reflect differences in catchment vegetation and TOC, and that FTIRS-models based on surface-sediment samples can be applied to sediment cores for retrospective analysis.  相似文献   

2.
Measurements of Fourier transform infrared spectroscopy (FTIRS) in the mid-infrared (MIR) region were conducted on sedimentary records from Lake El’gygytgyn, NE Siberia, and Lake Ohrid, Albania/Macedonia. Calibration models relating FTIR spectral information to biogeochemical property concentrations were established using partial least squares regression (PLSR). They showed good statistical performance for total organic carbon (TOC), total nitrogen (TN), and biogenic silica (opal) in the sediment record from Lake El’gygytgyn, and for TOC, total inorganic carbon (TIC), TN, and opal in sediments from Lake Ohrid. In both cases, the calibration models were successfully applied for down-core analysis. The results, in combination with the small amount of sample material needed, negligible sample pre-treatments, and low costs of analysis, demonstrate that FTIRS is a promising, cost-effective tool that allows high-resolution paleolimnological studies.  相似文献   

3.
We developed an inference model to infer dissolved organic carbon (DOC) in lakewater from lake sediments using visible-near-infrared spectroscopy (VNIRS). The inference model used surface sediment samples collected from 160 Arctic Canada lakes, covering broad latitudinal (60–83°N), longitudinal (71–138°W) and environmental gradients, with a DOC range of 0.6–39.6 mg L−1. The model was applied to Holocene lake sediment cores from Sweden and Canada and our inferences are compared to results from previous multiproxy paleolimnological investigations at these two sites. The inferred Swedish and Canadian DOC profiles are compared, respectively, to inferences from a Swedish-based VNIRS-total organic carbon (TOC) model and a Canadian-based diatom-inferred (Di-DOC) model from the same sediment records. The 5-component Partial Least Squares (PLS) model yields a cross-validated (CV) RCV2 R_{CV}^{2}  = 0.61 and a root mean squared error of prediction (RMSEP CV ) = 4.4 mg L−1 (11% of DOC gradient). The trends inferred for the two lakes were remarkably similar to the VNIRS-TOC and the Di-DOC inferred profiles and consistent with the other paleolimnological proxies, although absolute values differed. Differences in the calibration set gradients and lack of analogous VNIRS signatures in the modern datasets may explain this discrepancy. Our results corroborate previous geographically independent studies on the potential of using VNIRS to reconstruct past trends in lakewater DOC concentrations rapidly.  相似文献   

4.
A combination of water and sediment chemistry was used to investigate carbonate production and preservation in Lake Pumayum Co (altitude 5,030 m a.s.l.), south Tibet, China. We compared the chemical composition of lake water in various parts of the lake with that of input rivers and found that the loss of Ca2+ results from calcite sedimentation induced by evaporation and biogenic precipitation. This is supported by evaporation data from the catchment and δ18O measurements on water. Results suggest that CaCO3 is the predominant carbonate in this lake. There is a positive correlation in the sediments among concentrations of total inorganic carbon (TIC), Ca, total organic carbon (TOC), and total nitrogen, confirming that most carbonates in sediment are endogenic. The Jiaqu River is the largest inflow to Lake Pumayum Co and has a strong influence on both lake water chemistry and sediment composition. The river and lake bathymetry influence carbonate sedimentation by affecting water flow velocity and growing conditions for macrophytes. Different carbon contents and relationships between TIC and TOC in the two long cores from different depths in the lake reveal that hypolimnetic conditions also influence carbonate precipitation and preservation.  相似文献   

5.
A decade of widespread increases in surface water concentrations of total organic carbon (TOC) in some regions has raised questions about longer term patterns in this important constituent of water chemistry. This study uses near-infrared spectroscopy (NIRS) to infer lake water TOC far beyond the decade or two of observational data generally available. An expanded calibration dataset of 140 lakes across Sweden covering a TOC gradient from 0.7 to 24.7 mg L−1 was used to establish a relationship between the NIRS signal from surface sediments (0–0.5 cm) and the TOC concentration of the water mass. Internal cross-validation of the model resulted in an R 2 of 0.72 with a root mean squared error of calibration (RMSECV) of 2.6 mg L−1. The TOC concentrations reconstructed from surface sediments in four Swedish lakes were typically within the range of concentrations observed in the monitoring data during the period represented by each sediment layer. TOC reconstructions from the full sediment cores of four lakes indicated that TOC concentrations were approximately twice as high a century ago.  相似文献   

