首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Polar Science》2014,8(4):370-384
An anomalous phytoplankton bloom was recorded in the Indian Ocean sector of the Antarctic Zone (AZ) of the Southern Ocean (SO) during the austral summer, 2011. Possible mechanisms for the triggering of such a large bloom were analyzed with the help of in situ and satellite data. The bloom, which formed in January 2011, intensified during February and weakened by March. High surface chlorophyll (Chl) concentrations (0.76 mg m−3) were observed in the area of the bloom (60°S, 47°E) with a Deep Chlorophyll Maximum (DCM) of 1.15 mg m−3 at a depth of 40–60 m. During 2011, both the concentration and spatial extent of sea ice were high on the western side of the bloom, between 0°E and 40°E, and enhanced freshwater influx was observed in the study area as a result of melting ice. A positive Southern Annular Mode (SAM) (with a resultant northward horizontal advection) and an intense La Niña during 2010–2011 are possible reasons for the high sea-ice concentrations. The enhanced Chl a observed in the study region, which can be attributed to the phytoplankton bloom, likely resulted from the influx of nutrient-laden freshwater derived from melting sea ice.  相似文献   

2.
《Polar Science》2014,8(2):166-182
The larch forests on the permafrost in northeastern Mongolia are located at the southern limit of the Siberian taiga forest, which is one of the key regions for evaluating climate change effects and responses of the forest to climate change. We conducted long-term monitoring of seasonal and interannual variations in hydrometeorological elements, energy, and carbon exchange in a larch forest (48°15′24′′N, 106°51′3′′E, altitude: 1338 m) in northeastern Mongolia from 2010 to 2012. The annual air temperature and precipitation ranged from −0.13 °C to −1.2 °C and from 230 mm to 317 mm. The permafrost was found at a depth of 3 m. The dominant component of the energy budget was the sensible heat flux (H) from October to May (H/available energy [Ra] = 0.46; latent heat flux [LE]/Ra = 0.15), while it was the LE from June to September (H/Ra = 0.28, LE/Ra = 0.52). The annual net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration (RE) were −131 to −257 gC m−2 y−1, 681–703 gC m−2 y−1, and 423–571 gC m−2 y−1, respectively. There was a remarkable response of LE and NEE to both vapor pressure deficit and surface soil water content.  相似文献   

3.
《Polar Science》2014,8(3):298-305
Small copepod species play important roles in the pelagic food webs of the Arctic Ocean, linking primary producers to higher trophic levels. The egg production rates (EPs) and weight-specific egg production rates (SEPs) of two common copepods, Acartia longiremis and Temora longicornis, were studied under experimental conditions in Dalnezelenetskaya Bay (southern Barents Sea) during summer. The average EP and SEP at 5–10 °C were 4.7 ± 0.4 eggs female−1 day−1 and 0.025 ± 0.002 day−1, respectively, for A. longiremis and 13.1 ± 0.9 eggs female−1 day−1 and 0.075 ± 0.006 day−1, respectively, for T. longicornis. EP and SEP were significantly higher at 10°C than at 5°C for both species. The mean egg diameter correlated positively and significantly with female prosome length (PL) in each species. SEP of T. longicornis correlated negatively and significantly with PL. Daily EP and SEP were similar to rates recorded for other Acartia and Temora species in temperate and warm regions. The influence of environmental factors (temperature, salinity, and phytoplankton concentration) on EP of both species is discussed. We conclude that temperature is the main factor determining the reproduction rate and timing in A. longiremis and T. longicornis in the Barents Sea.  相似文献   

4.
The horizontal distribution of the epipelagic zooplankton communities in the western Arctic Ocean was studied during August–October 2008. Zooplankton abundance and biomass were higher in the Chukchi Sea, and ranged from 3,000 to 274,000 ind. m?2 and 5–678 g WM m?2, respectively. Copepods were the most dominant taxa and comprised 37?94% of zooplankton abundance. For calanoid copepods, 30 species belonging to 20 genera were identified. Based on the copepod abundance, their communities were classified into three groups using a cluster analysis. The horizontal distribution of each group was well synchronized with depth zones, defined here as Shelf, Slope and Basin. Neritic Pacific copepods were the dominant species in the Shelf zone. Arctic copepods were substantially greater in the Slope zone than the other regions. Mesopelagic copepods were greater in the Basin zone than the other regions. Stage compositions of large-sized Arctic copepods (Calanus glacialis and Metridia longa) were characterized by the dominance of late copepodid stages in the Basin. Both the abundance and stage compositions of large copepods corresponded well with Chl. a concentrations in each region, with high Chl. a in the Shelf and Slope supporting reproduction of copepods resulting in high abundance dominated by early copepodid stages.  相似文献   

