首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
贵州主汛期极端降水事件及其环流特征分析   总被引:1,自引:0,他引:1  
利用贵州地区52个测站1961-2006年历年主汛期(6-8月)逐日降水资料,定义了不同台站的极端降水阈值,统计了贵州近46年主汛期极端降水事件发生的频次,并分析了极端降水的时空分布特征、周期振荡特征以及极端降水事件典型多年、少年的环流特征.结果表明:贵州主汛期极端降水自北向南逐渐增大,极端降水事件存在着明显的年际、年代际变化特征,并存在2.9 a、20 a的周期振荡特征,在贵州主汛期极端降水事件偏多和偏少时期,其环流特征存在着显著的差异.  相似文献   

2.
增暖背景下中国东北地区极端降水事件的演变特征   总被引:15,自引:5,他引:10  
利用中国东北地区93站1959~2002年逐日降水资料,研究该区极端降水事件时空演变特征,结果表明:东北地区极端降水事件阈值由东南沿海向西北内陆逐渐减小,6~9月是极端降水事件集中出现月份;1985~2002年是极端降水事件偏多,且为一突变现象;东北地区短时间内连续发生极端降水事件概率较大,其中1~5天时间间隔极端降水事件占23.7%;80年代中期后东北地区增暖背景下,极端降水事件和有1~5天时间间隔的极端降水事件明显增加,特别是松花江下游和牡丹江流域及西辽河上游地区,频次和强度存在增加或增强趋势。  相似文献   

3.
1961-2016年渭河流域极端降水事件研究   总被引:1,自引:1,他引:0  
周旗  张海宁  任源鑫 《地理科学》2020,40(5):833-841
基于1961-2016 年渭河流域26 个气象站点的逐日降水数据,选取与极端降水事件密切相关的9 个指数,利用线性趋势法、Mann-Kendall突变点检验和方差分析等方法,揭示渭河流域极端降水事件的变化趋势、突变情况以及渭河流域上、中、下游降水情况的差异特征,对研究区未来极端降水事件提供科学预测和理论参考。结果表明:渭河流域上、中、下游地区及整个流域的年总降水量分别以16.588 mm/10a、8.319 mm/10a、6.703 mm/10a和9.544 mm/10a的速率下降,表明渭河流域56 a来降水总量存在逐年减少的趋势,整个渭河流域地区呈现变干的趋势。降水强度(SDII)、强降水总量(R95PTOT)和极端降水总量(R99PTOT)在整体上均呈现上升趋势,极端降水总量的上升趋势高于强降水总量,上游地区的上升趋势高于中下游地区,表明渭河流域极端降水强度有所增强,极端降水事件发生频率有所增大。渭河流域出现极端降水事件的年份集中在20世纪90年代和21世纪初期,且降水情况的年际差异较大,中游地区的变化更为明显。相关分析显示中下游地区对整个流域极端降水事件的发生情况起到较大的贡献。  相似文献   

4.
本文利用1961—2010年北疆地区20个气象台站的逐日降水量、最高气温、最低气温及平均气温资料,采用国际气候诊断与指数小组(ETCDDMI)所提供极端降水和气温事件的各种指标,对极端气候事件时空变化规律进行分析。结果表明:近50年,北疆地区极端降水和气温事件有显著的增加趋势;在北疆不同气候区极端降水指标变化趋势表现不同,其中准噶尔盆地地区增长趋势最慢;冷夜(日) 指数呈现下降趋势,为-4.05 d/10a(-1.51 d/10a),暖夜(日)指数呈现增加趋势,为4.36 d/10a (1.64 d/10a)。线性趋势分析发现,在20世纪80年代后极端降水事件有明显的增加趋势;应用M-K检测年最高气温和年最低气温,发现大多数站点在20世纪80年代后年最高气温和年最低气温也呈现显著增加。这表明在20世纪80年代后,北疆地区的极端气候事件增加趋势更加显著。  相似文献   

5.
RCPs情景下未来青海高原气候变化趋势预估   总被引:2,自引:1,他引:1  
刘彩红  余锦华  李红梅 《中国沙漠》2015,35(5):1353-1361
利用 CMIP5(Coupled Model Intercomparison Project Phase 5)耦合模式结果对 RCPs(Representative Concentration Pathways)情景下的青海高原气温、降水变化趋势及极端气候事件2011-2100年演变特征进行了预估。结果表明:在21世纪,青海高原年平均气温显著升高,RCP2.6、RCP4.5 和 RCP8.5排放情景下增温速率分别为0.06 ℃/10a、0.24 ℃/10a和0.61 ℃/10a。年降水量将明显增加,幅度1.4~7.0 mm/10a。青海高原21世纪与气温、降水有关的事件都有趋于极端化的趋势,极端冷指标下降,极端暖指标均明显上升。极端降水频次增加,强度加重,且变化幅度与排放强度成正比。  相似文献   

