首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The upper Campanian–Lower Eocene synorogenic sedimentary wedge of the Ranchería Basin was deposited in an intraplate basin resting on a tilted continental crustal block that was deformed by collision and subsequent subduction of the Caribbean Plate. Upper Cretaceous–Lower Eocene strata rest unconformably upon Jurassic igneous rocks of the Santa Marta Massif, with no major thrust faults separating the Santa Marta Massif from the Ranchería Basin. The upper Campanian–Lower Eocene succession includes, from base to top: foraminifera‐rich calcareous mudstone, mixed carbonate–siliciclastic strata and mudstone, coal and immature fluvial sandstone beds. Diachronous collision and eastward tilting of the plate margin (Santa Marta Massif and Central Cordillera) favoured the generation of accommodation space in a continuous intraplate basin (Ranchería, Cesar and western Maracaibo) during the Maastrichtian to Late Palaeocene. Terrigenous detritus from the distal colliding margin filled the western segments of the continuous intraplate basin (Ranchería and Cesar Basins); in the Late Paleocene, continental depositional systems migrated eastwards as far as the western Maracaibo Basin. In Early Eocene time, reactivation of former extensional structures fragmented the intraplate basin into the Ranchería‐Cesar Basins to the west, and the western Maracaibo Basin and Palmar High to the East. This scenario of continent–oceanic arc collision, crustal‐scale tilting, intraplate basin generation and fault reactivation may apply for Upper Cretaceous–Palaeogene syntectonic basins in western Colombia and Ecuador, and should be considered in other settings where arc–continent collision is followed by subduction.  相似文献   

2.
Magnetic data were collected during the Wilkes (1973) and Seacarib II (1987) cruises to the Cayman trough. A new interpretation of magnetic data is carried out. An isochron pattern is drawn up from our anomaly identifications. An early Eocene age (49 Ma, Ypresian) for Cayman trough opening is proposed instead of the late Oligocene or middle Eocene ages suggested by previous studies. Our plate tectonic reconstruction is simpler and fits the on-land geology (Jamaica and Cuba) and the tectonics. Our reconstruction shows a southward propagation of the spreading centre between magnetic anomalies 8 and 6 (26 and 20 Ma). The trough width increases by 30 km in this period. The southward propagation of the Cayman spreading centre from the Middle Oligocene to the Early Miocene induced the development of the restraining bend of the Swan Islands, the formation of a 1 km high scarp on the eastern trace of the Cayman trough transform fault (Walton fault) and the formation of a pull-apart basin (Hendrix pull-apart). Magnetic anomalies and magnetization maps give information about the deformation and the rocks. The proposed evolutionary model of the Cayman trough from the inception of seafloor spreading to the present configuration is presented in relation to the tectonic escape of the northern boundary of the Caribbean plate from the Maastrichtian to the Present.  相似文献   

3.
Exceptional exposure of the forearc region of NW Peru offers insight into evolving convergent margins. The sedimentary fill of the Talara basin spans the Cretaceous to the Eocene for an overall thickness of 9000 m and records within its stratigraphy the complicated history of plate interactions, subduction tectonics, terrane accretion, and Andean orogeny. By the early Tertiary, extensional tectonism was forming a complex horst and graben system that partitioned the basin into a series of localized depocentres. Eocene strata record temporal transitions from deltaic and fluvial to deep‐water depositional environments as a response to abrupt, tectonically controlled relative sea‐level changes across those depocentres. Stratigraphic and provenance data suggest a direct relationship between sedimentary packaging and regional tectonics, marked by changes in source terranes at major unconformities. A sharp shift is recognized at the onset of deepwater (bathyal) sedimentation of the Talara Formation, whose sediments reflect an increased influx of mafic material to the basin, likely related to the arc region. Although the modern topography of the Amotape Mountains partially isolates the Talara basin from the Lancones basin and the Andean Cordillera to the east, provenance data suggest that the Amotape Mountains were not always an obstacle for Cordilleran sediment dispersal. The mountain belt intermittently isolated the Talara basin from Andean‐related sediment throughout the early Tertiary, allowing arc‐related sediment to reach the basin only during periods of subsidence in the forearc region, probably related to plate rearrangement and/or seamounts colliding with the trench. Intraplate coupling and/or partial locking of subduction plates could be among the major causes behind shifts from contraction to extension (and enhanced subduction erosion) in the forearc region. Eventually, collisional tectonic and terrane accretion along the Ecuadorian margin forced a major late‐Eocene change in sediment dispersal.  相似文献   

