首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 861 毫秒
1.
This paper describes a method for determining Moho depth, lithosphere thinning factor (γ= 1 − 1/β) and the location of the ocean–continent transition at rifted continental margins using 3-D gravity inversion which includes a correction for the large negative lithosphere thermal gravity anomaly within continental margin lithosphere. The lateral density changes caused by the elevated geotherm in thinned continental margin and adjacent ocean basin lithosphere produce a significant lithosphere thermal gravity anomaly which may be in excess of −100 mGal, and for which a correction must be made in order to determine Moho depth accurately from gravity inversion. We describe a method of iteratively calculating the lithosphere thermal gravity anomaly using a lithosphere thermal model to give the present-day temperature field from which we calculate the lithosphere thermal density and gravity anomalies. For continental margin lithosphere, the lithosphere thermal perturbation is calculated from the lithosphere thinning factor (γ= 1 − 1/β) obtained from crustal thinning determined by gravity inversion and breakup age for thermal re-equilibration time. For oceanic lithosphere, the lithosphere thermal model used to predict the lithosphere thermal gravity anomaly may be conditioned using ocean isochrons from plate reconstruction models to provide the age and location of oceanic lithosphere. A correction is made for crustal melt addition due to decompression melting during continental breakup and seafloor spreading. We investigate the sensitivity of the lithosphere thermal gravity anomaly and the predicted Moho depth from gravity inversion at continental rifted margins to the methods used to calculate and condition the lithosphere thermal model using both synthetic models and examples from the North Atlantic.  相似文献   

2.
Summary. The continent-ocean transition adjacent to Hatton Bank was studied using a dense grid of single-ship and two-ship multichannel seismic profiles. The interpretation of the explosive expanding spread profiles (ESPs) which were shot as part of this survey are discussed here in detail. Extensive seaward dipping reflectors are developed in the upper crust across the entire margin. These seaward dipping reflectors continue northwards on the Faeroes and Vøring margins, where they have been shown to be caused by basaltic lavas, as well as on the conjugate margin of East Greenland. The dipping reflectors are an important feature of the rifting history of the margin and show that extensive volcanism was associated with the extension. The ESPs show clear seismic arrivals out to ranges of 100 km. Wide-angle Moho reflections can be seen on all the lines as well as good mid and lower crustal arrivals. The determination of seismic velocity structure was constrained by ray tracing and by amplitude modelling using reflectivity synthetic seismograms. The results from the ESPs show that there is a thick region of lower crustal material beneath the margin with an unusually high crustal velocity of 7.3–7.4 km s−1. This lower crustal material reaches a maximum thickness of 14 km beneath the central part of the margin and is terminated at depth by the Moho. The lower crustal lens of high-velocity material is interpreted as underplated or intruded igneous rocks associated with the large volumes of extrusive basaltic lavas, now seen as dipping reflectors on the margin.  相似文献   

3.
Gravity studies of the Rockall and Exmouth Plateaux using SEASAT altimetry   总被引:1,自引:0,他引:1  
Abstract SEASAT altimetric measurements are used to determine the gravity anomalies across two passive continental margins: the western margin of the Rockall Plateau, UK, and the Exmouth Plateau off north-west Australia. The small gravity anomalies observed over the starved western margin of the Rockall Plateau require the existence of a major density contrast within the crust, as well as the Moho, and show that the elastic thickness is less than 5 km at the time of rifting. The gravity anomaly over the Exmouth Plateau is compared with the gravity anomaly calculated from the sediment loading of a thin elastic plate, taking account of the variation in crustal thickness. This comparison shows that the Exmouth Plateau also has a small effective elastic thickness of 5 km, even for loads emplaced between 60 and 120 Myr after rifting. Elastic thicknesses of about 5 km have also been reported for other sedimentary basins, and are to be expected if the rheological properties of the crust and mantle depend on the ratio of the present temperature to the melting temperature. Flexural effects are therefore likely to be of minor importance in sedimentary basins.  相似文献   