5.
This study was designed to test hypotheses about the combined effects of short-term, seasonal grazing with seasonal drought, fire, and carbon enrichment on soil microarthropod communities in a Chihuahuan Desert grassland. The study was conducted in eighteen 0.5 ha plots following three consecutive years of treatment: six plots intensively grazed in summer, six in winter, and six not grazed. There was no difference in perennial grass cover on the summer-grazed and winter-grazed plots. Intensive seasonal grazing had no effect on the abundance and community composition of soil microarthropods. Within each plot there were six subplots: summer rain-out, winter rain-out, burned, glucose amendment, rain-out control and burn-glucose control. Fire and carbon enrichment had no significant effect on soil microarthropod abundance or community composition. The average number of microarthropods ranged from 8915 ± 1422 m−2 in the ungrazed, unburned plots to 7175 ± 1232 m−2 in the winter-grazed, unburned plots. Microarthropod densities in the glucose-amended plots were 8917 ± 4902 m−2 in the winter-grazed plots and 10,731 ± 863 m−2 in the glucose-amended, summer-grazed subplots.The prostigamatid mite, Tydeus sp., was the most abundant microarthropod taxon in all treatment plots.  相似文献   

6.
The lead pollution history, based on the accumulation rate of total Pb and ratio of stable isotopes (206Pb/207Pb), was studied in the annually laminated sediment of a small lake in Finland (62°20′ N; 25°41′ E). The sediment chronology based on varve counting provided a unique opportunity to explore and date signals of Pb emissions, including the ancient metallurgical activities of the Roman Empire at the beginning of the Current Era. Changes in the ratio of stable isotopes gave a pronounced signal of the atmospheric Pb fallout in AD 32–392, although this was not distinguishable in the accumulation rate of total Pb, as it was observed in previous work. Calculated accumulations of the ancient pollution Pb were low, the highest values being 0.2–0.3 mg m2 a−1 in AD 144–392, corresponding 14–21% of the accumulation of total Pb. The accumulation of pollution Pb collapsed in the fifth century and remained at or close to the background level up to the eleventh century. After this, the accumulation rate of pollution Pb began to increase and reached 1.2 mg m2 a−1 in AD 1420–1439, corresponding to 44% of the total Pb accumulation. During five centuries, from AD 1420–1895, the average accumulation of pollution Pb was 2.6 mg m2 a−1, the variation being from 0.8 to 4.8 mg m2 a−1. The accumulation of Pb started to increase exponentially in the early twentieth century, and the highest accumulations of pollution Pb (11–22 mg m2 a−1, corresponding 50–76% of the annual accumulation of total Pb) were dated to AD 1926–1985. The banning of the use of leaded fuel has led to a pronounced decrease in the accumulation of pollution Pb since the 1980s, and the present accumulation rate represents the level that prevailed 80–120 years ago.  相似文献   

7.
Mean tree biomass and soil carbon (C) densities for 39 map sheet grids (1° lat. × 1.5° long.) covering the Acacia woodland savannah region of Sudan (10–16° N; 21–36° E) are presented. Data from the National Forest Inventory of Sudan, Harmonized World Soil Database and FAO Local Climate Estimator were used to calculate C densities, mean annual precipitation (MAP) and mean annual temperature (MAT). Above-ground biomass C and soil organic carbon (SOC, 1 m) densities averaged 112 and 5453 g C m−2, respectively. Below-ground biomass C densities, estimated using root shoot ratios, averaged 33 g C m−2. Biomass C densities and MAP increased southwards across the region while SOC densities were lowest in the centre of the region and increased westwards and eastwards. Both above-ground biomass C and SOC densities were significantly (p < 0.05) correlated with MAP (rs = 0.84 and rs = 0.34, respectively) but showed non-significant correlations with MAT (rs = −0.22 and rs = 0.24, respectively). SOC densities were significantly correlated with biomass C densities (rs = 0.34). The results indicated substantial under stocking of trees and depletion of SOC, and potential for C sequestration. Up-to-date regional and integrated soil and forest inventories are required for planning improved land-use management and restoration.  相似文献   