6.
We present an independent calibration model for the determination of biogenic silica (BSi) in sediments, developed from analysis of synthetic sediment mixtures and application of Fourier transform infrared spectroscopy (FTIRS) and partial least squares regression (PLSR) modeling. In contrast to current FTIRS applications for quantifying BSi, this new calibration is independent from conventional wet-chemical techniques and their associated measurement uncertainties. This approach also removes the need for developing internal calibrations between the two methods for individual sediments records. For the independent calibration, we produced six series of different synthetic sediment mixtures using two purified diatom extracts, with one extract mixed with quartz sand, calcite, 60/40 quartz/calcite and two different natural sediments, and a second extract mixed with one of the natural sediments. A total of 306 samples—51 samples per series—yielded BSi contents ranging from 0 to 100 %. The resulting PLSR calibration model between the FTIR spectral information and the defined BSi concentration of the synthetic sediment mixtures exhibits a strong cross-validated correlation ( \( {\text{R}}^{ 2}_{\text{cv}} \)  = 0.97) and a low root-mean square error of cross-validation (RMSECV = 4.7 %). Application of the independent calibration to natural lacustrine and marine sediments yields robust BSi reconstructions. At present, the synthetic mixtures do not include the variation in organic matter that occurs in natural samples, which may explain the somewhat lower prediction accuracy of the calibration model for organic-rich samples.  相似文献   

7.
Records from lake sediment cores are critical for assessing the relative stability of climate and ecosystems over the Holocene. Duck Lake in south-central Lower Michigan, USA, was the focus of a study that identified how changes in the geochemical variables in lake sediments relate to variations in regional climate and local land use during the Holocene. More than 8.5 m of lacustrine sediment were recovered using Livingston and freeze corers and analyzed for organic carbon, inorganic (carbonate) carbon, total nitrogen, and trace metals. Repeating packages of sediment (1–10 cm thick) that grade from light (inorganic carbon-rich) to dark (organic carbon-rich) were found from the surface to a depth of about 8 m. Variations in the high-resolution gray scale data from core X-radiographs are highly correlated to the relative amount of inorganic carbon. Geochemical analyses of the upper 8.5 m of sediment revealed a wide range of values: 0.05–10.6% for inorganic carbon (i.e. 0.5–89% calcium carbonate) and 1.1–28% for organic carbon (i.e. 2.7–70% organic matter). Organic carbon to nitrogen ratios indicate that most of the sediment organic matter is produced within the lake. A core chronology based on eight AMS radiocarbon dates shows low sediment accumulation rates (0.05 cm/year) from 10,000 to 3,800 cal year BP and higher sediment accumulation rates (0.1–0.3 cm/year) from 3,800 cal year BP to present. We suggest that carbonate accumulates during relatively dry times, whereas organic matter accumulation dominates when nutrient input to the lake is enhanced by wetter climate. The Duck Lake core records a distinct low point in inorganic carbon deposition that may be related to the 8.2 ka cooling event now documented from several sites in North America. Spectral analysis of gray scale values shows significant ~200-year periodicities over the past 8,000 years, hypothesized to result from climate changes induced by solar forcing. Concentrations of trace metals (e.g. lead, iron, copper, zinc) indicate the onset of regional anthropogenic influence about 150 cal year BP.  相似文献   

