首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 368 毫秒
1.
The objectives of this study were: (1) to document spatial and temporal distributions of large woody debris (LWD) at watershed scales and investigate some of the controlling processes; and (2) to judge the potential for mapping LWD accumulations with airborne multispectral imagery. Field surveys were conducted on the Snake River, Soda Butte Creek, and Cache Creek in the Greater Yellowstone Ecosystem, USA. The amount of woody debris per kilometer is highest in 2nd order streams, widely variable in 3rd and 4th order streams, and relatively low in the 6th order system. Floods led to increases in woody debris in 2nd order streams. Floods redistributed the wood in 3rd and 4th order streams, removing it from the channel and stranding it on bars, but appeared to generate little change in the total amount of wood throughout the channel system. The movement of woody debris suggests a system that is the reverse of most sediment transport systems in mountains. In 1st and 2nd order tributaries, the wood is too large to be moved and the system is transport-limited, with floods introducing new material through undercutting, but not removing wood through downstream transport. In the intermediate 3rd and 4th order channels, the system displays characteristics of dynamic equilibrium, where the channel is able remove the debris at approximately the same rate that it is introduced. The spatial distribution and quantity of wood in 3rd and 4th order reaches varies widely, however, as wood is alternatively stranded on gravel bars or moved downstream during periods of bar mobilization. In the 6th order and larger channels, the system becomes supply-limited, where almost all material in the main stream can be transported out of the central channel by normal stream flows and deposition occurs primarily on banks or in eddy pool environments. Attempts to map woody debris with 1-m resolution digital four-band imagery were generally unsuccessful, primarily because the imagery could not distinguish the narrow logs within a pixel from the surrounding sand and gravel background and due to problems in precisely coregistering imagery and field maps.  相似文献   

2.
Ronald B. Zelt  Ellen E. Wohl   《Geomorphology》2004,57(3-4):217-233
Large variability in responses of stream sediment and large woody debris (LWD) to severe fire has limited the accurate prediction of the magnitude and duration of fire effects on streams. Conditions in one Absaroka Range stream that was severely burned in 1988 were compared to those in an adjacent, undisturbed stream to improve understanding of fire effects on channel and LWD characteristics beyond the first few years. Ten reaches of each stream were sampled during summer 1999.Average bankfull channel width was greater in burned Jones Creek than in unburned Crow Creek. LWD frequency and overall frequency of LWD accumulations were greater in Crow Creek than Jones Creek. Debris-jam frequency was greater in Jones Creek after accounting for differences in the frequency of pieces with length greater than channel width. Larger piece size and better anchoring contributed to more frequent, small accumulations of LWD in Crow Creek. Differences between streams in LWD frequency are consistent with greater mobility of debris in burned Jones Creek. LWD-associated fine-sediment deposits were thicker but less frequent along Jones Creek than Crow Creek.  相似文献   

3.
We present results of two studies on the (1) potential wood load in steep headwater streams and (2) properties of large wood (LW) transported in mountain rivers during the large August 2005 flood event in Switzerland. Ten headwater reaches of 1000 m length were surveyed in different regions of Switzerland. The potential wood load was estimated for in-channel deadwood, and possible driving factors were explored. Correlations were found with dead wood volume on hillslopes and mean channel width. We established size distributions of LW pieces and identified probable recruitment processes. Four reaches were resurveyed after an exceptionally severe flood in August 2005, showing limited LW transport in channels but considerable wood input by mass wasting processes. In addition, characteristics of deposits of LW along mountain rivers affected by the 2005 flood were investigated. Diameter and length distribution of transported and deposited pieces were comparable to those of LW from steep headwater streams, yet with considerably fewer long pieces in the deposits of mountain rivers. Most LW pieces were fresh wood, indicating that the portion of in-channel deadwood transported during the 2005 flood was limited. Findings of the study contribute to a better understanding of LW dynamics in Alpine mountain streams.  相似文献   