6.
变暖背景下陕西极端气候事件变化分析   总被引:3,自引:0,他引:3  
利用1961-2010年陕西省78个气象观测站的逐日最高温度、最低温度、平均温度以及日降水量资料,采用趋势分析方法对该地区极端气候事件的变化进行了分析。结果表明:①近50 a来陕西降水极端事件没有显著的增减变化趋势,但存在明显的阶段性。②近50 a来区域严重干燥事件在显著增加而严重湿润事件趋于减少,2000年以后严重干湿事件均偏多,区域降水有向不均衡、极端化发展的趋势。③区域年极端高(低)温事件在近50 a来呈现显著的增加(减少)趋势,其空间分布具有较好的一致性。极端温度事件的变化在各季节存在差异,冬、春季变暖的趋势比较显著。在显著变暖的20世纪90年代以后,相对于降水极端事件,温度极端事件显现地更为突出。  相似文献   

7.
1961—2017年华北地区降水气候特征分析   总被引:2,自引:0,他引:2  
基于华北地区1961—2017年的均一化降水数据,从降水量、降水强度、降水日数和降水量贡献率等方面揭示了华北地区降水的气候特征。结果表明:1961—2017年华北地区年降水量以3.2 mm/10a的速率减少,其主要原因是夏季降水的减少。空间上,降水量大值区的降水趋势变化呈减少特征;降水强度呈增大趋势,降水的时间分布更加集中;小雨、暴雨和大暴雨及以上量级降水日数和贡献率呈减小趋势,而中雨和大雨则有所增加;分析各等级降水对华北地区空间分布的贡献率,小雨事件对华北地区西部降水的贡献最主要,大雨、暴雨和大暴雨对华北东南部地区降水量的贡献最为主要,这进一步解释了小雨、暴雨和大暴雨及以上量级降水量的减少造成了华北地区西部和东南部地区降水总量的下降。华北地区降水气候特征研究可为区域气候变化以及暴雨、干旱等灾害应对提供科学支撑。  相似文献   

8.
陕西省近47a来降水变化分析   总被引:6,自引:2,他引:4  
利用陕西省78个气象观测台站1961—2007年逐日降水量资料,分析了陕西地区降水变化特征及其对旱涝的影响。结果表明,47a来陕西地区的年降水量呈明显的减少趋势,减少幅度为18.4mm/10a,主要表现为春秋季降水的减少;降水日数的变化呈减少趋势,递减率为3.2d/10a,主要体现在小雨和中雨事件频率的下降;但是平均降水强度总体呈微弱的增强趋势,主要原因是大雨和暴雨频次的增加。在显著变暖的20世纪90年代以后,雨日减少,但暴雨增多,强度增强,该区域降水有向不均衡、极端化发展的趋势,旱涝灾害也有加重趋势。  相似文献   

9.
库姆塔格沙漠周边地区极端降水的时空变化特征   总被引:1,自引:1,他引:0  
根据中国气象局信息中心提供的库姆塔格沙漠周边地区20个气象站1960-2014年逐日降水量资料,分析了库姆塔格沙漠周边地区1960-2014年极端降水的时空变化特征。结果表明:(1)库姆塔格沙漠周边地区极端降水主要集中在夏季且存在很大的地域性差异。(2)1960-2014年库姆塔格沙漠周边地区极端降水事件、年大雨频次、年大降水事件降水量和年降水量显著增加。(3)库姆塔格沙漠周边地区西部极端降水主要由频数很少的暴雨贡献,而东部极端降水则由暴雨和大雨共同贡献。(4)库姆塔格沙漠周边地区极端降水指数在夏季和年尺度的空间分布相似,且强降水指数在年和夏季尺度的空间分布均呈“鞍型场”型。  相似文献   

10.
1961~2008年山东省极端降水事件的变化趋势分析   总被引:3,自引:0,他引:3  
姜德娟  李志  王昆 《地理科学》2011,(9):1118-1124
利用山东省1961~2008年逐日降水资料,采用百分位值法定义了极端降水事件的阈值,然后统计出极端降水事件的频次、降水量、强度和年最大日降水量,并对其空间分布和时间趋势进行分析。结果表明,山东省极端降水事件阈值的空间分布存在明显的地域差异,总体上以泰山为中心向周边逐渐减小;频次的空间差异较小,基本在18 d/a左右;极...  相似文献   

