首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
10 m and 2.3 m ice cores were obtained on Austre Brøggerbreen, Spitsbergen in Svalbard (78°53 ' N, 11°56 ' E, 450 m a.s.l.) in September 1994 and in March 1995, respectively. Stratigraphy, bulk density, pH, electrical conductivity, and major ions were obtained from the core samples.
The chemical effect of meltwater percolation through snow/ice is examined. Good correlation between Cl and Na+ was obtained. The ratio of Cl to Na+ was 1.14 which was nearly the same value as in bulk sea water. However, the variation of Cl/Na+ shows that higher ratio occured in the bubble-free ice. Furthermore the Cl ions remain in higher concentration than SO 4 2− or Na+ ions.  相似文献   

2.
Autotrophic and heterotrophic flagellates, microalgae and ciliates sampled at four stations in the White Sea in April 2002 were studied using epifluorescence microscopy. The concentrations of phototrophic 1.5 μm algae in the middle and lower part of the ice core were very high: up to 6.1 ± 108 cells I−1 and 194 μg C I−1. Heterotrophic algae made up the largest proportion of the nanoplankton (2-20 μm) and microplankton (20-200 μm) at depths 10-25 m below the ice. The proportion of ciliates ranged from about 0.01% to 18% at different stations and depths. Most of the ciliate biomass in the ice was made up of typical littoral zone species, whereas the water under the ice was dominated by phototrophic Myrionecta rubra . Ice algae, mainly flagellates in the upper ice layer and diatoms in the bottom ice layer, supported the proliferation of heterotrophs, algae and ciliates in early spring. Small heterotrophs and diatoms from the ice may provide food for early growth and development of pelagic copepods. Mass development of the ice algae in early spring appears typical for the seasonal ice of the White Sea. Ice algae differ in species composition from the spring pelagic community and develop independently in time and space from the spring phytoplankton bloom.  相似文献   

3.
Primary production of the northern Barents Sea   总被引:7,自引:0,他引:7  
The majority of the arctic waters are only seasonally ice covered; the northern Barents Sea, where freezing starts at 80 to 81°N in September, is one such area. In March, the ice cover reaches its greatest extension (74-75°N). Melting is particularly rapid in June and July, and by August the Barents Sea may be ice free. The pelagic productive season is rather short, 3 to 3.5 months in the northern part of the Barents Sea (north of the Polar Front, 75°N), and is able to sustain an open water production during only half of this time when a substantial part of the area is free of ice. Ice algal production starts in March and terminates during the rapid melting season in June and July, thus equalling the pelagic production season in duration.
This paper presents the first in situ measurements of both pelagic and ice-related production in the northern Barents Sea: pelagic production in summer after melting has started and more open water has become accessible, and ice production in spring before the ice cover melts. Judged by the developmental stage of the plankton populations, the northern Barents Sea consists of several sub-areas with different phytoplankton situations. Estimates of both daily and annual carbon production have been based on in situ measurements. Although there are few sampling stations (6 phytoplankton stations and 8 ice-algae stations), the measurements represent both pelagic bloom and non-bloom conditions and ice algal day and night production. The annual production in ice was estimated to 5.3 g Cm-2, compared to the pelagic production of 25 to 30 g Cm-2 south of Kvitøya and 12 to 15 g Cm-2 further north. According to these estimates ice production thus constitutes 16% to 22% of the total primary production of the northern Barents Sea, depending on the extent of ice-free areas.  相似文献   

4.
A series of sensitivity analyses using dielectric, mixture and microwave scattering models is presented. Data from the Seasonal Sea Ice Monitoring and Modeling Site (SIMMS) in 1990 and 1991 are used to initialize the models. The objective of the research is to investigate the role of various geophysical and electrical properties in specifying the total relative scattering cross section (ρ') of snow covered first-year sea ice during the spring period.
The seasonal transition period from the Winter SAR scattering season to Early Melt was shown to signal a transition in dielectric properties which caused the snow volume to become a factor in the microwave scattering process. The effect of the thermal insulation of a snow cover on sea ice was shown to be significant for both ε' and ε'. Higher atmospheric temperatures caused proportionally greater changes in the dielectric properties of the sea ice at the base of the snow cover. Model ρ0 was computed for a range of sensor, sensor-earth geometry, and geophysical properties. In the Winter season the surface roughness terms (ohand L) were shown to have a significant impact on ρ0 when the ice surface was the primary scattering mechanism. Once the snow cover began to warm and water was available in a liquid phase, the ice surface became masked because of the decrease in microwave penetration depths. During this period the water volume variable dominated ρ0, both from its impact on ρv0, and due to its control over the dielectric mismatch created at the air/snow interface.  相似文献   