4.
Tectonic evolution of the Alboran Sea basin   总被引:6,自引:0,他引:6  
The Alboran Sea is an extensional basin of Neogene age that is surrounded by highly arcuate thrust belts. Multichannel seismic (MCS) reflection profile data suggest the basin has a complex tectonic fabric that includes extensional, compressional and strike-slip structures. The early Miocene history appears to be dominated by graben formation with border faults that are in large part contemporaneous with thrust movements in the external zones of the Betic and Rif mountains. Extension appears to have continued into the late Miocene although the main movements were probably completed by the time of the Messinian ‘salinity crisis’. The Pliocene and younger history of the basin is dominated by infilling of the Messinian topography, gentle subsidence, and extensional, compressional and strike-slip movements. There is evidence from the sea-floor morphology and seismicity patterns that the basin is actively deforming in response to present-day plate motions. Backstripping of well data in the basin margin suggests that the initial extensional event was accompanied by crustal and lithospheric thinning. The depth to Moho inferred from backstripping is greater than the depth expected based on seismic and gravity modelling, suggesting that backstripping underestimates the true amount of thinning. One explanation is that some of the thinning occurred while the crust was above sea level, perhaps as a result of either crustal thickening, or a period of lithospheric heating and thinning, prior to rifting. We found that a model with a ‘normal’ crustal thickness of 31.2 km, a lithospheric thickness of 50 km, and β= 1.4 predicts 0.8 km of initial uplift. These parameters fit the well subsidence data and bring the backstripped Moho into better agreement with the seismic and gravity Moho. The origin of such a thin lithosphere is not constrained by the data, but we believe that it may be a result of the detachment of a cold lithospheric ‘root’ that formed during pre-Neogene collisional orogeny in the region.  相似文献   

5.
A series of three‐dimensional models has been constructed for the structure of the crust and upper mantle over a large region spanning the NE Atlantic passive margin. These incorporate isostatic and flexural principles, together with gravity modelling and integration with seismic interpretations. An initial isostatic model was based on known bathymetric/topographic variations, an estimate of the thickness and density of the sedimentary cover, and upper mantle densities based on thermal modelling. The thickness of the crystalline crust in this model was adjusted to equalise the load at a compensation depth lying below the zone of lateral mantle density variations. Flexural backstripping was used to derive alternative models which tested the effect of varying the strength of the lithosphere during sediment loading. The models were analysed by comparing calculated and observed gravity fields and by calibrating the predicted geometries against independent (primarily seismic) evidence. Further models were generated in which the thickness of the sedimentary layer and the crystalline crust were modified in order to improve the fit to observed gravity anomalies. The potential effects of igneous underplating and variable upper mantle depletion were explored by a series of sensitivity trials. The results provide a new regional lithospheric framework for the margin and a means of setting more detailed, local investigations in their regional context. The flexural modelling suggests lateral variations in the strength of the lithosphere, with much of the margin being relatively weak but areas such as the Porcupine Basin and parts of the Rockall Basin having greater strength. Observed differences between the model Moho and seismic Moho along the continental margin can be interpreted in terms of underplating. A Moho discrepancy to the northwest of Scotland is ascribed to uplift caused by a region of upper mantle with anomalously low density, which may be associated with depletion or with a temperature anomaly.  相似文献   

6.
During May 1990 and January-February 1991, an extensive geophysical data set was collected over the Côte d'Ivoire-Ghana continental margin, located along the equatorial coast of West Africa. The Ghana margin is a transform continental margin running subparallel to the Romanche Fracture Zone and its associated marginal ridge—the Côte d'Ivoire-Ghana Ridge. From this data set, an explosive refraction line running ∼ 150 km, ENE-WSW between 3°55'N, 3°21'W and 4°23'N, 2°4'W, has been modelled together with wide-angle airgun profiles, and seismic reflection and gravity data. This study is centred on the Côte d'Ivoire Basin located just to the north of the Côte d'Ivoire-Ghana Ridge, where bathymetric data suggest that a component of normal rifting occurred, rather than the transform motion observed along the majority of the equatorial West African margin.
Traveltime and amplitude modelling of the ocean-bottom seismometer data shows that the continental Moho beneath the margin rises in an oceanward direction, from ∼ 24 km below sea level to ∼ 17 km. In the centre of the line where the crust thins most rapidly, there exists a region of anomalously high velocity at the base of the crust, reaching some 8 km in thickness. This higher-velocity region is thought to represent an area of localized underplating related to rifting. Modelling of marine gravity data, collected coincident with the seismic line, has been used to test the best-fitting seismic model. This modelling has shown that the observed free-air anomaly is dominated by the effects of crustal thickness, and that a region of higher density is required at the base of the crust to fit the observed data. This higher-density region is consistent in size and location with the high velocities required to fit the seismic data.  相似文献   