4.
《自然地理学》2013,34(6):492-510
Coarse woody debris (CWD) is an important component of headwater streams, however, few studies have investigated the geomorphic effects of CWD in the southern Appalachians. In the Great Smoky Mountains, debris slides supply large volumes of CWD and sediment to low-order streams. This study investigates the effect of CWD on bankfull channel dimensions and in-channel sediment storage along second-order streams. Comparisons are made between streams that have experienced recent debris slides and those that have not. CWD channel obstructions are larger but less frequent along debris-slide-affected streams. Dendrochronological evidence indicates that CWD can remain in channels for over 100 yr. Relatively short residence times of CWD along debris-slide-affected streams suggest that logs are frequently flushed through these streams. CWD causes channel widening along all study streams, but the volume of sediment stored in the channel behind CWD obstructions is up to four times greater than the volume of sediment represented by bank erosion associated with CWD. Two large log jams formed by debris slides at tributary junctions stored approximately 4000 m3 of sediment. Sediment stored by CWD was finer than mean bed particle size, and thus represents a significant sediment source when CWD obstructions are breached.  相似文献   

5.
Woody vegetation affects channel morphogenesis in Ozark streams of Missouri and Arkansas by increasing local roughness, increasing bank strength, providing sedimentation sites, and creating obstructions to flow. Variations in physiographic controls on channel morphology result in systematic changes in vegetation patterns and geomorphic functions with increasing drainage basin area. In upstream reaches, streams have abundant bedrock control and bank heights that typically are less than or equal to the rooting depth of trees. In downstream reaches where valleys are wider and alluvial banks are higher vegetation has different geomorphic functions. At drainage areas of greater than 100–200 kM2, Ozarks streams are characterized by longitudinally juxtaposed reaches of high and low lateral channel migration rates, referred to as disturbance reaches and stable reaches, respectively. Whereas stable reaches can develop stable forested floodplains (if they are not farmed), disturbance reaches are characterized by dynamic vegetation communities that interact with erosion and deposition processes.Disturbance reaches can be subdivided into low-gradient and high-gradient longitudinal zones. Low-energy zones are characterized by incremental, unidirectional lateral channel migration and deposition of gravel and sand bars. The bars are characterized by prominent bands of woody vegetation and ridge and swale topography. Channel monitoring data indicate that densely vegetated bands of woody vegetation formed depositional sites during bedload-transporting events. The same floods caused up to 20 m of erosion of adjacent cutbanks, scoured non-vegetated areas between vegetation bands, and increased thalweg depth and definition. In high-energy (or riffle) zones, channel movement is dominantly by avulsion. In these zones, vegetation creates areas of erosional resistance that become temporary islands as the channel avulses around or through them. Woody vegetation on islands creates steep, root-defended banks that contribute to narrow channels with high velocities.Calculation of hydraulic roughness from density and average diameter of woody vegetation groups of different ages indicates that flow resistance provided by vegetation decreases systematically with group age, mainly through decreasing stem density. If all other factors remain constant, the stabilizing effect of a group of woody vegetation on a gravel bar decreases with vegetation age.  相似文献   

6.
Large wood frequency and volume were examined as a function of landscape characteristics at different spatial and temporal scales in 50 reaches of the Upper Little Tennessee River basin with drainage areas ranging from 0.3 to 30.1 km2. Riparian forest cover was described laterally at the reach scale and longitudinally 1 km upstream in all tributaries. Riparian cover was analyzed with geomorphic and additional landscape variables to isolate factors that most influence wood in streams. Forested area immediately surrounding the reach was the strongest predictor of wood frequency and volume, although upstream riparian cover can explain additional variation in wood distributions. An optimal forested buffer width around the stream for large wood was not evident. The relationship between the riparian forest and wood weakens in bigger channels, as fluvial transport of pieces increases. Resurveys demonstrate that large wood is most dynamic in wide, forested reaches and changes function during floods to store sediment and organic matter.  相似文献   

7.
Six experimentally derived formulae that predict the conditions for alternate bar formation and equilibrium bar dimensions are assessed using field data. The study site is an artificially straightened section of the Embarras River located approximately 16 km south of Champaign, Illinois. Data were collected on channel form, gradient, alternate bar dimensions, bar sediment size, and flow conditions over a two-year study period. Experimental flume studies suggest that alternate bars form in wide, straight, shallow streams, have wavelengths between 4 and 15 channel widths, and have heights that are roughly equal to the average depth of flow. Bar formation under unsteady flow conditions can be predicted accurately by the experimentally derived steady-flow formulae, but these formulae fail to predict bar dimensions sucessfully. These results suggest that the process of bar formation in artificially straightened, sand-bedded natural streams may occur outside the range of flow conditions predicted by existing empirical models. Further work should focus on attempting to isolate physical mechanisms responsible for alternate bar formation in straight natural streams with heterogeneous bed material and flashy flow regimes [Key words: alluvial channels, artificial channels, geomorphology, rivers, sedimentology].  相似文献   