5.
何剑锋  陈波 《极地研究》1996,7(2):150-163
何剑锋,陈波VerticaldistributionandseasonalvariationinicealgaebiomassincoastalseaiceoffZhongshanStation,EastAntarctica¥Hejianfengan...  相似文献   

6.
Pigment budgets use chlorophyll a and phaeopigment standing stock in combination with their photo-oxidation and sedimentation rates in the euphotic zone to estimate phytoplankton growth and grazing by micro- and macrozooplankton. Using this approach, average phytoplankton growth in the euphotic zone of the Barents Sea was estimated at 0.17 and 0.14 d−1 during spring of 1987 and 0.018 and 0.036 d−1 during late- and postbloom conditions in summer of 1988. Spring growth was 65% lower than the estimates from radiocarbon incorporation, supporting a 33% pigment loss during grazing. Macrozooplankton grazing and cell sinking were the main loss terms for phytoplankton during spring while microzooplankton grazing was dominant in summer.
In contrast to tropical and temperate waters, Arctic waters are characterized by a high phaeopigment: chlorophyll a ratio in the seston. Photooxidation rates of phaeopigments at in situ temperatures (0 ± 1°C) are lower than in temperate waters and vary by a factor of 2 for individual forms (0.009 to 0.018 m−2mol−1). The phaeopigment fraction in both the suspended and sedimenting material was composed of seven main compounds that were isolated using high-performance liquid chromatography and characterized by spectral analysis. The most abundant phaeopigment in the sediment traps, a phaeo-phorbide-like molecule of intermediate polarity (phaeophorbide a3), peaked in abundance in the water column below the 1% isolume for PAR (60-80 m) and showed the highest rate of photooxidation. This phaeopigment was least abundant in the seston when phytoplankton was dominated by prymnesiophytcs but increased its abundance in plankton dominated by diatoms. This distribution suggests that larger grazers feeding on diatoms are the main producers of this phaeopigment.  相似文献   

7.
Carbon fluxes in the Arctic Ocean—potential impact by climate change   总被引:1,自引:0,他引:1  
Because of its ice cover the central Arctic Ocean has not been considered as a sink of atmospheric carbon dioxide. With recent observations of decreasing ice cover there is the potential for an increased air–sea carbon dioxide flux. Though the sensitivity of the carbon fluxes to a climate change can at present only be speculated, we know the responses to some of the forcing, including: melting of the sea ice cover make the air–sea flux operate towards equilibrium; increased temperature of the surface water will decrease the solubility and thus the air-sea flux; and an open ocean might increase primary production through better utilization of the nutrients.
The potential change in air-sea CO2 fluxes caused by different forcing as a result of climate change is quantified based on measured data. If the sea ice melts, the top 100 m water column of the Eurasian Basin has, with the present conditions, a potential to take up close to 50 g C m−2. The freshening of the surface water caused by a sea ice melt will increase the CO2 solubility corresponding to an uptake of ∼ g C m−2, while a temperature increase of 1°C in the same waters will out-gas 8 g C m−2, and a utilization of all phosphate will increase primary production by 75 g C m−2.  相似文献   

8.
Glaciers in Svalbard: mass balance, runoff and freshwater flux   总被引:4,自引:1,他引:4  
Gain or loss of the freshwater stored in Svalbard glaciers has both global implications for sea level and, on a more local scale, impacts upon the hydrology of rivers and the freshwater flux to fjords. This paper gives an overview of the potential runoff from the Svalbard glaciers. The freshwater flux from basins of different scales is quantified. In small basins (A < 10 km2), the extra runoff due to the negative mass balance of the glaciers is related to the proportion of glacier cover and can at present yield more than 20% higher runoff than if the glaciers were in equilibrium with the present climate. This does not apply generally to the ice masses of Svalbard, which are mostly much closer to being in balance. The total surface runoff from Svalbard glaciers due to melting of snow and ice is roughly 25 ± 5 km3 a−1, which corresponds to a specific runoff of 680 ± 140 mm a−1, only slightly more than the annual snow accumulation. Calving of icebergs from Svalbard glaciers currently contributes significantly to the freshwater flux and is estimated to be 4 ± 1 km3 a−1 or about 110 mm a−1.  相似文献   

