首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中国森林生态系统的植物碳贮量及其影响因子分析   总被引:101,自引:2,他引:99  
赵敏  周广胜 《地理科学》2004,24(1):50-54
利用中国第四次(1989~1993年)森林资源清查资料,指出中国森林植被的总碳贮量和碳密度分别为 3 778.1Tg(1Tg = 1012 g)和41.321 Mg/hm2(1 Mg= 106 g),其分布很不均衡,东北和西南各省的碳贮量和碳密度较大。中国森林碳贮量约占世界的1.1%,森林碳密度低于世界平均水平,但中国森林以中、幼龄林为主,占80%以上,表明中国森林植被具有巨大的固碳潜力,对全球碳循环具有重要作用。同时,采用多元线性回归模型、标准系数法定量分析了气候因子对森林植被碳贮量的影响程度,指出气温对森林植被碳贮量的贡献大于降水。  相似文献   

2.
The paper respectively adopted physio-chemical properties of every soil stratum from 2473 soil profiles of the second national soil survey. The corresponding carbon content of soils is estimated by utilizing conversion coefficient 0.58. In the second soil survey, the total amount of soil organic carbon is about 924.18×108t and carbon density is about 10.53 kgC/m2 in China according to the area of 877.63×106 hm2 surveyed throughout the country. The spatial distribution characteristics of soil organic carbon in China is that the carbon storage increases when latitude increases in eastern China and the carbon storage decreases when longitude reduces in northern China. A transitional zone with great variation in carbon storage exists. Moreover, there is an increasing tendency of carbon density with decrease of latitude in western China. Soil circle is of great significance to global change, but with substantial difference in soil spatial distribution throughout the country. Because the structure of soil is inhomogeneous, it could bring some mistakes in estimating soil carbon reservoirs. It is necessary to farther resolve soil respiration and organic matter conversion and other questions by developing uniform and normal methods of measurement and sampling.  相似文献   

3.
Estimation of soil organic carbon reservoir in China   总被引:6,自引:0,他引:6  
1 IntroductionResearch on global change has aroused many scientists' attention to the balance, storage and spatial distribution of carbon in the terrestrial ecosystem. The carbon stored in soil is 2.5-3 times as much as that stored in plants[1,2], so the distribution and conversion of carbon in humus has become one of the global research foci on organic carbon at present[3]. Organic carbon and nitrogen contents in soils are not only important components of soils but also the most important eco…  相似文献   

4.
中国森林生态系统植被碳储量 时空动态变化研究   总被引:25,自引:0,他引:25  
森林是陆地生态系统的主体, 在全球碳循环中起着十分重要的作用。本文利用20 世纪70 年代以来的六次森林清查资料, 结合森林生物量实测数据, 采用分树种、分龄组的生物量—蓄积 拟合关系, 估算了中国20 世纪70 年代以来森林植被碳储量的动态变化。结果表明: 我国六次森 林资源清查中森林的植被总碳储量分别为3.8488PgC、3.6960PgC、3.759PgC、4.1138PgC、 4.6563PgC 和5.5064PgC, 虽然存在一定的波动现象, 但总体增长趋势明显, 尤其是80 年代以来, 植被碳储量净增加1.8104PgC, 平均每年以0.0823PgC 的速率增加, 这表明80 年代以来我国森林 植被一直起着明显的CO2 汇的作用。从碳密度的变化看, 70 年代以来我国森林植被平均碳密度 增长了3.001Mgha -1, 其中幼龄林与中龄林碳密度分别增长5.2871Mgha -1 和0.6022 Mgha -1<,sup>, 而成 熟林碳密度却降低了0.7581Mgha -1, 可见中国森林植被的碳汇功能主要来自于人工林的贡献, 而 且随着幼龄林、中龄林碳储量和碳密度的增长, 中国森林植被的碳汇功能将进一步增强。我国森 林植被碳储量和碳密度空间差异显著, 森林植被碳库主要集中于东北和西南地区, 平均碳密度以 西南、东北以及西北地区为大, 中国森林植被碳储量和碳密度的这种空间分布规律与人类活动对 森林的干扰强度密切相关。  相似文献   