8.
Leaf chlorophyll meters can be used to support easy and efficient crop nitrogen (N) management. They can be used on tree species native to Central Asia that have been suggested for afforesting salt-affected croplands, but its use demands a priori calibration as the relationship between chlorophyll meter measurements and leaf N contents is crop/species specific. Data collected with a SPAD-502 leaf chlorophyll meter during 2006–2008 was used to generate a calibration dataset for the leaf N status of three tree species. The second-degree polynomial relationships between the SPAD-502 readings and total leaf chlorophyll and N content had higher predictive power than linear relationships for all species, although with differences among them. The validation was completed with the same species grown at a different location (difference in space) and with older trees (difference in age). The comparison between predicted and spectrophotometrically determined leaf N content showed a root mean square error (RMSE) of 25 mg g−1 DM, which corresponds to a relative RMSE of 10% for Elaeagnus angustifolia. For Gleditsia triacanthos and Robinia pseudoacacia they were 11 mg g−1 DM and 16%, 14 mg g−1 DM and 10%, respectively. The findings demonstrate that the SPAD-502 can with confidence be used for non-destructive assessment of tree foliar N status of these three species, although only within the range of the SPAD-502 values used for the calibration. Options for the use of the SPAD-502 for forest management in agroforestry-based land use systems in Central Asia are addressed.  相似文献   

9.
Downward material fluxes under seasonal sea ice were measured using a time-series sediment trap installed at an offshore site in the Okhotsk Sea north of Hokkaido, Japan, from 13 January to 23 March 2005. The maximum fluxes of lithogenic material (753 mg m−2 day−1) and organic matter (mainly detritus; 333 mg m−2 day−1) were recorded during the period in which sea ice drifted ashore and increased in extent, from 13 January to 9 February. Organic matter as fecal pellets (81–93 mg m−2 day−1) and opal as biosilica (51–67 mg m−2 day−1), representing diatom fluxes, were abundant in sediment trap samples obtained during the period of full sea ice coverage from 10 February to 9 March. Microscopic observations revealed that fecal pellets were largely diatom frustules, suggesting that zooplankton actively grazed on ice algae during the period of full sea ice coverage. During the period of retreating sea ice, from 10 to 23 March, the phytoplankton flux showed a rapid increase (from 9.5 to 22.5 × 106 cells m−2 day−1), reflecting their release into the water column as the sea ice melted. Our results demonstrate that the quantity and quality of sinking biogenic and lithogenic materials vary with the seasonal extent of sea ice in mid-winter.  相似文献   

10.
《Polar Science》2014,8(4):385-396
The photosynthetic characteristics of sinking a microalgal community were studied to compare with the ice algal community in the sea ice and the phytoplankton community in the water column under the sea ice at the beginning of the light season in the first-year sea ice ecosystem on the Mackenzie Shelf, in the western Canadian Arctic. The phytoplankton community was collected using a water bottle, whereas the sinking algal community was collected using particle collectors, and the ice algal community was obtained by using an ice-core sampler from the bottom portion of ice core. Photosynthesis versus irradiance (P-E) incubation experiments were conducted on deck to obtain the initial slope (αB) and the maximum photosynthetic rate (PmB) of the three algal communities. The αB and the PmB of the light saturation curve, and chlorophyll a (Chl a) specific absorption coefficient (āph*) between the sinking microalgal community and the ice algal community were similar and were distinctly different from the phytoplankton community. The significant linear relationship between αB and PmB, which was obtained among the three groups, may suggest that a photo-acclimation strategy is common for all algal communities under the low light regime of the early season. Although the sinking algal community could be held for the entire duration of deployment at maximum, this community remained photosynthetically active once exposed to light. This response suggests that sinking algal communities can be the seed population, which results in a subsequent phytoplankton bloom under the sea ice or in a surface layer, as well as representing food for the higher trophic level consumers in the Arctic Ocean even before the receding of the sea ice.  相似文献   

