首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The character and impact of climate change since the last glacial maximum (LGM) in the eastern Mediterranean region remain poorly understood. Here, two new diatom records from the Ioannina basin in northwest Greece are presented alongside a pre-existing record and used to infer past changes in lake level, a proxy for the balance between precipitation and evaporation. Comparison of the three records indicates that lake-level fluctuations were the dominant driver of diatom assemblage composition change, whereas productivity variations had a secondary role. The reconstruction indicates low lake levels during the LGM. Late glacial lake deepening was underway by 15.0 cal kyr BP, implying that the climate was becoming wetter. During the Younger Dryas stadial, a lake-level decline is recorded, indicating arid climatic conditions. Lake Ioannina deepened rapidly in the early Holocene, but long-term lake-level decline commenced around 7.0 cal kyr BP. The pattern of lake-level change is broadly consistent with an existing lake-level reconstruction at Lake Xinias, central Greece. The timing of the apparent change, however, is different, with delayed early Holocene deepening at Xinias. This offset is attributed to uncertainties in the age models, and the position of Xinias in the rain shadow of the Pindus Mountains.  相似文献   

2.
Holocene development of aquatic plant communities in subarctic Lake Njargajavri, Finnish Lapland, was studied using plant macrofossil analysis. Sediment lithology, grain size, and C/N ratios showed distinct lithological phases, indicating past water-level fluctuations. The colonization of limnophytes took place right after the formation of the lake (after ca. 11,500 cal. BP). The earliest plant macrofossil assemblages indicate nutrient-rich conditions and a warmer climate than at present. After this primary succession phase, aquatic vascular plants were replaced by aquatic bryophytes (before ca. 10,200 cal. BP). Together with lithological evidence, we interpret this as being related to the lowering water table. According to palynological, chronological, and sedimentological evidence, Njargajavri underwent a very shallow phase between ca. 10,000 and 9500 cal. BP and dried out for an unknown period of time between ca. 8000 and 5000 cal. BP. After the dry phase, the water level started to rise and sedimentation at the coring point began again. Despite re-establishment of the lacustrine habitat, late-Holocene plant macrofossil data show no marked recolonization of either vascular limnophytes or bryophytes. The reason for all limnophytes being presently absent from the lake remains speculative. The lack of nutrients and/or the cooling climate (especially shortening of the open-water season) during the latter part of the Holocene may explain why limnophytes failed to recolonize the lake.  相似文献   

3.
The level fluctuations of Lake Ilay, Jura (France) during the last three millennia are reconstructed from sedimentological and malacological analyses of a core that is well-dated by tree-ring, radiocarbon and pollen datings. Changes in sediment facies, in carbonate concretion assemblages and in mollusc assemblages highlight a major lowering phase atc. 1550 BP and minor lowering phases atc. 2800 BP and shortly before AD 1394. Rises in lake level developed during the early Subatlantic and betweenc. 1500 and 1000 BP. These data are in good agreement with other proxy data from higher European and American latitudes. These correlations support the climatic origin of the level fluctuations of the Lake Ilay during the late Holocene. They suggest that the mediaeval climatic optimum is centred rather in the early than the late Middle Age.  相似文献   

4.
Changes in the diatom assemblages preserved in a sediment core taken from a small lake located north of arctic treeline on the western Taimyr Peninsula, Russia, were examined in order to investigate late Holocene (i.e., ca 5000 cal yr BP to present) climatic and environmental changes within the region. Early diatom assemblages were dominated by benthic Fragilaria taxa and indicate a transitional phase in the lake history, most likely reflecting lake development and environmental change associated with treeline retreat to the south of the study site. Concurrent with pollen and macrofossil evidence of a vegetation shift to shrub tundra in the catchment basin at ca 4200 cal yr BP, an increase in cold-water taxa, followed by little change in diatom assemblages until ca 2800 cal yr BP, suggests that conditions were relatively cool and stable at this time. The last 2000 years of the Middendorf Lake record have been marked by fluctuating limnological conditions, characterized by striking successional shifts between Fragilaria pinnata and Aulacoseira distans var. humilis. Recent conditions in Middendorf Lake indicate an increase in diatom taxa previously rare in the record, possibly associated with twentieth-century climatic warming. The Middendorf Lake record indicates that significant limnological change may occur in the absence of catchment vegetation shifts, suggesting late-Holocene decoupling of aquatic and terrestrial responses to climatic and hydrological change. Our study results represent one of the few paleoecological records currently available from northern Russia, and highlight the need for further development of calibration data sets from this region.  相似文献   