7.
We report the crustal structure for two locations in Iraq estimated by joint inversion of P -wave receiver functions (RFs) and surface (Rayleigh) wave group velocity dispersion. RFs were computed from teleseismic recordings at two temporary broad-band seismic stations located in Mosul (MSL) in the Zagros Fold Belt and Baghdad (BHD) in the Mesopotamian Foredeep. Group velocity dispersion curves at the sites were derived from continental-scale tomography. The inversion results show that the crustal thicknesses are 39 km at MSL and 43 km at BHD. We observe a strong Ps Moho at BHD consistent with a sharp Moho discontinuity. However, at MSL we observe a weak Ps Moho suggesting a transitional Moho where crustal thickening is likely to be occurring in the deep crust. Both sites reveal low velocity surface layers consistent with sedimentary thickness of about 3 km at station MSL and 7 km at BHD and agreeing well with the previous reports. Ignoring the sediments, the crystalline crustal velocities and thicknesses are remarkably similar at both stations. The similarity of crustal structure suggests that the crust of the northeastern proto-Arabian Platform was uniform before subsidence and deposition of the sediments in the Cenozoic. If crystalline crustal structure is uniform across the northern Arabian Platform then crustal thickness variations in the Zagros Fold Belt and Thrust Zone should reveal the history of deformation and crustal shortening in the Arabian–Eurasian collision zone and not reflect pre-existing crustal thickness variations in the Arabian Plate.  相似文献   

8.
20 magnetotelluric (MT) soundings were collected on the Isle of Skye, Scotland to provide a high-resolution three-dimensional (3-D) electrical resistivity model of a volcanic province within the framework of a project jointly interpreting gravity, seismic, geological and MT data. The full 3-D inversion of the MT data jointly interpreted with gravity data reveals upper crustal structure. The main features of the model are interpreted in conjunction with previous geological mapping and borehole data. Our model extends to 13 km depth, several kilometres below the top of the Lewisian basement. The top of the Lewisian basement is at approximately 7–8 km depth and the topography of its surface was controlled by Precambrian rifting, during which a 4.5 km thick sequence of Torridonian sediments was deposited. The Mesozoic sediments above, which can reach up to 2.2 km thick, have small-scale depocentres and are covered by up to 600 m of Tertiary lava flows. The interpretation of the resistivity model shows that 3-D MT inversion is an appropriate tool to image sedimentary structures beneath extrusive basalt units, where conventional seismic reflection methods may fail.  相似文献   

9.
The Orphan Basin, lying along the Newfoundland rifted continental margin, formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. To investigate the evolution of the Orphan Basin and the factors that governed its formation, we (i) analysed the stratigraphic and crustal architecture documented by seismic data (courtesy of TGS), (ii) quantified the tectonic and thermal subsidence along a constructed geological transect, and (iii) used forward numerical modelling to understand the state of the pre‐rift lithosphere and the distribution of deformation during rifting. Our study shows that the pre‐rift lithosphere was 200‐km thick and rheologically strong (150‐km‐thick elastic plate) prior to rifting. It also indicates that extension in the Orphan Basin occurred in three distinct phases during the Jurassic, the Early Cretaceous and the Late Cretaceous. Each rifting phase is characterized by a specific crustal and subcrustal thinning configuration. Crustal deformation initiated in the eastern part of the basin during the Jurassic and migrated to the west during the Cretaceous. It was coupled with a subcrustal thinning which was reduced underneath the eastern domain and very intense in the western domains of the basin. The spatial and temporal distribution of thinning and the evolution of the lithosphere rheology through time controlled the tectonic, stratigraphic and crustal architecture that we observe today in the Orphan Basin.  相似文献   