11.
Asian-dust (yellow-sand) phenomena observed in Japan have been increasing in recent years, especially from 2000 to 2002. The main cause is severe dust events in arid and semi-arid regions of northeast Asia. The dust source area in northeast Asia (target area: 35°–45°N and 100°–115°E) was identified with reference to past results, and the relationship between the yellow-sand phenomena observed in Japan and dust outbreaks in the target area was examined during the springtime (March to May) from 1993 to 2002. The annual change in the number of dust phenomena observed in Japan agreed well with the Dust Storm Frequency (DSF) in the target area (R2 = 0.8796). Even though strong wind (≧7.0 m s−1) has a profound effect on dust storms (R2 = 0.515), coverage of the Normalized Differential Vegetation Index (NDVI), ranging from 0 to 0.1 (bare land with snow cover) and 0.1 to 0.2 (bare land) in April, also affected dust storms in the target area (R2 = 0.486 and 0.418).  相似文献   

12.
Laboratory experiments were conduced to assess the synergic effect of chilling and light on photosystem II photochemistry of the halophyte, Sarcocornia fruticosa, grown at different salinity concentrations (0, 170, 340, 510 and 1030 mM). Chlorophyll fluorescence was measured after chilling (at 5 °C in darkness) and light-chilling (at 5 °C and 700 μmol m?2 s?1) treatments, and after 24 h of recovery (at 20 °C and 75 μmol m?2 s?1). At 5 °C and 700 μmol m?2 s?1, plants grown with 0 and 170 mM NaCl showed the lowest Fv/Fm values, whereas quantum efficiency of PSII (ΦPSII) was higher for plants grown at 170 and 340 mM NaCl, these results being consistent after two exposures to chilling treatments. Susceptibility to photoinhibition decreases when low temperature and high light are combined with high salinity. Therefore, populations of S. fruticosa that occur in arid environments with salinities c. 340 mM could show a higher tolerance to light-chilling.  相似文献   

13.
During the summer of 2010 ice concentration in the Eurasian Basin, Arctic Ocean was unusually low. This study examines the sea-ice reduction in the Eurasian Basin using ice-based autonomous buoy systems that collect temperature and salinity of seawater under the ice along the course of buoy drift. An array of GPS drifters was deployed with 10 miles radius around an ice-based profiler, enabling the quantitative discussion for mechanical ice divergence/convergence and its contribution to the sea-ice reduction. Oceanic heat fluxes to the ice estimated using buoy motion and mixed-layer (ML) temperature suggest significant spatial difference between fluxes under first-year and multi-year ice. In the former, the ML temperature reached 0.6 K above freezing temperature, providing >60–70 W m?2 of heat flux to the overlying ice, equivalent to about 1.5 m of ice melt over three months. In contrast, the multiyear ice region indicates nearly 40 W m?2 at most and cumulatively produced 0.8 m ice melt. The ice concentration was found to be reduced in association with an extensive low pressure system that persisted over the central Eurasian Basin. SSM/I indicates that ice concentration was reduced by 30–40% while the low pressure persisted. The low ice concentration persisted for 30 days even after the low dissipated. It appears that the wind-forced ice divergence led to enhanced absorption of incident solar energy in the expanded areas of open water and thus to increased ice melt.  相似文献   

14.
《Polar Science》2014,8(1):10-23
This study compares the common harmonic constants of the O1, K1, P1, Q1, M2, S2, N2, and K2 tidal constituents from eight global and four regional tide models with harmonic constants from satellite altimeter and tide gauge data for the northern region of the Antarctic Peninsula (58°S–66°S, 53°W–66°W). To obtain a more representative comparison, the study area was divided into three zones with different physical characteristics but similar maximum tidal amplitude variations: Zone I (north of 62°S), Zone II (south of 62°S and west of the Antarctic Peninsula), and Zone III (between 62°S and 64.3°S, and east of 58.5°W). Root sum square (RSS) values are less than or equal to 3.0, 4.2, and 8.4 cm for zones I, II, and III, respectively. No single model shows superior performance in all zones. Because there are insufficient satellite altimetry observations in the vicinity of Matienzo Base (64.9761°S, 60.0683°W), this station was analyzed separately and presents the greatest values of both root mean square misfit and RSS. The maximum, minimum, and average amplitude values of the constituents that follow in importance after the eight common tidal constituents, and which have amplitudes greater than 1 cm, are also analyzed.  相似文献   