8.
汉江丹江口水库下游河床演变   总被引:1,自引:0,他引:1  
龚国元 《地理研究》1982,1(1):69-78
丹江口水库建库20多年来,下游河道由堆积性河道变成了冲刷性的河道,河床物质沿程粗化,比降得以调平。水深增加幅度大于河宽,流速并不随着水深增加而加快。深槽、浅滩分布明显化,宽深比不断在减少。整个库下游变化可分为三段:1)近库段,游荡河道向单一限制性曲流转化;2)大支流影响段,河道仍保持着游荡特性;3)下游段,游荡段游荡特性减弱,弯曲段则深蚀作用加强。  相似文献   

9.
The style and degree of channel narrowing in aggrading reaches downstream from large dams is dependent upon the dominant geomorphic processes of the affected river, the magnitude of streamflow regulation, and the post-dam sediment transport regime. We measured different magnitudes of channel adjustment on the Green River downstream from Flaming Gorge Dam, UT, USA, that are related to these three factors. Bankfull channel width decreased by an average of about 20% in the study area. In reaches with abundant debris fans and eddy deposited sand bars, the amount of channel narrowing was proportional to the decrease in specific stream power. The fan–eddy-dominated reach with the greatest decrease in stream power narrowed by 22% while the reach with the least decrease in stream power narrowed by 11%. In reaches with the same magnitude of peak flow reduction, meandering reaches narrowed by 15% to 22% and fan–eddy-dominated reaches narrowed by 11% to 12%. Specific stream power was not significantly affected by flow regulation in the meandering reaches.In the diverse array of reach characteristics and deposit types found in the study area, all pre- and post-dam deposits are part of a suite of topographic surfaces that includes a terrace that was inundated by rare pre-dam floods, an intermediate bench that was inundated by rare post-dam floods, and a post-dam floodplain that was inundated by the post-dam mean annual flood. Analysis of historical photographs and tree-ring dating of Tamarix sp. shows that the intermediate bench and post-dam floodplain are post-dam landforms in each reach type. Although these two surfaces occur at different levels, they are forming simultaneously during flows of different magnitude. And while the relative elevation and sedimentologic characteristics of the deposits differ between meandering reaches and reaches with abundant debris fans and eddies, both reach types contain deposits at all of these topographic levels.The process of channel narrowing varied between fan–eddy-dominated and meandering reaches. In the meandering reaches, where stream power has not changed, narrowing was accomplished by essentially the same depositional processes that operated prior to regulation. In fan–eddy-dominated reaches, where significant reductions in stream power have occurred, channel narrowing has been accompanied by a change in dominant depositional processes. Mid-channel sand deposits are aggrading on deposits that, in the pre-dam era, were active gravel bars. These deposits are creating new islands and decreasing the presence of open-framework gravel bars. In eddies, bare sand bars are replaced with vegetated bars that have a simpler topography than the pre-dam deposits.  相似文献   

10.
排导槽是一种结构简单、效果明显、用途广泛的泥石流防治措施,在总结东川槽、V型槽等现有排导槽槽型优缺点的基础上,结合一种新槽型——交错齿槛型泥石流排导槽展开试验研究。提出排导槽排导指数概念,即直接反应排导槽排泄能力的参数。利用室内水槽模型试验,通过改变交错槽纵比降、齿槛间距、夹角等参数,得出排导指数与上述参数的关系,试验结果表明:1.与东川槽相比,交错齿槛槽的排导能力有大幅度的提升,最大增幅达74%,表明交错齿槛有较强的挑流排泄能力,能有效解决东川槽等存在的淤积难题;2.不同比降下,交错槽主要设计参数组合存在差异,其中10%与15%比降下,60°齿槛间距为30 cm时,交错槽的排导指数最大,排导能力最强;而12%比降下,60°齿槛间距为40 cm为最优组合;3.小角度齿槛(60°)齿槛挑流排导能力较大角度(80°)更强,更适合坡降较小的排导槽;齿槛角度越大,齿槛的挑流能力有限,阻流作用越明显,对需控制流速及洪峰流量的泥石流,可考虑采用大角度齿槛。  相似文献   