11.
中国西北地区气候态变化对极端天气监测的影响   总被引:1,自引:1,他引:0  
林婧婧  张强 《中国沙漠》2016,36(6):1659-1665
中国西北地区对气候变化的响应极其敏感,西北地区1961-2013年气候变化趋势,分为Ⅰ态(1961-1990年)、Ⅱ态(1971-2000年)、Ⅲ态(1981-2010年)和Ⅳ态(1961-2013年)等4个气候态。利用西北地区年平均气温和降水资料、日最高气温极值和日最大降水量极值资料,基于两种极端天气事件的定义,分析了气候态变化对极端天气监测的影响。结果表明:年平均气温变化受气候态改变的影响较年降水量更为明显。在Ⅰ态和Ⅱ态下进行气温要素评价分析,会突出气温升高的现象,在Ⅲ态下会出现气温降低,气候态改变对降水量等级影响很小。Ⅰ态、Ⅱ态和Ⅲ态下,在20世纪70年代和90年代以来的两个时段内,日极端高温和日极端降水事件均出现增多,其中Ⅰ态增多幅度最大,Ⅲ态的影响最小。在空间分布上,西北地区受气候态影响的敏感区域,主要是新疆北部、青海北部、甘肃中部和东部、宁夏大部和陕西部分地区。  相似文献   

12.
利用银川市国家基准气象站及受人类活动影响较少的麻黄山气象站1961—2015年气温、降水及相对湿度资料,对比分析了城市化及湖泊湿地修复对银川市城市气候演变的影响。结果表明:随着银川市城市化规模的不断扩大,整个城市的暖干化程度日趋严重,城市周边湖泊湿地的修复和重建对银川市大范围气候的调节作用明显弱于城市化的影响。具体表现为:自1961年以来,银川站年平均气温上升速率为0.46 ℃·(10 a) -1,比麻黄山站快0.16 ℃·(10 a)-1,银川市城市化使城市内年平均气温较对比站麻黄山站升高1.1 ℃,特别是2001—2015年上升了0.8 ℃,2011—2015年上升了0.5 ℃,其中冬季上升快,夏季相对稳定,气温年较差减小;从1975年以来,银川市年平均空气相对湿度下降了11.2 %。  相似文献   

13.
新疆极端降水的气候变化   总被引:92,自引:1,他引:91  
杨莲梅 《地理学报》2003,58(4):577-583
采用1961~2000年55个气象台站的逐日降水观测资料,分析近40年来新疆极端降水的气候变化、发展趋势和空间分布差异。用Mann-Kendall法对年极端降水量进行突变检验。研究表明:(1) 只有天山北麓经济带和天山南麓国家级棉花基地阿克苏地区极端降水量和频次有显著增多,尤以80年代以后明显,年极端降水量于1980年发生了气候突变,这种气候变化是由夏半年极端降雨量和频次增多导致的。(2) 新疆极端降水强度无显著变化,极端降水频次的显著增多导致极端降水量的显著增多。(3) 极端降水对年总降水量的贡献天山山区占年降水量的41.9%,北疆北部与和田区域极端降水的贡献为17.2%和21.9%,其它区域在25%~31.3%。年极端降水量距平与年降水量距平有好的相关关系 (除阿克苏地区和焉耆盆地外),说明极端降水量的变化导致年降水量的变化。  相似文献   

14.
增温增湿环境下天山山区降雪量变化   总被引:2,自引:1,他引:1  
邓海军  陈亚宁  陈忠升 《地理科学》2018,38(11):1933-1942
基于APHRO’s气温和降水数据集,运用气温阈值模型,分析了1961~2015年间天山山区降雪量变化特征。研究表明,自1961年以来,天山山区升温趋势显著,速率为0.027℃/a,且冬半年的升温速度大于夏半年。同时,3 000 m海拔以上区域的平均气温上升到0℃左右。冬季降水的增加速率为0.42 mm/a(P<0.01),春季和夏季的降水量呈减少趋势。降雪量变化时空差异显著,3 000 m海拔以上区域降雪随气温的升高而增加,而3 000 m以下区域降雪随气温的升高而减少。最大降雪量气温是控制降雪变化的关键因子,当平均气温低于最大降雪量气温时,随气温升高降雪量呈增加趋势;当平均气温高于最大降雪量气温时,随气温升高降雪量呈减少趋势。  相似文献   