4.
Stratigraphic data from petroleum wells and seismic reflection analysis reveal two distinct episodes of subsidence in the southern New Caledonia Trough and deep‐water Taranaki Basin. Tectonic subsidence of ~2.5 km was related to Cretaceous rift faulting and post‐rift thermal subsidence, and ~1.5 km of anomalous passive tectonic subsidence occurred during Cenozoic time. Pure‐shear stretching by factors of up to 2 is estimated for the first phase of subsidence from the exponential decay of post‐rift subsidence. The second subsidence event occured ~40 Ma after rifting ceased, and was not associated with faulting in the upper crust. Eocene subsidence patterns indicate northward tilting of the basin, followed by rapid regional subsidence during the Oligocene and Early Miocene. The resulting basin is 300–500 km wide and over 2000 km long, includes part of Taranaki Basin, and is not easily explained by any classic model of lithosphere deformation or cooling. The spatial scale of the basin, paucity of Cenozoic crustal faulting, and magnitudes of subsidence suggest a regional process that acted from below, probably originating within the upper mantle. This process was likely associated with inception of nearby Australia‐Pacific plate convergence, which ultimately formed the Tonga‐Kermadec subduction zone. Our study demonstrates that shallow‐water environments persisted for longer and their associated sedimentary sequences are hence thicker than would be predicted by any rift basin model that produces such large values of subsidence and an equivalent water depth. We suggest that convective processes within the upper mantle can influence the sedimentary facies distribution and thermal architecture of deep‐water basins, and that not all deep‐water basins are simply the evolved products of the same processes that produce shallow‐water sedimentary basins. This may be particularly true during the inception of subduction zones, and we suggest the term ‘prearc’ basin to describe this tectonic setting.  相似文献   

5.
We present the first comprehensive seismic‐stratigraphic analysis of Fairway Basin, which is situated on the rifted continent of Zealandia in the Tasman Sea, southwest Pacific, between Australia and New Caledonia. The basin is 700 km long, 150 km wide, and has water depths of 500–3000 m. We describe depositional architecture and paleogeographic evolution of this basin. Basin formation was concurrent with two tectonic events: (i) Cretaceous rifting during eastern Gondwana breakup and (ii) initiation and Cenozoic evolution of Tonga–Kermadec subduction system to the east of the basin. To interpret the basin history we compiled and interpreted 2D seismic‐reflection profiles and make correlations with DSDP boreholes and the geology of New Caledonia. Five seismic‐stratigraphic units were defined. The deepest and oldest unit, FW3, folded and faulted can be correlated with volcaniclastic sediments and magmatic rocks in New Caledonia that are associated with Mesozoic Gondwana margin subduction. Alternatively, given the basin location 200–300 km west of New Caledonia and inboard of the ancient plate boundary, the unit could have formed as Gondwana intra‐continental basin with no known correlative. The overlying unit FW2b records syn‐rift deposition, probably associated with Cretaceous Gondwana breakup. Subaerial erosion supplied terrigenous sediment into the deltas in the northern part of the basin, as suggested by the truncation surfaces on the basement highs and sigmoid reflector geometries within unit FW2b respectively. Above, unit FW2a records post‐rift sedimentation and passive subsidence as the Tasman Sea opened and the Fairway Basin drifted away from Australia. Subsidence led to the flooding of the basement highs and burial of wave‐cut surfaces. Eocene compressive deformation resulted in minor folding and tilting within the Fairway Basin and was associated with the formation of many diapiric structures. The top of unit FW2 is an extensive unconformity that is associated with erosion and truncation on surrounding ridges. Above this unconformity, unit FW1b is interpreted as a turbidite system sourced from topography created during the Eocene tectonic event, which we interpret as being related to Tonga–Kermadec subduction initiation. Pelagic carbonate sedimentation is now prevalent. Unit FW1a has progressively draped the basin during Oligocene to Pleistocene subsidence. Many small volcanic cones were erupted during this final phase of subsidence, either as a delayed consequence of subduction initiation, or related to Tasmantid and Lord Howe hotspot trails. The northern Fairway Ridge remains close to sea level and its reef system continues to supply carbonate detrital sediments into the basin, most likely during sea‐level lowstands. Fairway Basin contains a nearly continuous record of tectonic and paleoclimatic events in the southwest Pacific since Cretaceous time. Its paleogeographic history is a key piece in the puzzle for understanding patterns of regional biodiversity in the southwest Pacific.  相似文献   