11.
The 2008 Chaitén volcanic eruption generated significant changes in the channel morphology and large wood (LW) abundance along the fluvial corridor of the Blanco River, southern Chile. Comparisons of remote sensing images from the pre‐eruption (year 2005) and post‐eruption (years 2009 and 2012) conditions showed that in a 10.2 km long study segment the Blanco River widened 3.5 times from 2005 to 2009, and that the maximum enlargement was nine times the original width. Changes in channel width were lower between the years 2012 and 2009. The sinuosity and braiding indexes also changed between 2005 and 2009. After the eruption the channel sinuosity was higher and specific river reaches developed a braided pattern, but by 2012 the channel was recovering pre‐eruption characteristics. Huge quantities of LW were introduced to the study segment; individual LW per km of channel length were 1.6 and 74.3 in 2005 and 2009, respectively, and more than 30 log jams km?1 were observed in the year 2009. Between 2009 and 2012 the quantity of LW was very similar. Statistically significant relationships were found between the number of log jams and channel sinuosity and between the number of pieces of large wood with sinuosity and channel width. Wood was highly dynamic between 2009 and 2012: 78% of individual pieces and 48% of log jams identified in the 2009 image had moved by 2012. Finally the supervised classification of imagery associated with ArcMap tools was tested to identify large wood.  相似文献   

12.
Two series of experiments were run to ascertain the nature of the transformation of antidunes when suppressed by a tunnel roof. One series was performed in a recirculating flume 30cm in width and 6 meters in length using well sorted sand, 0.35 mm in mean diameter. The second series was conducted in a flume 76cm wide and 18 meters long using very well to very poorly sorted gravel and sandy gravel. In the first series, standing waves, antidunes, and breaking antidunes were generated in the open channel section of the flume; in the second series, standing waves and downstream-migrating antidunes were generated. In both series, these bedforms were replaced in the tunnel section by a plane bed, often with a rheological front. In the smaller flume, antidunes contained backset and foreset (lee-side) laminae, poorly sorted and less than about 10° in maximum dip. In the larger flume, although backsets formed, they were temporary only, and were soon eroded by the downstream migration of the antidunes. Sand was deposited on the downstream sides of bed waves, but although clearly visible in plan, it did not show up clearly as lamination in section: well sorted gravel was just as abundant as poorly sorted. The open channel data from the gravel experiments showed that in-phase waves form at about the same Froude numbers for both coarse sand and granule-pebble gravel.  相似文献   

13.
小江流域泥石流堆积扇形成的制约因素及其特征   总被引:6,自引:3,他引:3  
陈杰  韦方强  崔鹏 《地理科学》2005,25(6):704-708
在系统分析了各种因素对泥石流堆积扇形成影响的基础上,提出流域腹地中流域面积、沟床比降和堆积区主河河谷宽度及主河能量等因素对泥石流堆积扇发育的影响较大。结合TM卫星影象和1:5万地形图,解译了小江流域内泥石流堆积扇的范围。在此基础上,统计了流域腹地内两大重要条件-流域面积和沟床比降与堆积扇面积之间的关系。在小江流域,堆积扇的面积随流域面积的增加而增加,二者之间是正的指数关系;而堆积扇面积与沟床比降之间可用一个负的指数关系式表达。最后,堆积区特征对小江流域泥石流堆积扇的影响主要是其堆积空间限制了大型堆积扇,比如蒋家沟泥石流堆积扇的发展。  相似文献   

14.
粘性泥石流阻力规律初探   总被引:2,自引:0,他引:2  
祁龙 《山地学报》2000,18(6):508-513
用曼宁公式分析泥石流阻力时,不同地区和不同流域之是的糙率n值相差很大,即是同一条沟的n值也很分散,若考虑单宽固体物质重量和粗、细颗粒含量之比沿垂线分布的不均习性之后,则使单沟的n值点群分布趋于集中,且能将不同泥石流相差数倍数的n值用统一的表达式加以描述。  相似文献   