8.
Walker Lake, a hydrologically closed, saline, alkaline lake located along the western margin of the Great Basin of western United States, has experienced a 77% reduction in volume and commitment drop in lake level as a result of anthropogenic perturbations and climatic fluctuations over the last century. The history of lake-level change in Walker Lake has been recorded instrumentally since 1860. A high-resolution multi-proxy sediment core record from Walker Lake has been generated through analysis of total inorganic carbon (TIC), total organic carbon (TOC), and oxygen and carbon isotope ratios (δ18O and δ13 C) of both downcore bulk TIC and ostracods over the last 200 yr. This allows us to examine how these sediment indices respond to actual changes in this lake’s hydrologic balance at interannual to decadal timescales. In Walker Lake sediments, changes in %TIC, %TOC, and δ13C and δ18O of TIC and ostracods are all associated to varying degrees with changes in the lake’s hydrologic balance, with δ18O of the TIC fraction (δ18OTIC) being the most highly correlated and the most effective hydrologic indicator in this closed-basin lake. The δ18OTIC record from Walker Lake nearly parallels the instrumental lake-level record back to 1860. However, comparison with sporadic lake-water δ18O and dissolved inorganic carbon δ13C (δ13CDIC) results spanning the last several decades suggests that the isotopic values of downcore carbonate sediments may not be readily translated into absolute or even relative values of corresponding lake-water δ18O and δ13CDIC. Changes in the lake’s hydrologic balance usually lead to changes in isotopic composition of lake waters and downcore sediments, but not all the variations in downcore isotopic composition are necessarily caused by hydrologic changes.  相似文献   

9.
The lipids in a sediment core from Lake Valencia, a hypereutrophic freshwater lake in Venezuela, are examined to understand environmental changes over the last ∼13,000 years. From the latest Pleistocene to the earliest Holocene, total organic carbon (TOC) substantially increased from 2.2 to 10%, while total organic carbon over total nitrogen (TOC/TN) decreased from as high as 34 to as low as 10. Correspondingly, the concentration of terrestrially derived triterpenoids markedly decreased, and the dominant n-alkane shifted from C31 to C23 or C25. During the same period, algal biomarkers such as botryococcenes, dinosterol, isoarborinol, C20 HBIs and 1,15C32 keto-ol markedly increased in abundance. These changes suggested a greater contribution of algal organic matter at the onset of the Holocene, which was concurrent with increasing rainfall and the formation of a permanent lake (Lake Valencia) in the Aragua Valley, Venezuela. The age profile of Paq, a n-alkane based proxy, showed large oscillations (0.20–0.81), reflecting historical variations in source strength of submerged/floating vs. terrestrial/emergent OM inputs. An abrupt increase in tetrahymanol abundance at ∼7,260 cal years BP suggests the establishment of an oxic–anoxic boundary in the lake’s water column. After reaching its maximum abundance at ∼2,100 cal year BP, botryococcenes, a biomarker of Botryococcus braunii, gradually decreased to below the detection limit in the uppermost sediments, while different algal/microbial biomarkers such as diploptene, dinosterol and isoarborinol substantially increased. These different historical profiles of algal/microbial biomarkers reflect different responses of source organisms to environmental changes throughout this period. The δ13C determinations presented exceptionally enriched values for botryococcene isomers (−7.7 to −15.1‰), indicating the utilization of bicarbonate as carbon sources in an extremely productive ecosystem.  相似文献   

10.
Diatoms were analyzed in a laminated sediment sequence from the middle Miocene, lacustrine Shanwang Formation, Shandong Province, eastern China, to reconstruct past conditions in the lake and evaluate relationships between inferred changes in the aquatic and terrestrial environments. Changes in the diatom assemblages over the 22.9-m-long sediment sequence were used to assign 19 lithologic layers to five zones. In Zone 1, Aulacoseira cf. distans and Melosira youngi were dominant in diatomaceous laminations. In Zone 2, only a few Aulacoseira spp. and Cymbella spp. were found in the yellow-green mudstone samples. In Zone 3, benthic pennate taxa, such as Fragilaria, Pinnularia, and Cymbella dominated in parts of the laminites. In Zone 4, Aulacoseira taxa regained dominance, and in Zone 5, benthic diatoms were found in only one sample. Shifts in the diatom assemblages and other sedimentological evidence indicate a change in the water level from a relatively deep system (>8–12 m) to a mudflat, then fluctuating water levels (8–12 m), shallower conditions (4–8 m), and finally a terrestrial environment. Abundant Aulacoseira indicate not only cold water, but also wind-induced turbulence. Water depth fluctuations coincided with the aridity index, reflected by terrestrial plant fossils in the sediments. Water pH, total phosphorus (TP), and total organic carbon (TOC) reconstructions were undertaken using the European Diatom Database (EDDI), and results showed a correlation between fluctuating water levels and volcanic activity in Zone 3.  相似文献   