5.
The sedimentology of an 8.22-m long core of late-Holocene deposits in the submerged Crescent Island Crater basin of Lake Naivasha, Kenya, is used to reconstruct decade-scale fluctuations in lake-surface elevation during the past 1800 yrs. Lake-depth inference for the past 1000 yrs is semi-quantitative, based on (1) relationships between lake level and bottom dynamics predicted by wave theory, and (2) historical validation of the effects of lake-level fluctuation and hydrologic closure on sediment composition in Crescent Island Crater and nearby Lake Oloidien. In these shallow fluctuating lakes, organic-carbon variation in a lithological sequence from clayey mud to algal gyttja is positively correlated with lake depth at the time of deposition, because the focusing of oxidized littoral sediments which dilute autochthonous organic matter before burial is reduced during highstands. The lake-level reconstruction for Lake Naivasha agrees with other adequately dated lake-level records from equatorial East Africa in its implication of dry climatic conditions during the Mediaeval Warm Period and generally wet conditions during the Little Ice Age. Crescent Island Crater survived widespread aridity in the early-19th century as a fresh weedy pond, while the main basin of Lake Naivasha and many other shallow East African lakes fell dry and truncated their sediment archive of Little Ice Age climatic variability.  相似文献   

6.
Holocene vegetation history and palaeoenvironmental conditions are investigated at the south coast of Buenos Aires Province, Argentina. La Olla 1 and Laguna del Sauce Grande sediment sequences are analysed for pollen, calcareous microfossil (ostracods and foraminifers) and plant macrofossil remains (mainly seeds and charophyte oospores). Supplementary information is provided by sedimentological analysis. Modern surface sample data are used to assist in the interpretation of the fossil records. La Olla 1 sequence covers the period 7890 to 7630 cal. BP. The microfauna recovered is characteristic of a shallow marginal-marine environment such as a coastal lagoon. The microfossils indicate a marine connection between 7850 and 7800 cal. BP. Plant macrofossil remains and pollen analyses indicate an extension of the water body after 7780 cal. BP. The pollen record reveals the development of a halophytic plant community in a coastal environment. The sediment record from Laguna del Sauce Grande comprises the last 3000 years. Microfossils and macrofossil remains indicate that the lake history begins with a temporary brackish-water phase. More stable conditions and higher salinity values occur between 1940 and 900 cal. BP. Periods of water level fluctuations occur after 900 cal. BP, with high water levels between 660 and 270 cal. BP. The uppermost samples of the sequence show similar conditions to present day. Pollen spectra indicate a relatively stable vegetation composition throughout the last 3000 years. Pollen assemblages reflect the present regional grassland vegetation with taxa characteristic of the surrounding dune communities.  相似文献   

7.
Genggahai Lake, a small, shallow water body on the northeastern Qinghai–Tibetan Plateau, is presently occupied by dense aquatic vegetation. The distribution of macrophytes is strongly associated with water depth. Macrofossils from a 7.82-m sediment core indicate that the dominant taxa in past aquatic plant communities were almost the same as those that dominate the lake today. In combination with sediment geochemical variables TOC, TN, and δ13Cbulk-org, macrofossil assemblages (aquatic plant remains, stem encrustations, and mollusc shells) were employed to reconstruct lake-level fluctuations over the past 16 ka. The lake formed or refilled at 15.3 cal ka and sustained a low level until 11.4 cal ka. From 11.4 to 6.3 cal ka, a remarkably high level was punctuated by a period of relatively low level between 9.2 and 7.4 cal ka. Stepwise drops in lake level occurred from 6.3 to 5.5 cal ka. Water level was characterized by more frequent fluctuations between 5.5 and 4.1 cal ka. Low level persisted from 4.1 to 2.1 cal ka and from 1.6 to 0.3 cal ka. Short-lived episodes of high water level were centered around 1.8 cal ka and since 0.3 cal ka. The lake-level history of Genggahai Lake appears to be largely consistent with the Asian monsoon records from nearby and distant locations. Our preliminary results suggest that monsoon variability on centennial to millennial timescales was superimposed on the long-term pattern of the Asian monsoon, modulated by orbitally induced summer insolation, and that the Asian monsoon may play an important role in water balance in marginal regions.  相似文献   