6.
We present a new palaeogeographic reconstruction of the Helvetic zone based on the palinspastic restoration of 18 recently published and new retrodeformed structural cross‐sections through the Swiss Alps, Haute Savoie (France) and Vorarlberg (Austria). The reconstruction resulted in two palaeogeographic maps, one of the pre‐Mesozoic basement, the other for the sedimentary cover of the Helvetic shelf including the Nummulitic deposits of the Palaeocene–Eocene, which mark the onset of the North Alpine Foreland Basin of the Alps. Based on the palaeogeographic maps and a precise dating of the Nummulitic deposits, we established maps of the facies distribution including the estimated positions of the ancient coastlines and their evolution through time. The North Alpine Foreland Basin started as a narrow flysch basin in Palaeocene–Eocene times. Emplacement of the Penninic nappes led to the formation of a mélange on the active margin of this basin. This early foreland basin and its active margin migrated to the NW in Early Eocene times at a rate of about 10 mm yr?1. The maps also reveal a general progressive north‐ and westward propagation of the Eocene coastline between 50–34 Ma and during the Oligocene until approximately 32 Ma. Coastline propagation reveals strongly varying rates both spatially and temporally, and is ca. 1–2 mm yr?1 between 50 and 37 Ma and approximately 20 mm yr?1 between 37 and 32 Ma. Evolution and orientation of the Tertiary coastlines infers that the early development of the North Alpine Foreland Basin was mainly controlled initially by eustatic sea‐level fluctuations superimposed on flexural subsidence. After 37 Ma, we suggest a tectonically controlled coastline evolution in response to the collision of the European and Adriatic margins.  相似文献   

7.
Investigation of a >6-km-thick succession of Cretaceous to Cenozoic sedimentary rocks in the Tajik Basin reveals that this depocentre consists of three stacked basin systems that are interpreted to reflect different mechanisms of subsidence associated with tectonics in the Pamir Mountains: a Lower to mid-Cretaceous succession, an Upper Cretaceous–Lower Eocene succession and an Eocene–Neogene succession. The Lower to mid-Cretaceous succession consists of fluvial deposits that were primarily derived from the Triassic Karakul–Mazar subduction–accretion complex in the northern Pamir. This succession is characterized by a convex-up (accelerating) subsidence curve, thickens towards the Pamir and is interpreted as a retroarc foreland basin system associated with northward subduction of Tethyan oceanic lithosphere. The Upper Cretaceous to early Eocene succession consists of fine-grained, marginal marine and sabkha deposits. The succession is characterized by a concave-up subsidence curve. Regionally extensive limestone beds in the succession are consistent with late stage thermal relaxation and relative sea-level rise following lithospheric extension, potentially in response to Tethyan slab rollback/foundering. The Upper Cretaceous–early Eocene succession is capped by a middle Eocene to early Oligocene (ca. 50–30 Ma) disconformity, which is interpreted to record the passage of a flexural forebulge. The disconformity is represented by a depositional hiatus, which is 10–30 Myr younger than estimates for the initiation of India–Asia collision and overlaps in age with the start of prograde metamorphism recorded in the Pamir gneiss domes. Overlying the disconformity, a >4-km-thick upper Eocene–Neogene succession displays a classic, coarsening upward unroofing sequence characterized by accelerating subsidence, which is interpreted as a retro-foreland basin associated with crustal thickening of the Pamir during India–Asia collision. Thus, the Tajik Basin provides an example of a long-lived composite basin in a retrowedge position that displays a sensitivity to plate margin processes. Subsidence, sediment accumulation and basin-forming mechanisms are influenced by subduction dynamics, including periods of slab-shallowing and retreat.  相似文献   

8.
The Cenozoic strata of the Xining Basin, NE Tibet, have provided crucial records for understanding the tectonic and palaeo-environmental evolution of the region. Yet, the age of the lower part of the sedimentary stratigraphy and, consequently, the early tectonic evolution of the basin remain debated. Here, we present the litho- and magnetostratigraphy of various early Eocene sections throughout the Xining Basin independently constrained by the U–Pb radiometric age of a carbonate bed. Our study extends the dated stratigraphy down to 53.0 Ma (C24n.1r) and reveals highly variable accumulation rates during the early Eocene ranging from 0.5 to 8 cm/ka. This is in stark contrast to the low but stable accumulation rates (2–3 cm/ka) observed throughout the overlying Palaeogene and Neogene strata. Such a pattern of basin infill is not characteristic of flexural subsidence as previously proposed, but rather supports an extensional origin of the Xining Basin with multiple depocentres, which subsequently coalesced into a more stable and slowly subsiding basin. Whether this extension was related to the far-field effects of the subducting Pacific Plate or the India–Asia collision remains to be confirmed by future studies.  相似文献   