11.
Pyrolysis–gas chromatography mass spectrometry (py-GC/MS) allows the characterisation of complex macromolecular organic matter. In lakes and wetlands this can potentially be used to assess the preservation/diagenesis and provenance of sediment organic matter. It can complement palaeoenvironmental investigations utilising ‘bulk’ sediment variables such as total organic carbon (TOC) and TOC/total nitrogen ratios. We applied py-GC/MS analyses to a ~32,000-year sediment record from the southern Cape coastline of South Africa. We used the results to evaluate the sources and extent of degradation of organic matter in this semi-arid environment. Marked down-core changes in the relative abundance of multiple pyrolysis products were observed. Correspondence analysis revealed that the major driver of this down-core variability in OM composition was selective preservation/degradation. Samples comprising highly degraded OM are primarily confined to the lower half of the core, older than ~12,000 years, and are characterised by suites of low-molecular-weight aromatic pyrolysis products. Samples rich in organic matter, e.g. surface sediments, are characterised by products derived from fresh emergent or terrestrial vegetation, which include lignin monomers, plant-derived fatty acids and long-chain n-alkanes. Pyrolysates from the late glacial-early Holocene period, approximately mid-way down the core are characterised by distinct suites of long-chain n-alkene/n-alkane doublets, which may reflect the selective preservation of recalcitrant aliphatic macromolecules and/or enhanced inputs of the algal macromolecule algaenan/polymerised algal lipids. Increased TOC, lower δ13C and increased abundance of more labile lignin and fatty acid products at the same depths suggest this period was associated with increased lake primary productivity and enhanced inputs of terrestrial OM. TOC is the only ‘bulk’ parameter correlated with the correspondence analysis axes extracted from the py-GC/MS data. Distinct fluctuations in TOC/total nitrogen ratio are not explained by variation in organo-nitrogen pyrolysis products. Notwithstanding, the study suggests that py-GC/MS has potential to complement palaeolimnological investigations, particularly in regions such as southern Africa, where other paleoenvironmental proxy variables in sediments may be lacking or equivocal.  相似文献   

12.
Total organic carbon (TOC) content, total nitrogen (TN) content, stable nitrogen isotope (δ15N) and stable organic carbon isotope (δ13Corg) ratios were continuously analysed on a high resolution sediment profile from Lake Sihailongwan (SHL), covering the time span between 16,500 and 9,500 years BP. Strong variations of the investigated proxy parameters are attributed to great climatic fluctuations during the investigated time period. Variations in organic carbon isotope ratios and the ratio of TOC/TN (C/N ratio) are discussed with respect to changing proportions of different organic matter (OM) sources to bulk sedimentary OM. Phases of high TOC content, high TN content, depleted δ13Corg values and high δ15N values are interpreted as times with increased productivity of lacustrine algae in relation to input of terrigenous organic matter. Two distinct phases of enriched nitrogen isotope ratios from 14,200 to 13,700 and 11,550 to 11,050 years BP point towards a reduced phytoplankton discrimination against 15N due to a diminished dissolved inorganic nitrogen pool. The combination of geochemical (TOC, TN, C/N ratio) and isotopic (δ13Corg, δ15N) proxy parameters points to a division of climate development into four stages. A cold and dry stage before 14,200 years BP, a warm optimum stage with high phytoplankton productivity from 14,200 to 12,450 BP, a colder and drier stage from 12,450 to 11,600 BP and a stage of climatic amelioration with high variability in TOC and TN contents after 11,600 BP. These results are discussed in relation to monsoon variability and Northern Hemisphere climate development of the late glacial.  相似文献   

13.
通过对九寨沟箭竹海沉积物样品中生物硅( BSi)含量的分析,讨论箭竹海沉积物中BSi含量与总有机碳(TOC)及粒度的关系,进而探讨BSi含量反映自然和人类因素对湖泊水体和沉积物的影响.箭竹海沉积物中BSi含量介于5.5~ 15.8 mg/g之间,BSi含量与TOC呈显著正相关关系.BSi含量还较显著地受到粒度影响,较细颗粒沉积物对BSi有较强的吸附作用.箭竹海沉积物中BSi含量变化与气温波动关系不密切,主要反映了森林砍伐和旅游开发等人类活动对湖泊水体和沉积物的影响.  相似文献   