10.
b
As a supplement to seismic profiling surveys, crustal thicknesses have been estimated for 11 Fennoscandian seismograph stations equipped with three-component long period instruments, using the so-called spectral ratio technique of Phinney. The largest Moho depths, of the order of 45 km, were found for stations located in the north-east areas of Norway and Sweden and in Finland, with a local maximum in the Bothnian Bay. The coastal area of south-east Norway and Zealand, Denmark exhibit crustal thicknesses in the range 28–33 km. The agreement between our results and those obtained by conventional refraction profiling is good, when this comparison is restricted to profiles of lengths 300 km or more, and when the associated crustal thickness estimate is averaged over the central parts of the profiles in question. Also, a comparison between our results and other available geophysical information gives that the oldest tectonic provinces of the Baltic Shield also are characterized by relatively modest heat flow, and exhibit the greatest crustal thicknesses. Post-glacial uplift data and large wavelength free air gravity data appear to be uncorrelated with crustal thickness. The same partly applies to Bouguer gravity anomalies, thus implying that the isostatic compensation mechanism in Fennoscandia is of both Airy and Pratt type.  相似文献   

11.
New multichannel seismic reflection data were collected over a 565 km transect covering the non-volcanic rifted margin of the central eastern Grand Banks and the Newfoundland Basin in the northwestern Atlantic. Three major crustal zones are interpreted from west to east over the seaward 350 km of the profile: (1) continental crust; (2) transitional basement and (3) oceanic crust. Continental crust thins over a wide zone (∼160 km) by forming a large rift basin (Carson Basin) and seaward fault block, together with a series of smaller fault blocks eastwards beneath the Salar and Newfoundland basins. Analysis of selected previous reflection profiles (Lithoprobe 85-4, 85-2 and Conrad NB-1) indicates that prominent landward-dipping reflections observed under the continental slope are a regional phenomenon. They define the landward edge of a deep serpentinized mantle layer, which underlies both extended continental crust and transitional basement. The 80-km-wide transitional basement is defined landwards by a basement high that may consist of serpentinized peridotite and seawards by a pair of basement highs of unknown crustal origin. Flat and unreflective transitional basement most likely is exhumed, serpentinized mantle, although our results do not exclude the possibility of anomalously thinned oceanic crust. A Moho reflection below interpreted oceanic crust is first observed landwards of magnetic anomaly M4, 230 km from the shelf break. Extrapolation of ages from chron M0 to the edge of interpreted oceanic crust suggests that the onset of seafloor spreading was ∼138 Ma (Valanginian) in the south (southern Newfoundland Basin) to ∼125 Ma (Barremian–Aptian boundary) in the north (Flemish Cap), comparable to those proposed for the conjugate margins.  相似文献   

12.
Several years of broad-band teleseismic data from the GRSN stations have been analysed for crustal structure using P -to- S converted waves at the crustal discontinuities. An inversion technique was developed which applies the Thomson-Haskell formalism for plane waves without slowness integration. The main phases observed are Moho conversions, their multiples in the crust, and conversions at the base of the sediments. The crustal thickness derived from these data is in good agreement with results from other studies. For the Gräfenberg stations, we have made a more detailed comparison of our model with a previously published model obtained from refraction seismic experiments. The refraction seismic model contains boundaries with strong velocity contrasts and a significant low-velocity zone, resulting in teleseismic waveforms that are too complicated as compared to the observed simple waveforms. The comparison suggests that a significant low-velocity zone is not required and that internal crustal boundaries are rather smooth.  相似文献   