5.
It is very important in accurately estimating the forests' carbon stock and spatial distribution in the regional scale because they possess a great rate in the carbon stock of the terrestrial ecosystem. Yet the current estimation of forest carbon stock in the regional scale mainly depends on the forest inventory data, and the whole process consumes too much labor, money and time. And meanwhile it has many negative influences on the forest carbon storage updating. In order to figure out these problems, this paper, based on High Accuracy Surface Modeling (HASM), proposes a forest vegetation carbon storage simulation method. This new method employs the output of LPJ-GUESS model as initial values of HASM and uses the inventory data as sample points of HASM to simulate the distribution of forest carbon storage in China. This study also adopts the seventh forest resources statistics of China as the data source to generate sample points, and it also works as the simulation accuracy test. The HASM simulation shows that the total forest carbon storage of China is 9.2405 Pg, while the calculated value based on forest resources statistics are 7.8115 Pg. The forest resources statistics is taken based on a forest canopy closure, and the result of HASM is much more suitable to the real forest carbon storage. The simulation result also indicates that the southwestern mountain region and the northeastern forests are the important forest carbon reservoirs in China, and they account for 39.82% and 20.46% of the country's total forest vegetation carbon stock respectively. Compared with the former value (1975-1995), it mani- fests that the carbon storage of the two regions do increase clearly. The results of this re- search show that the large-scale reforestation in the last decades in China attains a signifi- cant carbon sink.  相似文献   

6.
Soil humic carbon is an important component of soil organic carbon (SOC) in terrestrial ecosystems. However, no study to date has investigated its geographical patterns and the main factors that influence it at a large scale, despite the fact that it is critical for exploring the influence of climate change on soil C storage and turnover. We measured levels of SOC, humic acid carbon (HAC), fulvic acid carbon (FAC), humin carbon (HUC), and extractable humus carbon (HEC) in the 0–10 cm soil layer in nine typical forests along the 3800-km North-South Transect of Eastern China (NSTEC) to elucidate the latitudinal patterns of soil humic carbon fractions and their main influencing factors. SOC, HAC, FAC, HUC, and HEC increased with increasing latitude (all P<0.001), and exhibited a general trend of tropical < subtropical < temperate. The ratios of humic C fractions to SOC were 9.48%–12.27% (HAC), 20.68%–29.31% (FAC), and 59.37%–61.38% (HUC). Climate, soil texture, and soil microbes jointly explained more than 90% of the latitudinal variation in SOC, HAC, FAC, HEC, and HUC, and interactive effects were important. These findings elucidate latitudinal patterns of soil humic C fractions in forests at a large scale, and may improve models of soil C turnover and storage.  相似文献   

7.
基于HASM的中国森林植被碳储量空间分布模拟   总被引:2,自引:1,他引:1  
赵明伟  岳天祥  赵娜  孙晓芳 《地理学报》2013,68(9):1212-1224
当前区域尺度上森林碳储量估算主要依据森林资源清查数据,整个过程不仅消耗大量人力、物力,而且十分耗时,严重影响了森林碳储量估算的时效性。针对这一问题,本文提出了基于HASM的森林植被碳储量模拟方法,该方法以全球植被动态模型LPJ-Guess 输出的植被碳储量为驱动场,以森林清查样地数据为精度控制点,模拟生成中国陆地森林碳储量分布情况。研究以第7 次中国森林资源清查数据作为精度控制点数据源,同时作为本文模拟方法的精度验证。结果表明,中国森林碳储量为9.2405 Pg,考虑到森林资源清查是基于一定的郁闭度进行的,因此HASM模拟的结果与根据森林资源清查结果计算得出的7.8115 Pg 相比更符合实际情况,西南山区和东北林区是中国森林最主要的碳库,其碳储量分别占中国森林植被碳储量的39.82%和20.46%。同时与之前(1975-1995 年) 相比具有较大幅度的增长,表明近几十年来中国坚持大规模植树造林的碳汇效果显著。同时也表明基于HASM的森林植被碳储量空间分布模拟方法是有效的,模拟结果合理且精度较高,表明该方法在全球尺度上森林植被碳储量模拟及其它生态系统中碳储量模拟中具有应用潜力。  相似文献   