15.
Eutrophication, prompted by anthropogenic activities and climate change has led to multiple adverse effects in freshwater systems across the world. As instrumental measurements are typically short, lake sediment proxies of aquatic primary productivity (PP) are often used to extend the observational record of eutrophication back in time. Sedimentary pigments provide specific information on PP and major algal communities, but the records are often limited in the temporal resolution. Hyperspectral imaging (HSI) data, in contrast, provide very high seasonal (sub-varve-scale) resolution, but the pigment speciation is limited. Here, we explore a combined approach on varved sediments from the Ponte Tresa basin, southern Switzerland, taking the advantages of both methods (HSI and high performance liquid chromatography, HPLC) with the goal to reconstruct the recent eutrophication history at seasonal to interannual resolution. We propose a modified scheme for the calibration of HSI data (here: Relative Absorption Band Depth between 590 and 730 nm RABD590–730) and HPLC-inferred pigment concentrations (here: ‘green pigments’ {chlorophyll a and pheophytin a}) and present a calibration model (R2?=?0.82; RMSEP?~?12%). The calibration range covers >?98% of the spectral index values of all individual pixels (68 µm?×?68 µm) in the sediment core. This allows us to identify and quantify extreme pigment concentrations related to individual major algal blooms, to identify multiple algal blooms within one season, and to assess interannual variability of PP. Prior to the 1930s, ‘green pigment’ concentrations and fluxes (~?50 µg g?1;?~?2 µg cm?2a?1, chlorophyll a and pheophytin a) and interannual variability was very low. From the 1930s to 1964, chlorophyll a and pheophytin a increased by a factor of ~?4, and ββ-carotene appeared in substantial amounts (~?0.4 µg cm?2a?1). Interannual variability increased markedly and a first strong algal bloom with ‘green pigment’ concentrations as high as 700 µg g?1 is observed in 1958. Peak eutrophication (~?12 µg cm?2a?1 chlorophyll a and pheophytin a) and very high interannual variability with extreme algal blooms (‘green pigment’ concentrations up to 1400 µg g?1) is observed until ca. 1990, when eutrophication decreases slightly. Maximum PP values after 2009 are likely the result of internal nutrient cycling related to repeated deep mixing of the lake.  相似文献   

16.
Instantaneous mortality rates of the common planktonic copepod Oithona similis were investigated for the first time in Kola Bay, a region of the Barents Sea that is influenced by freshwater discharge. The rates were estimated in different seasons (December, May, September 2005 and July 2006). A vertical life table approach (VLT) was used to assess mortality. The total abundance of O. similis (copepodites IV and V, and adults) was highest in autumn and lowest in winter. The maximum mortality of O. similis for the stage pair copepodite IV–copepodite V (0.005 ± 0.001 day?1) occurred in December 2005, while the highest mortality rates for the pairs copepodite VM–adult male (0.453 ± 0.026 day?1) and copepodite VF–adult female (0.228 ± 0.006 day?1) occurred in summer 2006. Simple regression analyses showed that the total abundance of each stage and the mortality rates were positively significantly correlated with water temperature. The mortality rates for the stage pairs copepodite VM–adult male and copepodite VF–adult female were positively significantly correlated with chlorophyll a concentration. The abundance and mortality rate of O. similis in each season was determined by life cycle factors, and possibly by the dynamics of its food resources and potential predators.  相似文献   

17.
Time-series observations of chaetognaths were carried out during four cruises along the 140°E transect between 61°S and 66°28′S from November to March in the 2001/02 austral summer. Three species – Eukrohnia hamata, Sagitta gazellae and Sagitta marri – occurred in the samples between 0 and 150 m. E. hamata was the most dominant species comprising between 89.6 and 100% of the chaetognath population, followed by S. gazellae (0–5.7%). There were large differences in the abundance and size frequency distribution of body length of E. hamata between the north and south of the Southern Boundary of the Antarctic Circumpolar Current (SB-ACC) which was located between 64°S and 65°S. For E. hamata, low abundance and large sized animals (22–24 mm) occurred south of the SB-ACC. A possible reason could be that the breeding season in waters north of the SB-ACC may be early spring and summer. On the other hand, low reproduction was recognized by low the abundance of E. hamata and few occurrences of juveniles south of the SB-ACC (65°S). The result of a general comparison suggests that the abundance of chaetognaths along the 140°E transect has decreased during the 20 years since 1983.  相似文献   