9.
The continuous Cenozoic strata in the Xining Basin record the growth and evolution of the northeastern Qinghai–Tibetan Plateau. Here, the mechanisms and evolution of the Xining Basin during the Cenozoic were investigated by studying the sedimentary facies of 22 Cenozoic sections across the basin and detrital zircon U‐Pb ages of three Cenozoic sections located in the eastern, central and western basin, respectively. In the Eocene (ca. 50–44 Ma), the India‐Eurasia Collision affected the northeastern Qinghai–Tibetan Plateau. The Central Qilian Block rotated clockwise by ca. 24° to form the Xining Basin. The Triassic flysch sediments surrounding the basin were the primary sources of sediment. Between ca. 44–40 Ma, the basin enlarged and deepened, and sedimentation was dominated by saline lake sediments. Between ca. 40–25.5 Ma, the Xining Basin began to shrink and dry, resulting in the deposition of saline pan and saline mudflat sediments in the basin. After ca. 20 Ma, the Laji Shan to the south of the Xining Basin was uplifted due to the northward compression of the Guide Basin to the south. Clasts that eroded from this range dominated the sediments as the basin evolved from a lacustrine environment into a fluvial system. The Xining Basin was an extensional basin in the Early Cenozoic, but changed into a compressive one during the Late Cenozoic, it was not a foreland basin either to the Kunlun Shan or to the western Qinling Shan in the whole Cenozoic. The formation and deformation of the Xining Basin are the direct responses of the India‐Eurasia Collision and the growth of the Qinghai‐Tibetan Plateau.  相似文献   

10.
We report on new stratigraphic, palaeomagnetic and anisotropy of magnetic susceptibility (AMS) results from the Amantea basin, located on‐shore along the Tyrrhenian coast of the Calabrian Arc (Italy). The Miocene Amantea Basin formed on the top of a brittlely extended upper plate, separated from a blueschist lower plate by a low‐angle top‐to‐the‐west extensional detachment fault. The stratigraphic architecture of the basin is mainly controlled by the geometry of the detachment fault and is organized in several depositional sequences, separated by major unconformities. The first sequence (DS1) directly overlaps the basement units, and is constituted by Serravallian coarse‐grained conglomerates and sandstones. The upper boundary of this sequence is a major angular unconformity locally marked by a thick palaeosol (type 1 sequence boundary). The second depositional sequence DS2 (middle Tortonian‐early Messinian) is mainly formed by conglomerates, passing upwards to calcarenites, sandstones, claystones and diatomites. Finally, Messinian limestones and evaporites form the third depositional sequence (DS3). Our new biostratigraphic data on the Neogene deposits of the Amantea basin indicate a hiatus of 3 Ma separating sequences DS1 and DS2. The structural architecture of the basin is characterized by faulted homoclines, generally westward dipping, dissected by eastward dipping normal faults. Strike‐slip faults are also present along the margins of the intrabasinal structural highs. Several episodes of syn‐depositional tectonic activity are marked by well‐exposed progressive unconformities, folds and capped normal faults. Three main stages of extensional tectonics affected the area during Neogene‐Quaternary times: (1) Serravallian low‐angle normal faulting; (2) middle Tortonian high‐angle syn‐sedimentary normal faulting; (3) Messinian‐Quaternary high‐angle normal faulting. Extensional tectonics controlled the exhumation of high‐P/low‐T metamorphic rocks and later the foundering of the Amantea basin, with a constant WNW‐ESE stretching direction (present‐day coordinates), defined by means of structural analyses and by AMS data. Palaeomagnetic analyses performed mainly on the claystone deposits of DS1 show a post‐Serravallian clockwise rotation of the Amantea basin. The data presented in this paper constrain better the overall timing, structure and kinematics of the early stages of extensional tectonics of the southern Tyrrhenian Sea. In particular, extensional basins in the southern Tyrrhenian Sea opened during Serravallian and evolved during late Miocene. These data confirm that, at that time, the Amantea basin represented the conjugate extensional margin of the Sardinian border, and that it later drifted south‐eastward and rotated clockwise as a part of the Calabria‐Peloritani terrane.  相似文献   