8.
The National Forest Inventory (NFI) is an important resource for estimating the national carbon balance (These data were unpublished data, and we could only obtain the data before 2008 through data search by now). Based on the data from sample plots, the literature, and NFI, as well as the relationships between volume, biomass, annual litterfall and soil respiration of different forest types, the net ecosystem production (NEP), changes in forest biomass carbon storage (△Cbiomass) and non-respiratory losses (NR) of China’s forests during 1999-2008 were estimated, and the forest soil carbon sequestration (△Csoil) was assessed according to the carbon balance principle of the forest ecosystem (△Csoil = NEP - NR - Cbiomass). The results showed that the total NEP, Cbiomass, NR and △Csoil values for China’s forests were 157.530, 48.704, 31.033 and 77.793 Tg C yr-1 respectively, and average NEP, △Cbiomass, NR, and △Csoil values were 101.247, 31.303, 19.945 and 49.999 g C m-2 yr-1 respectively. There were large spatial differences in forest soil carbon sequestration in different parts of China. The forest soil in Jiangxi, Hunan, Zhejiang, Fujian, Anhui, Shanxi, Shaanxi, Guangxi and Liaoning served as carbon sources and the carbon released was about 25.507 Tg C yr-1. The other 22 provinces served as carbon sinks and the average carbon sequestration by forest soil came to 103.300 Tg C yr-1. This research established a method for evaluating soil carbon sequestration by China’s forests based on the NFI, which is a useful supplement to current statistical data-based studies on the forest ecosystem carbon cycle, and can promote comparable studies on forest soil carbon sequestration with consistent research methods at the regional scale.  相似文献   

9.
基于安徽省霍山县第二次土壤普查数据,提取2005~2008年耕地监测数据资料建成土壤有机碳含量数据库,对耕地监测的有机碳数据按县域内不同空间尺度进行了统计分析。结果表明:20年来该县农田表土有机碳含量明显提高,显示农田土壤的有机碳库积累。县域范围内耕地土壤有机碳含量的不同尺度的变异系数介于4.53%~14.91%。村民组(自然村)单元内变异性最高,有机碳含量乡镇间变异性低于行政村间变异性。因此,从县级尺度的农田土壤碳计量来说,以乡镇尺度采样研究比村级尺度可靠性要高。影响县域内农田土壤有机碳含量与变异的动力因子主要是农业利用和农田基本建设,茶、桑和水稻利用下农田土壤有机碳含量明显较高。  相似文献   

10.
Based on more than 300 forest sample plots surveying data and forestry statistical data, remote sensing information from the NOAA AVHRR database and the daily meteorological data of 300 stations, we selected vigor, organization and resilience as the indicators to assess large-scale forest ecosystem health in China and analyzed the spatial pattern of forest ecosystem health and influencing factors. The results of assessment indicated that the spatial pattern of forest ecosystem health showed a decreasing trend along latitude gradients and longitude gradients. The healthy forests are mainly distributed in natural forests, tropical rainforests and seasonal rainforests; secondarily orderly in northeast national forest zone, subtropical forest zonation and southwest forest zonation; while the unhealthy forests were mainly located in warm temperate zone and Xinjiang-Mongolia forest zone. The coefficient of correction between Forest Ecosystem Health Index (FEHI) and annual average precipitation was 0.58 (p<0.01), while the coefficient of correlation between FEHI and annual mean temperatures was 0.49 (p<0.01), which identified that the precipitation and temperatures affect the pattern of FEHI, and the precipitation's effect was stronger than the temperature's. We also measured the correlation coefficient between FEHI and NPP, biodiversity and resistance, which were 0.64, 0.76 and 0.81 (p<0.01) respectively. The order of effect on forest ecosystem health was vigor, organization and resistance.  相似文献   