13.
The southern South African continental margin documents a complex margin system that has undergone both continental rifting and transform processes in a manner that its present‐day architecture and geodynamic evolution can only be better understood through the application of a multidisciplinary and multi‐scale geo‐modelling procedure. In this study, we focus on the proximal section of the larger Bredasdorp sub‐basin (the westernmost of the five southern South African offshore Mesozoic sub‐basins), which is hereto referred as the Western Bredasdorp Basin. Integration of 1200 km of 2D seismic‐reflection profiles, well‐logs and cores yields a consistent 3D structural model of the Upper Jurassic‐Cenozoic sedimentary megasequence comprising six stratigraphic layers that represent the syn‐rift to post‐rift successions with geometric information and lithology‐depth‐dependent properties (porosities and densities). We subsequently applied a combined approach based on Airy's isostatic concept and 3D gravity modelling to predict the depth to the crust‐mantle boundary (Moho) as well as the density structure of the deep crust. The best‐fit 3D model with the measured gravity field is only achievable by considering a heterogeneous deep crustal domain, consisting of an uppermost less dense prerift meta‐sedimentary layer [ρ = 2600 kg m?3] with a series of structural domains. To reproduce the observed density variations for the Upper Cenomanian–Cenozoic sequence, our model predicts a cumulative eroded thickness of ca. 800–1200 m of Tertiary sediments, which may be related to the Late Miocene margin uplift. Analyses of the key features of the first crust‐scale 3D model of the basin, ranging from thickness distribution pattern, Moho shallowing trend, sub‐crustal thinning to shallow and deep crustal extensional regimes, suggest that basin initiation is typical of a mantle involvement deep‐seated pull‐apart setting that is associated with the development of the Agulhas‐Falkland dextral shear zone, and that the system is not in isostatic equilibrium at present day due to a mass excess in the eastern domain of the basin that may be linked to a compensating rise of the asthenospheric mantle during crustal extension. Further corroborating the strike‐slip setting is the variations of sedimentation rates through time. The estimated syn‐rift sedimentation rates are three to four times higher than the post‐rift sedimentation, thereby indicating that a rather fast and short‐lived subsidence during the syn‐rift phase is succeeded by a significantly poor passive margin development in the post‐rift phase. Moreover, the derived lithospheric stretching factors [β = 1.5–1.75] for the main basin axis do not conform to the weak post‐rift subsidence. This therefore suggests that a differential thinning of the crust and the mantle‐lithosphere typical for strike‐slip basins, rather than the classical uniform stretching model, may be applicable to the Western Bredasdorp Basin.  相似文献   

14.
We study the tectonic setting and lithospheric structure of the greater Barents Sea region by investigating its isostatic state and its gravity field. 3-D forward density modelling utilizing available information from seismic data and boreholes shows an apparent shift between the level of observed and modelled gravity anomalies. This difference cannot be solely explained by changes in crustal density. Furthermore, isostatic calculations show that the present crustal thickness of 35–37 km in the Eastern Barents Sea is greater than required to isostatically balance the deep basins of the area (>19 km). To isostatically compensate the missing masses from the thick crust and deep basins and to adequately explain the gravity field, high-density material (3300–3350 kg m−3) in the lithospheric mantle below the Eastern Barents Sea is needed. The distribution of mantle densities shows a regional division between the Western and Eastern Barents and Kara Seas. In addition, a band of high-densities is observed in the lower crust along the transition zone from the Eastern to Western Barents Sea. The distribution of high-density material in the crust and mantle suggests a connection to the Neoproterozoic Timanide orogen and argues against the presence of a Caledonian suture in the Eastern Barents Sea. Furthermore, the results indicate that the basins of the Western Barents Sea are mainly affected by rifting, while the Eastern Barents Sea basins are located on a stable continental platform.  相似文献   

15.
The BABEL marine seismic experiment has been carried out to investigate the lithospheric structure and antecedent tectonic signatures of the Baltic Shield, including the Archaean-Proterozoic collisional structure in the northern part of the Gulf of Bothnia.
Lithospheric seismic-reflection streamer data and simultaneously recorded wide-angle reflection and refraction data collected in the Gulf of Bothnia as part of the BABEL project have been used for 3-D modelling. The distribution of land stations around the Gulf provides a good 3-D ray coverage of the PMP reflection data recorded at the eight stations in the area and allows an estimation of strikes and dips of the Moho boundary in the area. The traveltimes of reflected phases are calculated using a method that utilizes the finite-difference solution of the eikonal equation. The Moho wide-angle-reflection (PMP) traveltimes are modelled using an inversion method. A 2-D model from the Gulf of Bothnia extended into the third dimension is used as an initial model. During the inversion the velocity is kept constant and only the Moho boundary is allowed to vary. To estimate the strike of the Moho boundary and the stability of the inversion, two initial models with different strikes are examined.
The results indicate that the Moho depth in the Gulf of Bothnia undulates and has a maximum depth of 55 km in the south, rising to 42 km in the north. The Moho depth variations seem to be step-like. This change in the Moho depth coincides with the location of the presumed fossil subduction zone in the area. The crustal-thickness variations seem to be well approximated by a nearly 2-D structure striking parallel to a postulated subduction zone immediately to the south of the Skellefte area. The presence of the step at the crust/mantle boundary can be interpreted as a result of a plate-collision event at about 2 Ga.  相似文献   