14.
A sediment core from Lake Koucha (eastern Tibetan Plateau) was investigated using organic biomarkers and their stable carbon isotope signatures. The correlation between TOC content, total amount of aquatic macrophyte-derived n-alkanes (e.g. nC23) and δ13C values of TOC and nC23 indicates that Lake Koucha was macrophyte-dominated before 8 cal ka BP. Shortly after the lake turned from a saline to a freshwater system at 7.2 cal ka BP, a variety of algal and bacterial markers such as hopanoids and isoprenoids emerged, of which phytane, pentamethylicosene (PMI), moretene and diploptene are particularly abundant. Phytane and PMI show different isotopic signals (≈−18 and ≈−28‰, respectively), which indicates that they originated from different sources. Phytane may have been derived from cyanobacteria, while methanogenic archaea may be the source of PMI. The isotopic depletion of diploptene and moretene (≈−60‰) indicates the presence of methanotrophs. After 6.1 cal ka BP, the saturated C20 highly branched isoprenoid (HBI) became the dominant constituent of the aliphatic hydrocarbon fraction. Such dominance has rarely been reported in lacustrine environments, and indicates a strong presence of algae (most likely diatoms) or cyanobacteria. At 4.7 cal ka BP, the appearance of an unsaturated C25 HBI, which is a specific biomarker for diatoms, was noted. Furthermore, the level of nC17-alkane was observed to increase in abundance in the uppermost two samples. These results suggest that the lake was phytoplankton-dominated during the last 6.1 ka. Relatively low biomarker concentrations and δ13C values at 6.0, 3.1 and 1.8 cal ka BP indicate the occurrence of cool periods, which is in agreement with inferences from other locations on the Tibetan Plateau. The δ13C values of nC23 range from −23.5 to −12.6‰, with high values at the peak of macrophyte abundance at ca. 11 cal ka BP and at the phytoplankton maximum between ca 6.1 and 2.8 cal ka BP. Thus, aquatic macrophyte-derived mid-chain n-alkanes have been found to be excellent indicators of carbon-limiting conditions, which lead to the assimilation of isotopically-enriched carbon species. The limitation of carbon sources could be a localized phenomenon occurring in dense plant stands (as in the older section of the core), or it may be induced by high primary productivity (as in the younger section). Since the δ13C value of the inorganic carbon source may vary, the offset between the δ13C values of nC23 and TIC could serve as a more precise proxy for carbon-limiting conditions in lacustrine environments, which could in turn be interpreted with respect to lacustrine paleo-productivity.  相似文献   

15.
The apparent isotope enrichment factor εmacrophyte of submerged plants (εmacrophyte–DIC = δ13Cmacrophyte − δ13CDIC) is indicative of dissolved inorganic carbon (DIC) supply in neutral to alkaline waters and is related to variations in aquatic productivity (Papadimitriou et al. in Limnol Oceanogr 50:1084–1095, 2005). This paper aims to evaluate the usage of εmacrophyte inferred from isotopic analyses of submerged plant fossils in addition to analyses of lake carbonate as a palaeolimnological proxy for former HCO3 concentrations. Stable carbon isotopic analysis of modern Potamogeton pectinatus leaves and its host water DIC from the Tibetan Plateau and Central Yakutia (Russia) yielded values between −23.3 and +0.4‰ and between +14.0 and +6.5‰, respectively. Values of ε Potamogeton–DIC (range −15.4 to +1.1‰) from these lakes are significantly correlated with host water HCO3 concentration (range 78–2,200 mg/l) (r = −0.86; P < 0.001), thus allowing for the development of a transfer function. Palaeo-ε Potamogeton–ostracods values from Luanhaizi Lake on the NE Tibetan Plateau, as inferred from the stable carbon isotope measurement of fossil Potamogeton pectinatus seeds (range −24 to +2.8‰) and ostracods (range −7.8 to +7.5%) range between −14.8 and 1.6‰. Phases of assumed disequilibrium between δ13CDIC and δ13Costracods known to occur in charophyte swards (as indicated by the deposition of charophyte fossils) were excluded from the analysis of palaeo-ε. The application of the ε Potamogeton–DIC-HCO3 transfer function yielded a median palaeo-HCO3 -concentration of 290 mg/l. Variations in the dissolved organic carbon supply compare well with aquatic plant productivity changes and lake level variability as inferred from a multiproxy study of the same record including analyses of plant macrofossils, ostracods, carbonate and organic content.  相似文献   