11.
森林生态系统健康评价指标在中国的应用   总被引:1,自引:0,他引:1  
1IntroductionDuring recent two decades, the idea of "health" as an appropriate paradigm to assess the condition of ecosystems, is watchword of contemporary ecosystem management. The phrase "forest ecosystem health" has been used with increasing frequency in the context of forestry and natural resource management. Many scientists give the definitions from socio-economic and ecological perspectives (Rapport, 1992; USDA Forest Service, 1993; O'Laughlin, 1996; Allen, 2001). Forest health is a …  相似文献   

12.
净初级生产力(NPP)作为生态系统物质与能量循环的基础,是区域和全球尺度碳循环和碳收支研究的重要组成部分。研究区域和全球尺度的净初级生产力主要依靠模型手段实现,过程和遥感模型是目前广泛使用的两种模型形式。本文搜集并整理了基于过程模型和遥感模型对我国陆地生态系统净初级生产力的模拟结果,分析了中国陆地生态系统净初级生产力的时间变化及对未来气候变化的响应特征,旨在对其进行综合评价。结果表明,中国陆地生态系统NPP平均为(2.828±0.827)PgC.a-1。1982-1998年的年际变化特征上,NPP平均每年增加0.027 PgC,年增长率为1.07%,总体上呈现在波动中逐年上升的趋势。不同植被类型的单位面积NPP总体表现为常绿阔叶林显著高于其他植被类型,但不同研究结果间变化范围很大;落叶针叶林、常绿针叶林和落叶阔叶林相差较小;农作物低于阔叶林,但高于针叶林;草地和荒漠均位于低值区,但前者显著高于后者。不同植被类型的NPP总量总体表现为农作物和草地位居前两位,两者之和高达各植被类型NPP总量之和的58.34%;除灌丛和常绿针叶林外,其余植被类型均不足总量的10%。在未来气候情景下,中国陆地生态系统NPP总体上可能表现为先增加后减小的趋势。  相似文献   

13.
北京森林碳储量海拔梯度上的变化趋势(英文)   总被引:2,自引:0,他引:2  
像北京这样的中国城市化地区的快速人口和GDP增长已经导致了来自化石燃料的大量CO2排放。森林被认为是最重要的碳汇,可以中和碳排放。本研究基于2009年森林清查数据和森林植被碳含量,采用生物量扩展因子(BEFs)方法评价了北京森林植被碳储量,利用森林凋落物与森林生物量的比例以及凋落物碳含量计算了凋落物碳储量,利用土壤厚度、容重和SOM含量计算了土壤碳储量。我们总结得出,阔叶林是北京森林主要碳库,森林碳储量主要分布在海拔60m的平原地区和60-600m的低山地区。北京森林碳密度几乎随着海拔增加而增加,但是在海拔200-400m地区略有下降,其中植被碳密度在60m的平原地区相对较高,这主要是由于碳密度较高的杨树和落叶松人工林的比例较高以及灌溉、施肥等促进植物碳累积的人工管理措施较多;森林土壤碳密度几乎随着海拔增加而增加,这主要是由于土壤碳输出随着海拔增加而逐渐下降,因为林下种植、灌溉和施肥加速了低海拔地区的土壤异氧呼吸但随着海拔增加而下降,同时海拔200-800m的低山地区常见的土壤侵蚀也会随着林下种植等干扰措施的减少而下降。本研究可以为区域森林生态系统管理者提供保护森林生态系统和改善森林碳储量提供科学知识。  相似文献   

14.
森林是重要的陆地生态系统碳汇。1990–2007年间全球森林平均每年从大气中吸收固定2.4±0.4PgC,但对全球森林未来固碳量的评价多是基于气候因素的过程模型的模拟结果,很少有基于森林调查样地数据评价全球森林固碳潜力的研究。我们收集整理野外调查和已发表的成熟林生物量数据728条,建立全球成熟林生物量数据库。根据成熟林地上生物量碳储量空间插值,得到全球森林地上生物量碳容量,进而评估全球森林地上生物量的固碳潜力。结果显示:(1)全球成熟林地上生物量自赤道向两极整体呈递减趋势,但最大值出现在中纬度区;(2)气温和降水是影响成熟林地上生物量的重要因素;(3)全球森林地上生物量碳容量约为586.2±49.3PgC,其地上生物量固碳潜力为313.4PgC。因此,充分发挥现有森林的碳吸存能力,减少对现有森林碳库的干扰,是土地利用变化之外减缓温室气体排放的又一可选途径。  相似文献   