8.
Land-use history, soil erosion, lake trophy and lake-level fluctuations during the last 3000 years were reconstructed through a multidisciplinary palaeolimnological study (pollen, plant macrofossils, diatoms, physical and chemical analysis, magnetic measurements and radiometric methods) of a small eutrophic lake in southern Sweden (Bjäresjösjön, Scania). There are striking responses in diatom, chemical, sediment yield and magnetic records to land-use changes documented by pollen analysis or historical sources, and to lake-level changes identified from sedimentary changes. Our multidisciplinary approach assists interpretation of the processes controlling long-term changes and separation of the effects of different factors (land-use changes, lake-level fluctuations) on individual biostratigraphical records. Climate has controlled processes in the lake indirectly, through lake-level fluctuations, from the Late Bronze Age to the Viking Age (700 BC-AD 800). Since the Viking Age, land-use controlled most of the changes observed in the lake's development and soil erosion processes. Major changes in lake development occurred during the last 200 years, due to a drastic increase in soil erosion and water eutrophication during a period of agricultural modernization.  相似文献   

9.
黄旗海介形类及其壳体稳定同位素环境记录   总被引:8,自引:4,他引:4       下载免费PDF全文
李军  余俊清 《盐湖研究》2002,10(4):13-18
利用黄旗海冬季坚固的冰封面作为稳固的司钻平台 ,在湖泊中央成功地获取了高质量的湖底连续沉积岩芯。对其中长 1 1m的HQH4岩芯中的介形类化石进行了属种古生态和壳体稳定同位素研究。结果显示 ,在 1 0 2 0 0aB .P .前后黄旗海进入了稳定的湖泊阶段。在此之前 ,介形类的丰度极低。介形类的最大丰度出现在 1 0 2 0 0 -680 0aB .P .,反映了早全新世期间黄旗海较高的生物生产率。在此期间 ,介壳的δ18O值的变化范围较大 ,反映了黄旗海水体氧同位素组成在全新世早期的变幅较大。从 680 0aB .P .起 ,介形类的丰度突然大幅度降低 ,介壳δ18O值随后降低 ,反映了中全新世黄旗海湖水变深 ,湖底还原性显著增强。从 3 2 0 0aB .P .起 ,湖泊水位显著下降 ,湖底氧化条件明显增强 ,介形类的丰度继续下降 ,直到大约 1 3 0 0aB .P .才出现回升  相似文献   

10.
Sediment cores from two neighbouring lakes (Viitna Linajärv and Viitna Pikkjärv) in northern Estonia were studied to determine lake-level fluctuations during the Holocene and their impact on biogeochemical cycling. Organic matter and pollen records dated by radiocarbon and radiolead indicated a water level rise in both lakes during the early Holocene (c. 10 000–8000 BP). A regression followed around 7500 BP and several transgressions occurred during the latter half of the Holocene, c. 6500 and 3000 BP. Human impact during the last centuries has caused short-term lake-level fluctuations and accelerated sediment accumulation in the lakes. The differences in water depth led to variations in sediment formation. During 10 000–8000 BP (Preboreal and Boreal chronozones) mineral-rich sediments with coloured interlayers deposited in L. Linajärv. These sediments indicate intensive erosion from the catchment and oxygen-rich lake, which favoured precipitation of iron oxides and carbonates. Fluctuations in water depth, leaching of nutrients from catchment soils and climatic changes increased the trophy of L. Linajärv around 6000 BP. The subsequent accumulation of gyttja, the absence of CaCO3 and the decrease in both the C/N ratio and phosphorus content in the sediments also indicate anoxic conditions in the hypolimnion. The similarity in the development of L. Linajärv and L. Pikkjärv and their proximity made it possible to discern the impact of water depths changes on biogeochemical cycling in lakes.  相似文献   