16.
We used elemental carbon, nitrogen, phosphorus and hydrogen ratios (C/N, N/P and H/C) with total organic carbon (TOC) and total phosphorus (TP) as well as stable carbon and nitrogen isotopes (δ13C and δ15N) to investigate the source and depositional conditions of organic matter in sediments from Zeekoevlei, the largest freshwater lake in South Africa. Typical C/N (10–12), H/C ratios (≥1.7) and δ13Corganic values (−22 to −19‰) together with the increase in TOC concentration indicate elevated primary productivity in lower middle (18–22 cm) and top (0–8 cm) sections of the sediment cores. Seepage of nutrients from a nearby waste water treatment plant, rapid urbanization and heavily fertilized farming in the catchments are responsible for the increased productivity. Consistent with this, measured δ15Norganic values (∼11‰) indicate increased raw sewage input towards the top-section of the core. Although cyanobacterial blooms are evident from the low δ15N values (∼3‰) in mid-section of the core, they did not outnumber the phytoplankton population. Low N/P ratio (∼0) and high TP (100–2,200 mg l−1) support cyanobacterial growth under N limited condition, and insignificant input of macrophytes towards the organic matter pool. Dredging in 1983, caused sub-aerial exposure of the suspended and surface sediments, and affected organic matter preservation in the upper mid-section (12–14 cm) of the core.  相似文献   

17.
Few studies have assessed the relative importance of landscape, land use history, climate, and regional heterogeneity on lake ecosystem processes, despite the likelihood that interactions among these factors must be important for controlling lake dynamics. We used 14 sediment measures from 20 lake cores in a climatically sensitive region of the prairie-forest border in southern Minnesota to (1) assess relationships between modern lake productivity (Carlson’s Trophic State Index [TSI]), modern land-use, catchment, and lake morphometry, and (2) contrast regional responses to climatic transitions from the ‘Medieval Climatic Anomaly’(1000–1350) to the ‘Little Ice Age’ (1350–1800) to ‘Modern’(~1980–1996 AD). TSI was significantly positively correlated with modern sedimentation rate, and accumulation rates of organic matter (OM), biogenic silica (BSi), and total phosphorus (TP). TSI was not significantly correlated with “modern” land cover, catchment, or lake morphometry characteristics, but total organic N(N) was negatively correlated with percent cultivation in the catchment area and negatively correlated with δ15N of bulk organic matter in sediment. Regional, among-lake heterogeneity was high over the past 1,000 years, but Little Ice Age (LIA) cooling appeared to result in an approximately 20% decline in OM, BSi and TP accumulation, while warming and cultural eutrophication of the past 150 years corresponded to a 200–400% increase in accumulation rates as well as an 80% increase in carbonates and a small but significant 10% drop in C/N ratios consistent with greater in-lake productivity. Our results indicate that climate does have regional effects on lake ecosystems but that among-lake variability is high, reflecting the importance of local factors and suggesting a need for (1) more explicit definition of what ‘regional’ means, (2) a focus on degree as well as direction of change, and (3) estimating accumulation rates based on multiple lakes and multiple cores within lakes.  相似文献   

18.
The association of iodine with organic matter in sedimentary basins is well documented. High iodine concentration in soils overlying oil and gas fields and areas with hydrocarbon microseepage has been observed and used as a geochemical exploratory tool for hydrocarbons in a few studies. In this study, we measure iodine concentration in soil samples collected from parts of Deccan Syneclise in the west central India to investigate its potential application as a geochemical indicator for hydrocarbons. The Deccan Syneclise consists of rifted depositional sites with Gondwana–Mesozoic sediments up to 3.5 km concealed under the Deccan Traps and is considered prospective for hydrocarbons. The concentration of iodine in soil samples is determined using ICP-MS and the values range between 1.1 and 19.3 ppm. High iodine values are characteristic of the northern part of the sampled region. The total organic carbon (TOC) content of the soil samples range between 0.1 and 1.3%. The TOC correlates poorly with the soil iodine (r 2 < 1), indicating a lack of association of iodine with the surficial organic matter and the possibility of interaction between the seeping hydrocarbons and soil iodine. Further, the distribution pattern of iodine compares well with two surface geochemical indicators: the adsorbed light gaseous hydrocarbons (methane through butane) and the propane-oxidizing bacterial populations in the soil. The integration of geochemical observations show the occurrence of elevated values in the northern part of the study area, which is also coincident with the presence of exposed dyke swarms that probably serve as conduits for hydrocarbon microseepage. The corroboration of iodine with existing geological, geophysical, and geochemical data suggests its efficacy as one of the potential tool in surface geochemical exploration of hydrocarbons. Our study supports Deccan Syneclise to be promising in terms of its hydrocarbon prospects.  相似文献   