15.
At the reach scale, a channel adjusts to sediment supply and flow through mutual interactions among channel form, bed particle size, and flow dynamics that govern river bed mobility. Sediment can impair the beneficial uses of a river, but the timescales for studying recovery following high sediment loading in the field setting make flume experiments appealing. We use a flume experiment, coupled with field measurements in a gravel-bed river, to explore sediment transport, storage, and mobility relations under various sediment supply conditions. Our flume experiment modeled adjustments of channel morphology, slope, and armoring in a gravel-bed channel. Under moderate sediment increases, channel bed elevation increased and sediment output increased, but channel planform remained similar to pre-feed conditions. During the following degradational cycle, most of the excess sediment was evacuated from the flume and the bed became armored. Under high sediment feed, channel bed elevation increased, the bed became smoother, mid-channel bars and bedload sheets formed, and water surface slope increased. Concurrently, output increased and became more poorly sorted. During the last degradational cycle, the channel became armored and channel incision ceased before all excess sediment was removed. Selective transport of finer material was evident throughout the aggradational cycles and became more pronounced during degradational cycles as the bed became armored. Our flume results of changes in bed elevation, sediment storage, channel morphology, and bed texture parallel those from field surveys of Redwood Creek, northern California, which has exhibited channel bed degradation for 30 years following a large aggradation event in the 1970s. The flume experiment suggested that channel recovery in terms of reestablishing a specific morphology may not occur, but the channel may return to a state of balancing sediment supply and transport capacity.  相似文献   

16.
This article evaluates the potential of 1-m resolution, 128-band hyperspectral imagery for mapping in-stream habitats, depths, and woody debris in third- to fifth-order streams in the northern Yellowstone region. Maximum likelihood supervised classification using principal component images provided overall classification accuracies for in-stream habitats (glides, riffles, pools, and eddy drop zones) ranging from 69% for third-order streams to 86% for fifth-order streams. This scale dependency of classification accuracy was probably driven by the greater proportion of transitional boundary areas in the smaller streams. Multiple regressions of measured depths (y) versus principal component scores (x1, x2,…, xn) generated R2 values ranging from 67% for high-gradient riffles to 99% for glides in a fifth-order reach. R2 values were lower in third-order reaches, ranging from 28% for runs and glides to 94% for pools. The less accurate depth estimates obtained for smaller streams probably resulted from the relative increase in the number of mixed pixels, where a wide range of depths and surface turbulence occurred within a single pixel. Matched filter (MF) mapping of woody debris generated overall accuracies of 83% in the fifth-order Lamar River. Accuracy figures for the in-stream habitat and wood mapping may have been misleadingly low because the fine-resolution imagery captured fine-scale variations not mapped by field teams, which in turn generated false “misclassifications” when the image and field maps were compared.The use of high spatial resolution hyperspectral (HSRH) imagery for stream mapping is limited by the need for clear water to measure depth, by any tree cover obscuring the stream, and by the limited availability of airborne hyperspectral sensors. Nonetheless, the high accuracies achieved in northern Yellowstone streams indicate that HSRH imagery can be a powerful tool for watershed-wide mapping, monitoring, and modeling of streams.  相似文献   

17.
Reach-scale channel geometry of mountain streams   总被引:3,自引:0,他引:3  
Ellen Wohl  David M. Merritt   《Geomorphology》2008,93(3-4):168-185
The basic patterns and processes of steep channels remain poorly known relative to lower-gradient channels. In this analysis, characteristics of step-pool, plane-bed, and pool-riffle channels are examined using a data set of 335 channel reaches from the western United States, Nepal, New Zealand, and Panama. We analyzed differences among the three channel types with respect to hydraulics, channel geometry, boundary roughness, and bedforms. Step-pool channels have significantly steeper gradients, coarser substrate, higher values of shear stress and stream power for a given discharge, and larger ratios of bedform amplitude/wavelength (H/L). Pool-riffle channels have greater width/depth ratios and relative grain submergence (R/D84) than the other channel types. Plane-bed channels tend to have intermediate values for most variables examined. Relative form submergence (R/H) is statistically similar for step-pool and pool-riffle channels. Despite the lesser relative grain submergence and greater bedform amplitude of step-pool channels, mean values of Darcy–Weisbach friction factor do not change in response to changes in relative grain submergence. These patterns suggest that adjustments along mountain streams effectively maximize resistance to flow and minimize downstream variability in resistance among the different channel types.  相似文献   