11.
Walker Lake, a hydrologically closed, saline, alkaline lake located along the western margin of the Great Basin of western United States, has experienced a 77% reduction in volume and commitment drop in lake level as a result of anthropogenic perturbations and climatic fluctuations over the last century. The history of lake-level change in Walker Lake has been recorded instrumentally since 1860. A high-resolution multi-proxy sediment core record from Walker Lake has been generated through analysis of total inorganic carbon (TIC), total organic carbon (TOC), and oxygen and carbon isotope ratios (δ18O and δ13 C) of both downcore bulk TIC and ostracods over the last 200 yr. This allows us to examine how these sediment indices respond to actual changes in this lake’s hydrologic balance at interannual to decadal timescales. In Walker Lake sediments, changes in %TIC, %TOC, and δ13C and δ18O of TIC and ostracods are all associated to varying degrees with changes in the lake’s hydrologic balance, with δ18O of the TIC fraction (δ18OTIC) being the most highly correlated and the most effective hydrologic indicator in this closed-basin lake. The δ18OTIC record from Walker Lake nearly parallels the instrumental lake-level record back to 1860. However, comparison with sporadic lake-water δ18O and dissolved inorganic carbon δ13C (δ13CDIC) results spanning the last several decades suggests that the isotopic values of downcore carbonate sediments may not be readily translated into absolute or even relative values of corresponding lake-water δ18O and δ13CDIC. Changes in the lake’s hydrologic balance usually lead to changes in isotopic composition of lake waters and downcore sediments, but not all the variations in downcore isotopic composition are necessarily caused by hydrologic changes.  相似文献   

12.
Analyses of pollen, plant macrofossils, sediment mineralogy, geochemistry, and lithology of cores from Chappice Lake, southeastern Alberta, provide an outline of paleohydrological changes spanning the last 7300 radiocarbon years. Situated near the northern margin of the Great Plains, Chappice Lake is currently a small (1.5 km2), shallow (<1 m), hypersaline lake. Results of this study suggest that the lake has experienced significant changes in water level and chemistry during the Holocene.From 7300 to 6000 BP the lake oscillated between relatively high stands and desiccation. From 6000 to 4400 BP it was smaller than present and ponded highly saline water. Although extreme water level variations of the preceding period had ceased, pronounced seasonal fluctuations persisted. Between 4400 and 2600 BP, lake level was more stable but gradually rising. Carbonates were a major component of the sediments deposited during this interval. A large, relatively fresh lake existed from 2600 to 1000 BP. Illite was the dominant mineral deposited during this period, but since then has been a minor constituent in a mineral suite dominated by detrital silicates. A series of low-water, high-salinity stands occurred between 1000 and 600 BP, although these low stands were not as pronounced as low-water intervals in the middle Holocene. Relatively high water levels were sustained from 600 BP until the late 1800s. The lake declined significantly in the last one hundred years, notably during the historically documented droughts of the late 1800s, 1920s, 1930s, and 1980s.The timing of paleohydrological events at Chappice Lake corresponds closely with well documented Holocene climatic intervals, such as the Hypsithermal, Neoglaciation, Medieval Warm Period, and Little Ice Age. In addition, historic lake-level fluctuations can be related directly to climate. As a result, the Chappice Lake sedimentary succession offers a rare opportunity to obtain a high-resolution, surrogate record of Holocene climate on the northern Great Plains, and to observe the response of lake chemistry and biota to significant environmental change.Geological Survey of Canada Contribution No. 45191, Palliser Triangle Global Change Contribution No. 2This publication is the first of a series of papers presented at the Conference on Sedimentary and Paleolimnological Records of Saline Lakes. This Conference was held August 13–16, 1991 at the University of Saskatchewan, Saskatoon, Canada. Dr. Evans is serving as Guest Editor for this series.  相似文献   