15.
森林净初级生产力(NPP)反映了森林植被固定和转换光合产物的能力,表示了森林碳汇功能强度,也是评价森林植被的演替状况以及陆地生态系统承载力的主要指标。基于遥感、清查资料等方法估算NPP已经取得了一些进展,但传统的研究方法受限于观测(调查)年份,难以有效获取长时间尺度的区域森林种群或群落年际NPP。树轮资料较为有效地反映了历史时期森林植被的逐年生长状况,从而在估算高精度且长时间尺度区域森林种群及群落NPP中具有较大的优势。本文对利用树轮资料重建区域森林NPP的两种主要方法进行了总结,第一种方法主要是依据树轮资料提供的立木逐年生长量进行生物量以及NPP的估算;第二种方法则是利用树轮指数与其他植被指数的相关性间接反演过去时间段区域森林群落NPP的变化。上述两种估算NPP的方法均存在较多的限制性,未来利用树轮资料估算NPP的时空精度仍有待提高。  相似文献   

16.
Estimations of the carbon stored in the above-ground biomass are important from traditional, ecological and forestry to contemporary climate and land-use change perspectives. Carbon sequestration and storage is reduced by deforestation and degradation and enhanced by forest regrowth and expansion. Recent studies show that forests are experiencing redistribution at different scales. Regions with steep topographical gradients simultaneously experience these four processes, upon which the final carbon balance in forests depends, but large scale patterns of above-ground carbon changes within forests have generally been overlooked. We developed above-ground carbon maps for 2000 and 2012 in a heterogeneous environment of subtropical Andes to a) explore the patterns of change in relation to biophysical variables and forests types and b) calculate the relative contribution of within forest carbon change and of forest expansion/deforestation to total above-ground carbon balance. Above-ground carbon trends showed spatial variation: biomass losses occurred in dry forests at low-mid elevations, while gains were restricted to higher elevation forests. Within forest changes implied larger changes in carbon stocks (+361976 Mg C) and in an opposite direction than deforestation and reforestation (−56750.16 Mg C), and determined an overall stability in terms of above-ground carbon for the study period. These contrasting patterns of above-ground change may be representative of larger heterogeneous regions such as tropical and subtropical Andes, and highlight the need of explicitly accounting for within forests change in current carbon regional balances.  相似文献   

17.
基于数字相机图像的长白山森林物候模拟   总被引:1,自引:1,他引:0  
植被物候作为全球植被和陆面过程模型的重要参数,对其状态的准确描述在很大程度上决定着模型的模拟精度。温带森林作为北半球中高纬度地区主要植被类型及全球重要碳源,研究其物候期的变化将提高对区域碳通量的估算精度。本文以长白山阔叶红松林为研究对象,探讨了数字相机图像在物种尺度物候模拟及群落尺度物候模型改进方面的作用,结果如下:(1)物种尺度上,利用数字相机能获取两种植被(红松,蒙古栎)较为准确的物候期(与人工观测数据比较,绝对误差〈3d);(2)群落尺度上,基于数字相机图像获取的冠层状态数据提高了基于气象数据的物候模型(GSI:growingseasonindex)的模拟精度(R2=0.9),尤其是秋季物候模拟,为进一步分析群落物候的环境控制因子提供了有力手段。研究表明:数字相机不仅能够提供精确地基于物种尺度的物候数据,还可为遥感物候数据的校正提供参考,同时为生态模型中物候模块的改进及降低区域尺度碳通量模拟不确定性提供了新的思路。  相似文献   