19.
开垦对内蒙古温带草地土壤不同有机碳组分的影响(英文)   总被引:3,自引:2,他引:1  
Cultivation is one of the most important human activities affecting the grassland ecosystem besides grazing, but its impacts on soil total organic carbon (C), especially on the liable organic C fractions have not been fully understood yet. In this paper, the role of cropping in soil organic C pool of different fractions was investigated in a meadow steppe region in Inner Mongolia of China, and the relationships between different C fractions were also discussed. The results indicated that the concentrations of different C fractions at steppe and cultivated land all decreased progressively with soil depth. After the conversion from steppe to spring wheat field for 36 years, total organic carbon (TOC) concentration at the 0 to 100 cm soil depth has decreased by 12.3% to 28.2%, and TOC of the surface soil horizon, especially those of 0-30 cm decreased more significantly (p<0.01). The dissolved organic carbon (DOC) and microbial biomass carbon (MBC) at the depth of 0-40 cm were found to have decreased by 66.7% to 77.1% and 36.5% to 42.4%, respectively. In the S.baicalensis steppe, the ratios of soil DOC to TOC varied between 0.52% and 0.60%, and those in the spring wheat field were only in the range of 0.18%-0.20%. The microbial quotients (qMBs) in the spring wheat field, varying from 1.11% to 1.40%, were also lower than those in the S. baicalensis steppe, which were in the range of 1.50%-1.63%. The change of DOC was much more sensitive to cultivation disturbance. Soil TOC, DOC, and MBC were significantly positive correlated with each other in the S. baicalensis steppe, but in the spring wheat field, the correlativity between DOC and TOC and that between DOC and MBC did not reach the significance level of 0.05.  相似文献   

20.
Cladocera as indicators of trophic state in Irish lakes   总被引:1,自引:0,他引:1  
We examined the impact of lake trophic state on the taxonomic and functional structure of cladoceran communities and the role of nutrient loading in structuring both cladoceran and diatom communities. Surface sediment assemblages from 33 Irish lakes were analysed along a gradient of total phosphorus concentration (TP; 4.0–142.3 μg l−1), using a variety of statistical approaches including ordination, calibration and variance partitioning. Ordination showed that the taxonomic structure of the cladoceran community displayed the strongest response to changes in lake trophic state, among 17 measured environmental variables. Trophic state variables chlorophyll-a and TP explained about 20% of the variance in both cladoceran and diatom assemblages from a set of 31 lakes. Procrustes analysis also showed significant concordance in the structure of cladoceran and diatom communities (P < 0.001). Thus, lake trophic state affects the taxonomic structure of both primary and secondary producers in our study lakes. We also found a significant decrease in relative abundance of taxa associated with both macrophytes and sediments, or sediments only, along the TP gradient (r = −0.49, P = 0.006, n = 30), as well as an increase in the proportion of the planktonic group (r = 0.43, P = 0.017, n = 30). This suggests that cladoceran community structure may also be shaped by lake trophic state indirectly, by affecting habitat properties. We found no relationship between lake trophic state and the relative abundance of each of three cladoceran groups that display different body size. We compared community structure between bottom and top sediment samples in cores from six Irish lakes. Results revealed similar trajectories of nutrient enrichment over time, as well as a strong shift in cladoceran functional structure in most systems. This study confirms that Cladocera remains in lake sediments are reliable indicators of lake trophic state. This study also highlights the fact that taxonomic and functional structure should both be considered to account for the multiple factors that shape cladoceran communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号