13.
Diatom assemblages and sulfur content in sediments were analyzed to clarify changes in the sedimentary environment of Kushu Lake, a coastal lake on Rebun Island in Hokkaido, Japan. Salinity variations were assessed by means of a diatom-based index of paleosalinity and the sedimentary sulfur content. This paper discusses the Holocene development of the lake, in relation to Holocene relative sea-level change. For paleoenvironmental interpretation of the lake development, the rationale of the threshold method (Anundsen et al., 1994) was applied.At ca. 8000 yr BP, a coastal embayment (paleo-Kushu Bay) resulted from marine ingression. The threshold elevation at the mouth of the paleo-Kushu Bay kept pace with the rising sea-level, resulting in its enclosure at the culmination of Holocene marine transgression (ca. 6500–5000 yr BP). From predicted relative sea-level at ca. 6000 yr BP for Rebun Island (Nakada et al., 1991), the threshold may have been at least above –3 to –5 m altitude. A freshwater lake environment with strongly anoxic bottom conditions may have occurred from ca. 5500 to 5100 yr BP. After an important episode of marine ingression, the lake was isolated completely from the open sea at ca. 4900 yr BP. The diatom record suggests that the maximum lacustrine extent occurred at ca. 4900–3100 yr BP. Thereafter, water depth decreased at the lake margins.In Kushu Lake, the threshold elevation, due to a build-up of a coastal barrier, prevents us from determining the amplitude of sea-level changes, even though the age of isolation contacts corresponds to periods of regression and climatic deterioration. In spite of isostatic subsidence, the effective protection provided by the well-developed barrier did not allow registration of any relative sea-level fluctuations since its isolation.  相似文献   

14.
A two-stage change in lake level during the 8.2-ka event was identified in Lake Sarup, Denmark (55°N), using a multiproxy approach on precise radiocarbon wiggle-matched annually laminated sediments deposited 8740–8060 cal. yr BP. Changes in δ13C and δ18O indicated closed lake hydrology driven by precipitation. The isotopic, sedimentary and plant macrofossil records suggested that the lake level started to decrease around 8400 cal. yr BP, the decrease accelerating during 8350–8260 before an abrupt increase during 8260–8210. This pattern shows that the climate anomaly started ~150 years before the onset of the 8.2-ka cooling event registered in Greenland ice cores, but was synchronous with hydrologic change in the North American Lake Agassiz drainage. The lake level decrease was accompanied by a higher accumulation rate of inorganic matter and lower accumulation rates of cladoceran subfossils and algal pigments, possibly due to increased turbidity and reduced nutrient input during this drier period. Pigment analysis also showed added importance of diatoms and cryptophytes during this climate anomaly, while cyanobacteria became more important when the water level rose. Moreover, Nymphaeaceae trichosclereids were abundant during the period of algal enrichment. Cladoceran taxa associated with floating leaved plants or benthic habitats responded in a complex way to changes in water level, but the cladoceran assemblages generally reflected deep lake conditions throughout the period. The lake did not return to its pre-8.2-ka event status during the period of analysis, but remained more productive for centuries after the climatic anomaly as judged from the pigment accumulation and assemblage composition. The change to more eutrophic conditions may have been triggered by erosion of marginal deposits. Together, these data confirm the chronology of hydrologic changes and suggest, for the first time, that lake levels exhibited both a decline and an increase in rapid succession in response to the 8.2-ka event in southern Scandinavia.  相似文献   