11.
This study presents an integrated provenance record for ancient forearc strata in southern Alaska. Paleocene–Eocene sedimentary and volcanic strata >2000 m thick in the southern Talkeetna Mountains record nonmarine sediment accumulation in a remnant forearc basin. In these strata, igneous detritus dominates conglomerate and sandstone detrital modes, including plutonic and volcanic clasts, plagioclase feldspar, and monocrystalline quartz. Volcanic detritus is more abundant and increases upsection in eastern sandstone and conglomerate. U‐Pb ages of >1600 detrital zircons from 19 sandstone samples document three main populations: 60–48 Ma (late Paleocene–Eocene; 14% of all grains), 85–60 Ma (late Cretaceous–early Paleocene; 64%) and 200–100 Ma (Jurassic–Early Cretaceous; 11%). Eastern sections exhibit the broadest distribution of detrital ages, including a principal population of late Paleocene–Eocene ages. In contrast, central and western sections yield mainly late Cretaceous–early Paleocene detrital ages. Collectively, our results permit reconstruction of individual fluvial drainages oriented transverse to a dissected arc. Specifically, new data suggest: (1) Detritus was eroded from volcanic‐plutonic sources exposed along the arcward margin of the sampled forearc basin fill, primarily Jurassic–Paleocene magmatic‐arc plutons and spatially limited late Paleocene–Eocene volcanic centers; (2) Eastern deposystems received higher proportions of juvenile volcanic detritus through time from late Paleocene–Eocene volcanic centers, consistent with emplacement of a slab window beneath the northeastern part of the basin during spreading‐ridge subduction; (3) Western deposystems transported volcanic‐plutonic detritus from Jurassic–Paleocene remnant arc plutons and local eruptive centers that flanked the northwestern part of the basin; (4) Diagnostic evidence of sediment derivation from accretionary‐prism strata exposed trenchward of the basin fill is lacking. Our results provide geologic evidence for latest Cretaceous–early Paleocene exhumation of arc plutons and marine forearc strata followed by nonmarine sediment accumulation and slab‐window magmatism. This inferred history supports models that invoke spreading‐ridge subduction beneath southern Alaska during Paleogene time, providing a framework for understanding a mature continental‐arc/forearc‐basin system modified by ridge subduction. Conventional provenance models predict reduced input of volcanic detritus to forearc basins during progressive exhumation of the volcanic edifice and increasing exposure of subvolcanic plutons. In contrast, our results show that forearc basins influenced by ridge subduction may record localized increases in juvenile volcanic detritus during late‐stage evolution in response to accumulation of volcanic sequences formed from slab‐window eruptive centers.  相似文献   

12.
A sequential restoration based on combined backstripping and unfolding methods affords the opportunity to study the Cenozoic evolution of two low amplitude domes in the Mid‐Norwegian extensional margin, the Helland Hansen Arch and the Vema Dome. The integration of growth strata geometries observed in both flanks of the domes demonstrate that the structures grew by a variable combination of tectonics and differential compaction mechanisms. Sequential restoration shows that the Helland Hansen Arch grew between Early Oligocene and earliest Late Pliocene times (33–1.9 Ma). During the first phase of growth (33–9 Ma), the tectonic compression accounted for a minimum of 27% of the total dome amplitude. During Late Miocene to Pliocene times (9–1.9 Ma), differential compaction was the mechanism for dome growth. During Late Pliocene times, the Helland Hansen Arch grew with the highest rates coinciding with initial deposition of prograding wedges (3.6–1.9 Ma). In contrast, the Vema Dome started to develop in Early Eocene times and grew at a fairly constant rate up to Early Pliocene times at 3.6 Ma. The amplification of the Vema Dome took place through both differential compaction and tectonics between Early Eocene and Late Miocene times (54.8–7 Ma). The tectonic contribution accounted for a minimum of a 37% of the total dome amplitude. During Pleistocene times, the progradation of clastic wedges led to a decrease of the amplitudes of both the Helland Hansen Arch and the Vema Dome. The different timing of tectonic growth for analysed domes and arches suggest that a small and protracted phase of compression affected the Mid‐Norwegian Margin. This agrees with well‐known widespread contractional deformation affecting the Atlantic Margin of the European Plate during the Tertiary.  相似文献   