18.
采用1982-2015年的GLASS-LAI (Global Land Surface Satellite-Leaf Area Index )遥感数据和CRU(Climatic Research Unit)气象数据,利用Mann-Kendall趋势法分析了过去34 a全球9种植被的叶面积指数(Leaf Area Index,LAI)时空变化特征;使用相关分析和逐步线性回归分别探讨了全球9种植被LAI与降水、温度的年际与月关系。结果表明:全球植被总体呈现绿化趋势,其中变化较大的是草原、稀树草原、常绿阔叶林和多树草原;在植被生长的绿化和褐化趋势中,面积占比最大的植被类型均为草原,说明草原生态系统易受环境因素的影响。从年际关系看,草原和开放灌丛的LAI与年均降水多呈正相关关系,而温度对不同纬度植被的LAI存在正负2种影响。其原因为温度升高对中低纬度的植被生长有抑制作用,而对高纬度地区植被生长有促进作用。从年内关系看,南半球降水和温度共同作用于植被的生长;而北半球除常绿阔叶林的生长与温度关系更为紧密外,其它类型植被的生长主要受降水影响。逐步线性回归结果表明,当月温度的升高对常绿阔叶林、混交林和农作物的生长具有促进作用,而多树草原和草原2种植被的生长受当月降水的影响最为显著。  相似文献   

19.
For estimating the altitude-distribution pattern of carbon stocks in desert grasslands and analyzing the possible mechanism for this distribution, a detailed study was performed through a series of field vegetation surveys and soil samplings from 90 vegetation plots and 45 soil profiles at 9 sites of the Hexi Corridor region, Northwestern China. Aboveground, belowground, and litter-fall biomass-carbon stocks ranged from 43 to 109, 23 to 64, and 5 to 20 g/m2, with mean values of 80.82,44.91, and 12.15 g/m2, respectively. Soil-carbon stocks varied between 2.88 and 3.98 kg/m2, with a mean value of 3.43 kg/m2 in the 0–100-cm soil layer. Both biomass-and soil-carbon stocks had an increasing tendency corresponding to the altitudinal gradient. A significantly negative correlation was found between soil-carbon stock and mean annual temperature, with further better correlations between soil-and biomass-carbon stocks, and mean annual precipitation. Furthermore, soil carbon was found to be positively correlated with soil-silt and-clay content, and negatively correlated with soil bulk density and the volume percent of gravel. It can be concluded that variations in soil texture and climate condition were the key factors influencing the altitudinal pattern of carbon stocks in this desert-grassland ecosystem. Thus, by using the linear-regression functions between altitude and carbon stocks, approximately 4.18 Tg carbon were predicted from the 1,260 km2 of desert grasslands in the study area.  相似文献   

20.
Ecosystem carbon allocation can indicate ecosystem carbon cycling visually through its quantification within different carbon pools and carbon exchange. Using the ecological inventory and eddy covariance measurement applied to both a mature temperate mixed forest in Changbai Mountain (CBM) and a mature subtropical evergreen forest in Dinghu Mountain (DHM), we partitioned the ecosystem carbon pool and carbon exchange into different components, determined the allocation and analyzed relationships within those components. Generally, the total carbon stock of CBM was slightly higher than that of DHM due to a higher carbon stock in the arbor layer at CBM. It was interesting that the proportions of carbon stock in vegetation, soil and litter were similar for the two mature forests. The ratio of vegetation carbon pool to soil carbon stock was 1.5 at CBM and 1.3 at DHM. However, more carbon was allocated to the trunk and root from the vegetation carbon pool at CBM, while more carbon was allocated to foliage and branches at DHM. Moreover, 77% of soil carbon storage was limited to the surface soil layer (0-20 cm), while there was still plentiful carbon stored in the deeper soil layers at DHM. The root/shoot ratios were 0.30 and 0.25 for CBM and DHM, respectively. The rates of net ecosystem productivity (NPP) to gross ecosystem productivity (GPP) were 0.76 and 0.58, and the ratios of ecosystem respiration (Re) to GPP were 0.98 and 0.87 for CBM and DHM, respectively. The net ecosystem carbon exchange/productivity (NEP) was 0.24 t C ha-1 yr-1 for CBM and 3.38 t C ha-1 yr-1 for DHM. Due to the common seasonal and inter-annual variations of ecosystem carbon exchange resulting from the influence of environmental factors, it was necessary to use the long record dataset to evaluate the ecosystem sink capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号