9.
何剑锋  陈波 《极地研究》1995,7(4):56-67
从1992年4月至12月对东南极中山站近岸当年冰生物量及其环境因子进行了观测。冰底有色层出现在4月下旬和11月下旬,集中于冰底2~3cm,叶绿素a最高含量分别为88.3mg/m3和2810mg/m3,相应的冰藻数量分别为3.5×106和1.21×108个/升。柱总叶绿素a含量的季节性变化极为显著,尤其是以春季的大幅度快速增值为特征,变化范围为1.17~59.7mg/m2,冰藻生物量主要分布在冰底,冬季期间则集中在冰底或冰的中上层。藻类优势种较为单一,秋季优势种为Nitzschialecointei、N.barkleyi和N.cylindrus;春季优势种为Amphiprorakjelmani,Berkeleyarutilans和N.lecointei。中山站近岸冰藻生物量的垂直分布和季节变化以及春季优势种的组成与东南极其它固冰区具有较强的相似性,与亚南极固冰区差异较大。  相似文献   

10.
对1999年春季采集于北极拉普捷夫海东南部的冰藻和冰下浮游植物群落的种类组成进行了分析,并对丰度和生物量进行了统计和对比。藻种以硅藻占绝对优势,其中又以羽纹硅藻为主。优势种集中,主要包括海洋拟脆杆藻(Fragilariopsisoceanica)、圆柱拟脆杆藻(F.cylindrus)、寒冷菱形藻(Nitzschiafrigida)、普罗马勒菱形藻(N. promare)、带纹曲壳藻(Ach nanthestaeniata)、新寒冷菱形藻(Nitzschianeofrigida)、大洋舟形藻(Naviculapelagica)、范氏舟形藻(N. vanhoeffenii)、北极直链藻(Melosiraarctica)、北方舟形藻(N. septentrionalis)、新月细柱藻(Clindrothecaclosterium)和绿藻门的塔形藻(Pyramimonassp. )。微藻主要集中在冰底10cm,丰度为14. 6-1562. 2×104 cells·L-1,平均为639. 0×104 cells·L-1;生物量为7. 89-2093. 5μgC·L-1,平均为886. 9μgC·L-1,总体上比次冰底高1个数量级,比冰下表层水柱高2个数量级。冰底20cm冰柱的累计丰度和生物量平均分别为冰下20m水柱累计量的7. 7和12. 2倍,显示冰藻在春季海冰融化前在近岸生态系统中的重要作用。尽管各站位冰底和冰下表层水柱藻类群落的相似性普遍不高,但整个调查海域冰底和冰下水柱优势种极为相似,春季期间冰藻对冰下浮游植物群落的影响明显。由于  相似文献   

11.
<正> Abundance,biomass and composition of the ice algal and phytoplank-ton communities were investigated in the southeastern Laptev Sea in spring 1999.Diatoms dominated the algal communities and pennate diatoms dominated the dia-tom population.12 dominant algal species occurred within sea ice and underlyingwater column,including Fragilariopsis oceanica,F.cylindrus,Nitzschiafrigida,N.promare,Achnanthes taeniata,Nitzschia neofrigida,Naviculapelagica,N.vanhoef fenii,N.septentrionalis,Melosira arctica,Clindrothecaclosterium and Pyrarnimonas sp.The algal abundance of bottom 10 cm sea icevaried between 14.6 and 1562.2×10~4 ceils l~(-1)with an average of 639.0×10~4cells l~(-1),and the algal biomass ranged from 7.89 to 2093.5μg C l~(-1)with an av-erage of 886.9μg C l~(-1),which were generally one order of magnitude higherthan those of sub-bottom ice and two orders of magnitude higher than those ofunderlying surface water.The integrated algal abundance and biomass of lower-most 20 cm ice column were averagely 7.7 and 12.2 times as those of upper 20 mwater column,respectively,suggesting that the ice algae might play an importantrole in maintaining the coastal marine ecosystem before the thawing of sea ice.Icealgae influenced the phytoplankton community of the underlying water column.However,the“seeding”of ice algae for phytoplankton bloom was negligible be-cause of the iow phytoplankton biomass within the underlying water column.  相似文献   