13.
We present the first fission‐track (FT) thermochronology results for the NW Zagros Belt (SW Iran) in order to identify denudation episodes that occurred during the protracted Zagros orogeny. Samples were collected from the two main detrital successions of the NW Zagros foreland basin: the Palaeocene–early Eocene Amiran–Kashkan succession and the Miocene Agha Jari and Bakhtyari Formations. In situ bedrock samples were furthermore collected in the Sanandaj‐Sirjan Zone. Only apatite fission‐track (AFT) data have been successfully obtained, including 26 ages and 11 track‐length distributions. Five families of AFT ages have been documented from analyses of in situ bedrock and detrital samples: pre‐middle Jurassic at ~171 and ~225 Ma, early–late Cretaceous at ~91 Ma, Maastrichtian at ~66 Ma, middle–late Eocene at ~38 Ma and Oligocene–early Miocene at ~22 Ma. The most widespread middle–late Eocene cooling phase, around ~38 Ma, is documented by a predominant grain‐age population in Agha Jari sediments and by cooling ages of a granitic boulder sample. AFT ages document at least three cooling/denudation periods linked to major geodynamic events related to the Zagros orogeny, during the late Cretaceous oceanic obduction event, during the middle and late Eocene and during the early Miocene. Both late Cretaceous and early Miocene orogenic processes produced bending of the Arabian plate and concomitant foreland deposition. Between the two major flexural foreland episodes, the middle–late Eocene phase mostly produced a long‐lasting slow‐ or nondepositional episode in the inner part of the foreland basin, whereas deposition and tectonics migrated to the NE along the Sanandaj‐Sirjan domain and its Gaveh Rud fore‐arc basin. As evidenced in this study, the Zagros orogeny was long‐lived and multi‐episodic, implying that the timing of accretion of the different tectonic domains that form the Zagros Mountains requires cautious interpretation.  相似文献   

14.
The western boundary of the Philippine Sea (PH) Plate in the Philippines and eastern Indonesia corresponds to a wide deformation zone that includes the stretched continental margin of Sundaland, the Philippine Mobile Belt (PMB), extending from Luzon to the Molucca Sea, and a mosaic of continental blocks around the PH/Australia/Sunda triple junction. The GPS GEODYSSEA data are used to decipher the present kinematics of this complex area. In the Philippines, the overall scheme is quite simple: two opposing rotations on either side of the left-lateral Philippine Fault, clockwise to the southwest and counterclockwise to the northeast, transfer 55 per cent of the PH/Sundaland convergence from the Manila Trench to the northwest to the Philippine Trench to the southeast. Further south, 80 per cent of the PH/Sunda convergence is absorbed in the double subduction system of the Molucca Sea and less than 20 per cent along both continental margins of northern Borneo. Finally, within the triple junction area between the Sundaland, PH and Australia plates, from Sulawesi to Irian Jaya, preferential subduction of the Celebes Sea induces clockwise rotation of the Sulu block, which is escaping toward the diminishing Celebes Sea oceanic space from the eastward-advancing PH Plate. To the south, we identify an undeformed Banda block that rotates counterclockwise with respect to Australia and clockwise with respect to Sundaland. The kinematics of this block can be defined and enable us to compute the rates of southward subduction of the Banda block within the Flores Trench and of eastward convergence of the Makassar Straits with the Banda block. The analysis made in this paper confirms that this deformation is compatible with the eastward motion of Sundaland with respect to Eurasia determined by the GEODYSSEA programme but is not compatible with the assumption that Sundaland belongs to Eurasia, as was often assumed prior to this study.  相似文献   

15.
Miocene strata in the southern Taranaki Basin (STB), up to 3 km thick, provide a distal record of erosion associated with plate boundary deformation in New Zealand. 2D and 3D seismic reflection data tied to drillhole stratigraphy have been used to constrain four main phases of basin development. These are: (a) Early Miocene (22–19 Ma) subsidence, dominantly bathyal water depths and deposition of minor submarine fans along the eastern basin margin. (b) Middle Miocene (19–14 Ma) widespread submarine fan deposition on a bathyal basin floor in the central STB. (c) Rapid Middle–Late Miocene (14–7 Ma) progradation of the shelf break northwards across the STB. (d) Widespread uplift and erosion of the STB during the latest Miocene–Pliocene (7–4.5 Ma). Bathyal water depths and fan deposition in the Early Miocene were influenced by vertical motions on major reverse faults and regional subsidence produced by subduction of the Pacific plate beneath northern New Zealand. Subsequent submarine fan deposition and northward shelf‐break progradation reflect increasing input of terrigenous material, primarily eroded from an uplifting region to the south of the STB. Sedimentation patterns in the STB are consistent with the age and locations of conglomerates deposited in onshore West Coast basins, related to this uplift and erosion. Sediment transport in the West Coast region was mainly parallel to NNE trending active reverse faults, and in the STB was perpendicular to the NE‐SW orientated shelf break, especially from ca. 14–7 Ma, when sedimentation rates exceeded fault‐displacement rates. Increases in sedimentation rates in the STB coincide with regional increases in the rates of shortening that appear to reflect plate boundary‐wide events and have been attributed to, or correlated with, increases in the plate convergence rate. Miocene sedimentation patterns in the STB thus reflect both intra‐basinal deformation and tectonic signals from the wider developing New Zealand plate boundary.  相似文献   