15.
Despite the well-documented effects of global climate change on terrestrial species' ranges,eco-geographical regions as the regional scale of ecosystems have been poorly studied especially in China with diverse climate and ecosystems.Here we analyse the shift of temperature zones in eco-geographical study over China using projected future climate scenario.Projected climate data with high resolution during 1961-2080 were simulated using regional climate model of PRECIS.The number of days with mean daily temperature above 10℃ and the mean temperature of January are usually regarded as the principal criteria to indicate temperature zones,which are sensitive to climate change.Shifts due to future climate change were calculated by comparing the latitude of grid cells for the future borderline of one temperature zone with that for baseline period(1961-1990).Results indicated that the ranges of Tropical,Subtropical,Warm Temperate and Plateau Temperate Zones would be enlarged and the ranges of Cold Temperate,Temperate and Plateau Sub-cold Zones would be reduced.Cold Temperate Zone would probably disappear at late this century.North borderlines of temperature zones would shift northward under projected future climate change,especially in East China.Farthest shifts of the north boundaries of Plateau Temperate,Subtropical and Warm Temperate Zones would be 3.1°,5.3° and 6.6° latitude respectively.Moreover,northward shift would be more notably in northern China as future temperature increased.  相似文献   

16.
Despite the well-documented effects of global climate change on terrestrial species’ ranges, eco-geographical regions as the regional scale of ecosystems have been poorly studied especially in China with diverse climate and ecosystems. Here we analyse the shift of temperature zones in eco-geographical study over China using projected future climate scenario. Projected climate data with high resolution during 1961–2080 were simulated using regional climate model of PRECIS. The number of days with mean daily temperature above 10℃ and the mean temperature of January are usually regarded as the principal criteria to indicate temperature zones, which are sensitive to climate change. Shifts due to future climate change were calculated by comparing the latitude of grid cells for the future borderline of one temperature zone with that for baseline period (1961–1990). Results indicated that the ranges of Tropical, Subtropical, Warm Temperate and Plateau Temperate Zones would be enlarged and the ranges of Cold Temperate, Temperate and Plateau Sub-cold Zones would be reduced. Cold Temperate Zone would probably disappear at late this century. North borderlines of temperature zones would shift northward under projected future climate change, especially in East China. Farthest shifts of the north boundaries of Plateau Temperate, Subtropical and Warm Temperate Zones would be 3.1°, 5.3° and 6.6° latitude respectively. Moreover, northward shift would be more notably in northern China as future temperature increased.  相似文献   

17.
近45年雅鲁藏布江流域极端气候事件趋势分析   总被引:23,自引:2,他引:21  
利用雅鲁藏布江流域10个气象台站1961-2005年逐日最高气温、最低气温和日降水量资料,分析了该流域气温和降水等气候极端事件的变化趋势.研究表明:近45年以来,雅鲁藏布江流域夜间和白天极端低温日数分别以1.94和0.97天/10年的趋势在显著减少,夜间极端低温日数减少在冬季最明显,白天极端低温日数在秋季减少最明显:夜间极端高温日数和白天极端高温日数分别以3.03和1.26天/10年的速度显著增加,夜间极端高温日数增加在夏季最明显,白天极端高温日数增加在冬季最明显;日较差以0.11℃/10a的速度在显著减少,主要发生在冬季:最大的1天降水总量和逐年连续无降水天数有减少趋势,最大的5天降水总量、中雨天数、逐年平均降水强度和逐年连续降水天数有增加趋势,90年代以来增加趋势明显,与该地区经向风与水汽通量增加有关.  相似文献   

18.
A total of 12 indices of temperature extremes and 11 indices of precipitation ex-tremes at 111 stations in southwestern China at altitudes of 285-4700 m were examined for the period 1961-2008. Significant correlations of temperature extremes and elevation in-cluded the trends of diurnal temperature range, frost days, ice days, cold night frequency and cold day frequency. Regional trends of growing season length, warm night frequency, coldest night and warmest night displayed a statistically significant positive correlation with altitude. These characteristics indicated the obvious warming with altitude. For precipitation extreme indices, only the trends of consecutive dry days, consecutive wet days, wet day precipitation and the number of heavy precipitation days had significant correlations with increasing alti-tude owing to the complex influence of atmospheric circulation. It also indicated the increased precipitation mainly at higher altitude areas, whereas the increase of extreme precipitation events mainly at lowers altitude. In addition, the clearly local influences are also crucial on climate extremes. The analysis revealed an enhanced sensitivity of climate extremes to ele-vation in southwestern China in the context of recent warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号