18.
Potential fish habitat along the Drôme River, France, is a function of the distribution of large woody debris, boulders, undercut banks, gravel substrate, and pools. The distribution of these features is, in turn, a function of channel geomorphology, watershed and riparian forest characteristics. We conducted field work and analysed aerial photographs for 190 elementary segments of 500 m length along the Drôme River's 95 km course from the Alps westward to its confluence with the Rhône River near Loriol. The Drôme River does not follow the classic pattern of a monotone downstream decrease in gradient and change in channel characteristics. Although channel gradient, braided index and channel incision all decrease downstream, stream power is independent of longitudinal distance. These variables are largely controlled by geomorphic, human or hydrologic factors at the reach scale. Potential fish habitat richness decreases downstream, but individual habitat variables affecting habitat richness do not necessarily decrease downstream, many being controlled by local factors rather than by position along the continuum. Large woody debris is more abundant in braided reaches located directly downstream of confluences with main tributaries or downstream input sites. Boulders are most abundant downstream of failed bank protection works or in gorges. To improve fish habitat in the Drôme River, we recommend taking a long-term and large-scale perspective. Because structures placed in this unstable channel are likely to be washed downstream, we propose to emulate natural river dynamics and to permit large woody debris to enter the channel in unstable reaches via bank erosion, and that this debris not be removed (as is routinely done now) but permitted to migrate downstream through the system, creating fish habitat en route.  相似文献   

19.
Measurements of two small streams in northeastern Vermont, collected in 1966 and 2004–2005, document considerable change in channel width following a period of passive reforestation. Channel widths of several tributaries to Sleepers River in Danville, VT, USA, were previously measured in 1966 when the area had a diverse patchwork of forested and nonforested riparian vegetation. Nearly 40 years later, we remeasured bed widths and surveyed large woody debris (LWD) in two of these tributaries, along 500 m of upper Pope Brook and along nearly the entire length (3 km) of an unnamed tributary (W12). Following the longitudinal survey, we collected detailed channel and riparian information for nine reaches along the same two streams. Four reaches had reforested since 1966; two reaches remained nonforested. The other three reaches have been forested since at least the 1940s. Results show that reforested reaches were significantly wider than as measured in 1966, and they are more incised than all other forested and nonforested reaches. Visual observations, cross-sectional surveys, and LWD characteristics indicate that reforested reaches continue to change in response to riparian reforestation. The three reaches with the oldest forest were widest for a given drainage area, and the nonforested reaches were substantially narrower. Our observations culminated in a conceptual model that describes a multiphase process of incision, widening, and recovery following riparian reforestation of nonforested areas. Results from this case study may help inform stream restoration efforts by providing insight into potentially unanticipated changes in channel size associated with the replanting of forested riparian buffers adjacent to small streams.  相似文献   

20.
In volcanic areas of Idaho, Oregon and Montana, a number of perennial streams emerge from single springs or zones of springs. Surface drainage areas to these springs can be very small, often much smaller than the recharge area of the springs. Channels downstream of springs are often straight, or if sinuous, without regularity to the pattern. Bars are absent or poorly defined, but islands or downed timber are common in the channel. Channel width-to-depth ratios are large relative to those of runoff-dominated channels. Downstream hydraulic geometry exponents are similar, but the exponents for width and velocity are greater in spring-dominated channels. Manning roughness values are relatively large. The bedsurface in gravel-bed spring-dominated streams is armored. Computations indicate that bed material is probably capable of moving at bankfull stage.The hydrograph of spring-dominated streams is damped as compared to runoff-dominated streams locally and elsewhere. Peak flows occur months after precipitation or snowmelt. Mean annual flow for spring-dominated streams averages 72% of the flood with a recurrence interval of 2 years; the mean annual flow for runoff-dominated channels averages 18% locally and 25% elsewhere. The 50-year flood averages 1.6 times the 2-year flood on the annual series while the corresponding value for runoff-dominated channels in the region is 2.5. The damped hydrograph of spring-dominated streams suggests that they are somewhat different from runoff-dominated channels in the relationship between water and sediment. In spring-dominated channels, 34% of sediment is transported by flows above the 2-year flood—less than is observed typically in runoff-dominated channels. The effective discharge is similar in magnitude to the 2-year flood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号