16.
Abstract Burial histories of Late Neogene sedimentary basins on the Wairarapa fold and thrust belt of the Hikurangi convergent plate margin (New Zealand) have been deduced from decompacted sedimentary columns and palaeo-waterdepths. These indicate that at least two major cycles of basement subsidence and uplift have occurred since 15 Ma. The older (15-10 Ma) cycle affected outer areas of the forearc. Subsidence, at a minimum rate of 0.5-0.6 mm/yr, was followed by rapid uplift. The subsequent (10 Ma to present) cycle affected a broad area of the inner forearc. Subsidence, at an average rate 0.33 mm/yr, was followed by uplift at an average rate of 0.5-1.5 mm/yr. Vertical movement is continuing, with uplift of the axial greywacke ranges and development of the Wairarapa Depression.
Palinspastic reconstructions of the inner forearc region indicate that basin development was characterized by a see-saw oscillation in basin orientation, with the axis of the basin and direction of basin tilt switching back and forth from east to west through time. A large-scale change in basin orientation took place around 2 Ma when the westernmost part of Wairarapa began to rise on the flanks of the rising Tararua Range, associated with the ramping of the Australian Plate up and over the subducted Pacific Plate. Loading of the forearc is unlikely to have been a significant cause of basement subsidence before this event. Earlier phases of basin development associated with basement subsidence and uplift may be related to a complex interplay of tectonic factors, including the westward migration of the subducted Pacific Plate as it passed beneath southern North Island during Miocene time, episodes of locking and unlocking of parts of the plate interface, and growth of the accretionary prism.  相似文献   

17.
《Basin Research》2018,30(3):373-394
Continental breakup between Greenland and North America produced the small oceanic basins of the Labrador Sea and Baffin Bay, which are connected via the Davis Strait, a region mostly comprised of continental crust. This study contributes to the debate regarding the role of pre‐existing structures on rift development in this region using seismic reflection data from the Davis Strait data to produce a series of seismic surfaces, isochrons and a new offshore fault map from which three normal fault sets were identified as (i) NE‐SW, (ii) NNW‐SSE and (iii) NW‐SE. These results were then integrated with plate reconstructions and onshore structural data allowing us to build a two‐stage conceptual model for the offshore fault evolution in which basin formation was primarily controlled by rejuvenation of various types of pre‐existing structures. During the first phase of rifting between at least Chron 27 (ca. 62 Ma; Palaeocene), but potentially earlier, and Chron 24 (ca. 54 Ma; Eocene) faulting was primarily controlled by pre‐existing structures with oblique normal reactivation of both the NE‐SW and NW‐SE structural sets in addition to possible normal reactivation of the NNW‐SSE structural set. In the second rifting stage between Chron 24 (ca. 54 Ma; Eocene) and Chron 13 (ca. 35 Ma; Oligocene), the sinistral Ungava transform fault system developed due to the lateral offset between the Labrador Sea and Baffin Bay. This lateral offset was established in the first rift stage possibly due to the presence of the Nagssugtoqidian and Torngat terranes being less susceptible to rift propagation. Without the influence of pre‐existing structures the manifestation of deformation cannot be easily explained during either of the rifting phases. Although basement control diminished into the post‐rift, the syn‐rift basins from both rift stages continued to influence the location of sedimentation possibly due to differential compaction effects. Variable lithospheric strength through the rifting cycle may provide an explanation for the observed diminishing role of basement structures through time.  相似文献   

18.
The Miocene Waitemata Basin was deposited on a moving base provided by the Northland Allochthon, which was emplaced in the Late Oligocene, as a new convergent plate boundary was established in northern New Zealand. The basin experienced complex interaction between tectonic and gravity‐driven shallow deformation. Spectacular examples of the resulting structures exposed on eastern Whangaparaoa Peninsula 50 km north of Auckland provide a world‐class example of weak rock deformation, the neglected domain between soft‐sediment and hard rock deformation. Quartz‐poor turbidite sequences display a protracted sequence of deformations: D1, synsedimentary slumping; D2, large scale deeper‐seated sliding and extensional low‐angle shearing, associated with generation of boudinage and broken formation; D3, thrusting and folding, indicating transport mostly to the SE; D4, thrusting and folding in the opposite direction; D5, further folding, including sinistral shear; D6, steep faults. The deformation sequence suggests continuous or intermittent southeastward transport of units with increasing sedimentary and structural burial. By phase D3, the rocks had passed from the soft‐sediment state to low levels of consolidation. However, with a compressive strength of ~5 MPa they are weak rocks even today. Such weak‐rock deformation must be important in other sedimentary basins, especially those associated with active convergent plate boundaries and with immature source areas for their sediments.  相似文献   