15.
The plant-macrofossil record of past lake-level changes   总被引:1,自引:0,他引:1  
Plant-macrofossil analysis is one of the most useful biostratigraphical methods for the reconstruction of former lake-level changes. The distribution of submerged, floating-leaved and emergent lake-shore vegetation is mainly dependant on water depth, but water chemistry and nutrient status must also be taken into account when interpreting water-level changes. Lake-level studies should be based on the investigation of several littoral cores along a transect perpendicular to the lake-shore. Multiple cores are essential for separating genuine lake-level changes from other processes influencing the plant-macrofossil record. Physical analyses of sediment stratigraphy provide important additional information to the plant-fossil record, because natural infilling processes and erosion from the catchment must be distinguished from climatic events causing a change in the water level. Here we review several important concepts, including suitability of lakes for lake-level study, the degree of detail required in the analysis, and macrofossil records of lake-level changes, and illustrate those concepts by examples from southern Sweden and Minnesota. We discuss how to reconcile alternative hypotheses for the stratigraphic changes seen in the macrofossil assemblages.  相似文献   

16.
Variations in pollen assemblages and in physical and chemical composition of a dated sediment record from the small Lake Haubi in north central Tanzania, reveal lake level fluctuations since the late 19th century. Lake Haubi changed from a seasonally inundated swamp to a lake in the beginning of the 20th century. With the exception of 1942-44, when it dried out completely, it remained water filled until 1994 when it again turned into a swamp. The lake level fluctuations in Lake Haubi are largely in phase with fluctuations of the larger East African lakes levels during the 20th century, and are therefore interpreted as being mainly controlled by regional climatic fluctuations. However, the initial formation of Lake Haubi at the turn of the century was likely due to local catchment specific causes, e.g. changes in land use, as the rapid increase in the water level at this time does not correspond to other lake level records from the region.  相似文献   

17.
The Turiec Basin (TB) of Slovakia formed in the Miocene when the West Carpathians escaped from the Alpine region. The 1,250-m-thick sedimentary Neogene fill of the basin preserved fossil leaves as well as endemic bivalves, gastropods, and ostracodes. The paleolimnologic changes recorded in the TB infill were derived from the most abundant fossils, the ostracodes. Five contemporaneous ostracode assemblages within the Late Miocene lacustrine system were distinguished through statistical analysis. These assemblages have low species similarity, between 2.1 and 24.1%, and are recognized by shape differences among the Candoninae. The ostracode assemblages, mollusca fossils, and Sr-isotope ratios suggest a low-salinity environment at the beginning of the Late Miocene, during a brief connection with the Central Paratethys. When the connection ceased, the basin became an isolated freshwater lake, with five zones differentiated ecologically and bathymetrically using the ostracode assemblages. Taxonomic comparison of the faunas of the TB and the freshwater to brackish Neogene basins of Europe demonstrates the endemic character of the TB ostracode fauna. The biologic characteristics of the ostracode families, along with the geology of the lake basin, suggest that the longevity of the Late Miocene lake probably exceeded 1 Ma.  相似文献   

18.
Water levels in the Lake Erie basin are inferred from glacial lake times to present. An era of early to middle Holocene lowstands is defined below outlets by a submerged paleo-beach, and truncated reflectors in glaciolacustrine sediment beneath a mud-covered wave-cut terrace. Also, the glacial clay surface above the paleo-shore level has elevated shear strength because of porewater drainage during subaerial exposure. Below the paleo-shore where exposure did not occur, clay strength remained normal. Sedimentation rates were reduced during the lowstands. The distortion of once-level shore zone indicators by differential glacial rebound was removed by computing original elevations of the indicators using an empirical model of rebound based on observations of upwarped former lake shorelines. Erie water-level history was inferred from a plot of the original elevations of lake-level constraints and outlets versus age. The lake history was validated by reference to ~83 water-level indicators, not used as constraints. During the deglaciation, lake-crossing moraines were likely eroded by fluvial drainage into low-level Lake Ypsilanti and a subsequent unnamed low lake to produce the Lorain Valley and Pennsylvania Channel. Once inflow from the upper Great Lakes basins was directed to Ottawa Valley about 10,400 (12,270 cal BP), Erie water levels descended in a dry, evaporative climate to a closed lowstand during which ostracode δ18O increased ~2‰ above present values. Lake level began to rise 6,000 to 7,000 (6,830 to 7,860 cal) BP in response to increased atmospheric moisture and later, to northern inflow as the Nipissing Transgression returned upper Great Lakes drainage to Lake Erie by about 5,200 (6,000 cal) BP. At that time, the lake overflowed the uplifted Lyell–Johnson Sill north (downstream) of the present Niagara Falls at higher-than-present levels. After recession of the Falls breached this sill about ~3,500 (~3,770 cal) BP, Lake Erie fell 3–4 m to its present Fort Erie–Buffalo Sill. The extended low-water phase with its isolated sub-basins could have restricted migration of aquatic fauna. The early to middle Holocene closed-basin response highlights the sensitivity of Lake Erie to climatic reductions in its water budget.  相似文献   