12.
In the austral summer seasons 2001/02 and 2002/03, Global Positioning System (GPS) data were collected in the vicinity of Vostok Station to determine ice flow velocities over Lake Vostok. Ten GPS sites are located within a radius of 30 km around Vostok Station on floating ice as well as on grounded ice to the east and to the west of the lake. Additionally, a local deformation network around the ice core drilling site 5G-1 was installed.
The derived ice flow velocity for Vostok Station is  2.00 m a−1± 0.01 m a−1  . Along the flowline of Vostok Station an extension rate of about 10−5 a−1 (equivalent to 1 cm km−1 a−1) was determined. This significant velocity gradient results in a new estimate of 28 700 years for the transit time of an ice particle along the Vostok flowline from the bedrock ridge in the southwest of the lake to the eastern shoreline. With these lower velocities compared to earlier studies and, hence, larger transit times the basal accretion rate is estimated to be 4 mm a−1 along a portion of the Vostok flowline. An assessment of the local accretion rate at Vostok Station using the observed geodetic quantities yields an accretion rate in the same order of magnitude. Furthermore, the comparison of our geodetic observations with results inferred from ice-penetrating radar data indicates that the ice flow may not have changed significantly for several thousand years.  相似文献   

13.
Sagitta elegans var. arctica , the dominant and locally abundant chaetognath in the Barents sea, was collected from the upper 50 m in Arctic water masses during an ice edge bloom in early summer 1983. In situ sampling was made along a transect at discrete depths with a 375 μm mesh net mounted on a plankton pump. Prey composition and feeding rate were estimated from gut content analyses on preserved specimens combined with data on digestion times from previous studies. No diel variations were found in feeding activity. The diet reflected the composition of available prey in the zooplankton and consisted mainly of nauplii, small copepods (early stages of Calanus, Pseudocalanus, Oithona ) and appendicularians. Prey usually occurred as a single item in the gut.
Mean prey body width related to chaetognath head width yielded a power curve, with a large amount of scatter, showing that chaetognaths in the Barents Sea can use a wide spectrum of prey sizes. Similarly, maximum prey body width was related to chaetognath head width as a power curve, reflecting the existence of an upper prey size limitation due to the chaetognath mouth size. The highest abundance of S. elegans (5 specimens m−3), and the most intense feeding activity, were found within or beneath the maximum zooplankton biomass. Further, distribution and feeding were affected by light intensity, salinity, and the population structure of 5. elegans var. arctica.
Estimated feeding rates ranged between 0.30 and 1.05 prey items per chaetognath day−1. This corresponds to an ingestion of 8-54 μg AFDW day−1, and a consumption of 0.08–0.22% of the zooplankton standing stock day−1. From these rates, the calculated yearly ingestion by S. elegans var. arctica was 3% of the annually secondary production.  相似文献   

14.
Micromonas pusilla (Butcher) Manton & Parke appears to be a prominent member of the Barents Sea picoplankton community as revealed by the serial dilution culture method. Cell numbers frequently exceeded 107 cells 1−1, though they usually varied between 103and 106 cells l−1. A number of other identified and unidentified taxa were recorded and quantified. Distribution relative to the marginal ice zone is reported.  相似文献   

15.
we have obtained one year of measurements from a subsurface instrumented mooring carrying two current meters and one bottom pressure recorder in the strait between Nordaustlandet and Kvitøya in the northeastern Svalbard archipelago. The observations show a mixed tide with typical amplitudes 0.4 db and 10cm sec−1. The semidiurnal tide is characterized by a progressive wave propagating toward the south. together with a cross-channel baroclinic mode. The annual average (non-tidal) current is less than 2cm sec−1 toward the north-east, suggesting that the transport into the Arctic Ocean is approximately 0.2 × 106m3s−1.  相似文献   

16.
More than 250 radiocarbon dates of lacustrine algae and marine shells afford a chronology for Ross Sea drift in eastern Taylor Valley. Dates of algae that lived in ice-dammed Glacial Lake Washburn show that grounded Ross Sea ice blocked the mouth of Taylor Valley between 8340 and 23,800 14C yr bp . Ross Sea ice was at its maximum position at the Hjorth Hill moraine between 12,700 and 14,600 14C yr bp and was within 500m distance of this position as late as 10,794 14C yr bp . The implication is that the flow line of the Ross Sea ice sheet which extended around northern Ross Island and across McMurdo Sound to Taylor Valley must have remained intact, and hence that a grounded ice sheet must have existed east of Ross Island as late as 8340 14C yr bp . Evidence from ice-dammed lakes in Taylor Valley and from shells from McMurdo Sound suggests grounding-line retreat from the vicinity of Ross Island between 6500 and 8340 14C yr bp . If this is correct, then most recession to the present-day grounding line on the Siple Coast took place subsequently in the absence of significant deglacial sea-level rise. Rising sea level may have triggered internal mechanisms within the ice sheet that led to retreat, but did not in itself drive continued ice-sheet recession. Ice retreat, once set in motion, continued in the absence of sea-level forcing. If correct, this hypothesis implies that the grounding line could continue to recede into the interior reservoir of the West Antarctic Ice Sheet.  相似文献   