19.
Paleothermal indicators based on clay mineral and organic matter analyses, were integrated with mudrock geochemistry and stratigraphic data to define the sedimentary evolution of the southwestern Thrace Basin during the Eocene to Oligocene. This multi‐method approach allowed us to reconstruct the burial evolution of the basin in Eocene and Oligocene times and to study the mudrock composition and relate this to their provenance and source area weathering. The studied mudrocks show similar chemical variations. The distribution of some major and trace elements for the studied samples reflect heterogeneous source areas containing both felsic to mafic rocks. In particular, the Light Rare Earth Elements/Transition elements (LREEs/TEs) ratios are very high for the Avdira and Organi samples (on the average between 1.5 and 2.2 for (La + Ce)/Cr and 3.5–8 for (La + Ce)/Ni), suggesting a felsic source(s), and very low for the Samothraki, Limnos, Paterma and Iasmos samples (on the average between 0.4 and 0.6 for (La + Ce)/Cr and 0.6–1 for (La + Ce)/Ni), suggesting a mainly basic source(s). The mineralogical composition coupled with the A‐CN‐K and A‐N‐K plots suggest a complex evolution. The clay mineral data (illite percentage in I/S and the stacking order R and the Kübler Index) coupled to vitrinite reflectance analysis indicate a high to intermediate diagenetic grade for the Middle to Upper Eocene samples (from Iasmos, Gratini, Organi, Paterma, Esimi and Samotraki sections) and a low diagenetic grade for the Upper Eocene to Oligocene samples (from Limnos and Avdira sections). These data helped in interpreting the geodynamic evolution of the studied basins where the magmatic activity plays an important role. In particular, Middle to Upper Eocene sediments show high to intermediate diagenetic grade since they are located in a portion of the basin dominated by Eocene to Oligocene magmatic activity and intrusion of granitoids, whereas, the Upper Eocene to Oligocene sediments are not involved in important magmatic activity and intrusion of granitoids and, thus, show low diagenetic grade. Furthermore, Middle to Upper Eocene sediments experienced deeper burial processes caused by lithostatic load, rather than the uppermost Eocene and Oligocene sediments, in relation of their position along the stratigraphic succession. These data suggest a burial depth of at least 3–4 km with a tectonic exhumation mainly related to the extensional phases of the Miocene age.  相似文献   

20.
Fine‐grained Palaeogene–early Neogene strata of the South Caspian basin, specifically the Oligocene–Lower Miocene Maikop Series, are responsible for the bulk of hydrocarbon generation in the region. Despite the magnitude of oil and gas currently attributed to the source interval offshore, geochemical evaluation of 376 outcrop samples from the northern edge of the Kura basin (onshore eastern Azerbaijan) indicates that depositional conditions in these proximal strata along the basin margins were dominantly oxic to mildly suboxic/anoxic throughout three major depositional stages: the Palaeocene–Eocene, Oligocene–early Middle Miocene and late Middle–Late Miocene. Palaeocene–Eocene samples have low average total organic carbon (TOC) values (0.3%), with higher total inorganic carbon (TIC) values (average=2.6%), extremely low sulphur content (0.2%) and relatively high detrital input as indicated by Fe/Al and Ti/Al ratios. C–S–Fe associations, along with relatively lower concentrations of redox‐sensitive trace elements (e.g. V, Ni, Mo, U) indicate dominantly oxic environments of deposition during much of the Palaeocene–Eocene. A pronounced geochemical shift occurred near the Eocene–Oligocene boundary, and continued through the Early Miocene. Specifically, this interval is characterized by a distinct increase in TOC (ranging from 0.1 to 6.3% with an average of 1.5%), C–S–Fe associations that reveal an abrupt relative increase of carbon and sulphur with respect to iron‐dominated Palaeocene–Eocene samples, and higher concentrations of redox‐sensitive trace metals. These changes suggest that a shift away from unrestricted marine conditions and towards more variable salinity conditions occurred coincident with the initial collision of the Arabian plate and partial closure of the Paratethys ocean. Despite periodic basin restriction, the majority of Upper Eocene–Lower Miocene strata in the northern Kura basin record oxic to slightly dysoxic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号