19.
Sedimentological parameters and stable O- and C-isotopic composition of marl and ostracode calcite selected from a 17.7-m-long core from the 8-m-deep center of Pickerel Lake, northeastern South Dakota, provide one of the longest (ca. 12ky) paleoenvironmental records from the northern Great Plains. The late Glacial to early Holocene climate in the northern Great Plains was characterized by changes from cold and wet to cold and dry, and back to cold and wet conditions. These climatic changes were controlled by fluctuations in the positions of the Laurentide ice sheet and the extent of glacial Lake Agassiz. We speculate that the cold and dry phase may correspond to the Younger Dryas event. A salinity maximum was reached between 10.3 and 9.5 ka, after which Pickerel Lake shifted from a system controlled by atmospheric changes to a system controlled by groundwater seepage that might have been initiated by the final withdrawal of Glacial Lake Agassiz. A prairie lake was established at approximately 8.7 ka, and lasted until about 2.2 ka. During this mid-Holocene prairie period, drier conditions than today prevailed, interrupted by periods of increased moisture at about 8, 4, and 2.2 ka. Prairie conditions were more likely dry and cool rather than dry and warm. The last 2.2 ka are characterized by higher climatic variability with 400-yr aridity cycles including the Medieval Warm Period and the Little Ice Age.Although the signal of changing atmospheric circulation is overprinted by fluctuations in the positions of the ice sheet and glacial Lake Agassiz during the late Glacial-Holocene transition, a combination of strong zonal circulation and strong monsoons induced by the presence of the ice sheet and high insolation may have provided mechanisms for increased precipitation. Zonal flow introducing dry Pacific air became more important during the prairie period but seems to have been interrupted by short periods of stronger meridional circulation with intrusions of moist air from the Gulf of Mexico. More frequent switching between periods of zonal and meridional circulation seem to be responsible for increased climatic variability during the last 2.2 ka.  相似文献   

20.
Palaeogeographic and lake-level reconstructions provide powerful tools for evaluating competing scenarios of biotic, climatic and geological evolution within a lake basin. Here we present new reconstructions for the northern Lake Tanganyika subbasins, based on reflection seismic, core and outcrop data. Reflection seismic radiocarbon method (RSRM) age estimates provide a chronological model for these reconstructions, against which yet to be obtained age dates based on core samples can be compared. A complex history of hydrological connections and changes in shoreline configuration in northern Lake Tanganyika has resulted from a combination of volcanic doming, border fault evolution and climatically induced lake-level fluctuations. The stratigraphic expression of lake-level highstands and lowstands in Lake Tanganyika is predictable and cyclic (referred to here as Capart Cycles), but in a pattern that differs profoundly from the classic Van Houten cycles of some Newark Supergroup rift basins. This difference results from the extraordinary topographic relief of the Western Rift lakes, coupled with the rapidity of large-scale lake-level fluctuations. Major unconformity surfaces associated with Lake Tanganyika lowstands may have corresponded with high-latitude glacial maxima throughout much of the mid- to late Pleistocene.
Rocky shorelines along the eastern side of the present-day Ubwari Peninsula (Zaire) appear to have had a much more continuous existence as littoral rock habitats than similar areas along the north-western coastline of the lake (adjacent to the Uvira Border Fault System), which in turn are older than the rocky shorelines of the north-east coast of Burundi. This model of palaeogeographic history will be of great help to biologists trying to clarify the evolution of endemic invertebrates and fish in the northern basin of Lake Tanganyika.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号