18.
《Basin Research》2018,30(3):564-585
Studies in both modern and ancient Cordilleran‐type orogenic systems suggest that processes associated with flat‐slab subduction control the geological and thermal history of the upper plate; however, these effects prove difficult to deconvolve from processes associated with normal subduction in an active orogenic system. We present new geochronological and thermochronological data from four depositional areas in the western Sierras Pampeanas above the Central Andean flat‐slab subduction zone between 27° S and 30° S evaluating the spatial and temporal thermal conditions of the Miocene–Pliocene foreland basin. Our results show that a relatively high late Miocene–early Pliocene geothermal gradient of 25–35 °C km−1 was typical of this region. The absence of along‐strike geothermal heterogeneities, as would be expected in the case of migrating flat‐slab subduction, suggests that either the response of the upper plate to refrigeration may be delayed by several millions of years or that subduction occurred normally throughout this region through the late Miocene. Exhumation of the foreland basin occurred nearly synchronously along strike from 27 to 30° S between ca. 7 Ma and 4 Ma. We propose that coincident flat‐slab subduction facilitated this wide‐spread exhumation event. Flexural modelling coupled with geohistory analysis show that dynamic subsidence and/or uplift associated with flat‐slab subduction is not required to explain the unique deep and narrow geometry of the foreland basin in the region implying that dynamic processes were a minor component in the creation of accommodation space during Miocene–Pliocene deposition.  相似文献   

19.
In this paper, we investigate spatial variations in soil CO2 efflux and carbon dynamics across five sites located between 65.5°N and 69.0°N in tundra and boreal forest biomes of Alaska. Growing and winter mean CO2 effluxes for the period 2006–2010 were 261 ± 124 (Coefficients of Variation: 48%) and 71 ± 42 (CV: 59%) gCO2/m2, respectively. This indicates that winter CO2 efflux contributed 24% of the annual CO2 efflux over the period of measurement. In tundra and boreal biomes, tussock is an important source of carbon efflux to the atmosphere, and contributes 3.4 times more than other vegetation types. To ensure that representativeness of soil CO2 efflux was determined, 36 sample points were used at each site during the growing season, so that the experimental mean fell within ±20% of the full sample mean at 80% and 90% confidence levels. We found that soil CO2 efflux was directly proportional to the seasonal mean soil temperature, but inversely proportional to the seasonal mean soil moisture level, rather than to the elevation-corrected July air temperature. This suggests that the seasonal mean soil temperature is the dominant control on the latitudinal distribution of soil CO2 efflux in the high-latitude ecosystems of Alaska.  相似文献   

20.
《Polar Science》2014,8(3):306-313
Atmospheric dimethylsulfide (DMS) was measured to investigate the variation in its concentration over sea ice free oceans and sea ice regions of the Southern Ocean, using a proton transfer reaction-mass spectrometer (PTR-MS) on board the icebreaker Shirase from 1 December 2009 to 16 March 2010. In general, DMS concentrations over sea ice regions were very low compared with those over the sea ice free ocean. However, abrupt increases in DMS concentrations occurred over sea ice regions while the ship was moving and crushing the sea ice. Undoubtedly, the elevated DMS concentrations were caused by large DMS emissions from gaps in the ice made by the ship. During the period when Shirase had anchored off Syowa Station (69°00.4′S, 39°35.3′E), Antarctica, DMS concentrations were not detected. At this time, the surrounding sea of East Ongul island, on which Syowa Station is located, was completely covered with multi-year fast ice. Sea ice probably inhibits DMS emission from the ocean to the atmosphere. In addition, there was no evidence that chlorophyll a concentration in the sea water or wind speed above the sea surface affect atmospheric DMS concentrations over the sea ice free ocean regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号