17.
在 CHINARE- 1 5考察期间对中山站及毗邻地区的湖泊和冰雪进行了采样。它们的CODMn指数与中国《地面水环境质量标准》相比 ,可分为三类 :一类水质所占比重最大 ,大约为56% ,二类和三类分别为 37%、7%。各类水体的 CODMn指数主要为自然源所贡献 ,人为污染不明显。湖水的 CODMn指数是生物生长状况、有机质含量、盐度和水体氧化还原程度的综合体现 ,新鲜降雪样的 CODMn指数指示了该地区的大气洁净度。  相似文献   

18.
222 Rn and 226Ra distributions beneath the sea ice of the Barents Sea revealed that ice cover has varied effects on air-sea gas exchange. Twice, once in late summer and once in late winter, seawater samples from the top meter below drill holes had 222Rn activities that were not lower than their 226,Ra activities, indicating the existence of secular equilibrium and a negligible net exchange of 222Rn and other gases with the atmosphere. However, seawater in the upper 20-85 m usually exhibited at least some 222Rn depletion; 222Rn-to-226Ra activity ratios tended to have 'ice-free' values (0.3-0.9) in the summer and values between 0.9 and 1.0 in the winter. Integrated 222Rn depletions and piston velocities in both seasons typically fell in the lower 25% of the ranges for ice-free seawater, suggesting that a moderate but far from total reduction in gas exchange is normally caused by ice cover and/or meltwater. The results demonstrate that sea-ice interference with the oceanic uptake of atmospheric gases such as CO, is not well understood and needs further investigation.  相似文献   

19.
The Barents Sea is a productive, shallow, high-latitude marine ecosystem with complex hydrographic conditions. Zonal hydrographic bands defined by a coastal current. North Atlantic Water, the Polar Front, and the seasonally variable marginal ice edge zone create a meridional zonation of the ecosystem during the spring-summer transition. The features reveal themselves in satellite imagery and by high-resolution (vertical and horizontal) physical-optical-biological sampling.
Surprisingly, the long-term (7-year) mean of Coastal Zone Color Scanner (CZCS) imagery reveals the Barents Sea as an anomalous "blue-water" regime at high latitudes that are otherwise dominated by satellite-observed surface blooms. A combination of satellite imagery and in situ bio-optical analyses indicate that this pattern is caused by strong stratification in summer with surface nutrient depletion. The onset of stratification of the entire region is linked to the extent of the winter ice edge: cold years with extensive sea ice apparently stratify early due to ice melt; warm years stratify later, perhaps due to weaker thermal stratification of the Atlantic waters (e.g. Skjoldal et al. 1987). The apparent "low chlorophyll" indicated by the CZCS 7-year mean is partly due to sampling error whereby the mean is dominated by images taken later in the summer. In fact, massive blooms of subsurface phytoplankton embedded in the pycnocline persist throughout the summer and maintain substantial rates of primary production. Further, these subsurface blooms that are not observed by satellite are responsible for dramatic gradients in the beam (c1) and spectral diffuse (k) attenuation coefficients. The Barents Sea exemplifies the need to couple satellite observations with spatially and temporally resolved biogeographic ecosystem models in order to estimate the integrated water column primary production, mass flux or spectral light attenuation coefficients.  相似文献   

20.
Dynamics of plankton growth in the Barents Sea: model studies   总被引:2,自引:0,他引:2  
1-D and 3-D models of plankton production in the Barents Sea are described and a few simulations presented. The 1-D model has two compartments for phytoplankton (diatoms and P. pouchelii) , three for limiting nutrients (nitrate, ammonia and silicic acid), and one compartment called "sinking phytoplankton". This model is coupled to a submodel of the important herbivores in the area and calculates the vertical distribution in a water column. Simulations with the 3-D model indicate a total annual primary production of 90-120g C m−2 yr−1 in Atlantic Water and 20-50g C m−2 yr−1 in Arctic Water, depending on the persistence of the ice cover during the summer.
The 3-D model takes current velocities, vertical mixing, ice cover, and temperature from a 3-D hydrodynamical model. Input data are atmospheric wind, solar radiation, and sensible as well as latent heat flux for the year 1983. The model produces a dynamic picture of the spatial distribution of phytoplankton throughout the spring and summer. Integrated primary production from March to July indicates that the most productive area is Spitsbcrgenbanken and the western entrance to the Barents Sea. i.e. on the northern slope of Tromsøflaket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号