16.
Receiver functions (RFs) from teleseismic events recorded by the NARS-Baja array were used to map crustal thickness in the continental margins of the Gulf of California, a newly forming ocean basin. Although the upper crust is known to have split apart simultaneously along the entire length of the Gulf, little is known about the behaviour of the lower crust in this region. The RFs show clear P -to- S wave conversions from the Moho beneath the stations. The delay times between the direct P and P -to- S waves indicate thinner crust closer to the Gulf along the entire Baja California peninsula. The thinner crust is associated with the eastern Peninsular Ranges batholith (PRB). Crustal thickness is uncorrelated with topography in the PRB and the Moho is not flat, suggesting mantle compensation by a weaker than normal mantle based on seismological evidence. The approximately W–E shallowing in Moho depths is significant with extremes in crustal thickness of ∼21 and 37 km. Similar results have been obtained at the northern end of the Gulf by Lewis et al., who proposed a mechanism of lower crustal flow associated with rifting in the Gulf Extensional Province for thinning of the crust. Based on the amount of pre-Pliocene extension possible in the continental margins, if the lower crust did thin in concert with the upper crust, it is possible that the crust was thinned during the early stages of rifting before the opening of the ocean basin. In this case, we suggest that when breakup occurred, the lower crust in the margins of the Gulf was still behaving ductilely. Alternatively, the lower crust may have thinned after the Gulf opened. The implications of these mechanisms are discussed.  相似文献   

17.
Teleseismic data have been collected with temporary seismograph stations on two profiles in southern Norway. Including the permanent arrays NORSAR and Hagfors the profiles are 400 and 500 km long and extend from the Atlantic coast across regions of high topography and the Oslo Rift. A total of 1071 teleseismic waveforms recorded by 24 temporary and 8 permanent stations are analysed. The depth-migrated receiver functions show a well-resolved Moho for both profiles with Moho depths that are generally accurate within ±2 km.
For the northern profile across Jotunheimen we obtain Moho depths between 32 and 43 km (below sea level). On the southern profile across Hardangervidda, the Moho depths range from 29 km at the Atlantic coast to 41 km below the highland plateau. Generally the depth of Moho is close to or above 40 km beneath areas of high mean topography (>1 km), whereas in the Oslo Rift the crust locally thins down to 32 km. At the east end of the profiles we observe a deepening Moho beneath low topography. Beneath the highlands the obtained Moho depths are 4–5 km deeper than previous estimates. Our results are supported by the fact that west of the Oslo Rift a deep Moho correlates very well with low Bouguer gravity which also correlates well with high mean topography.
The presented results reveal a ca . 10–12 km thick Airy-type crustal root beneath the highlands of southern Norway, which leaves little room for additional buoyancy-effects below Moho. These observations do not seem consistent with the mechanisms of substantial buoyancy presently suggested to explain a significant Cenozoic uplift widely believed to be the cause of the high topography in present-day southern Norway.  相似文献   

18.
A two-layer lithospheric stretching model that includes the effects of decompression melting was used to estimate the deformation and thermal evolution of the Queen Charlotte Basin, British Columbia. The basin contains up to 6 km of Tertiary fill and is postulated to have been formed during a transtensional stage of Cenozoic plate motion between the Pacific and North American plates. Several models of basin formation have been proposed to explain the sediment distribution, contemporaneous volcanism and high present-day heat flow. We used bathymetry, Tertiary sediment thickness and crustal thickness to calculate the amount of stretching in the crust and lower lithosphere, and the volume of melt generated during advection of mantle rocks. A second set of calculations traced the thermal evolution of the sediments and lithosphere, and we show maps of estimated present-day heat flow and sediment maturity. This study differs significantly from previous work in the use of gridded data that provide coverage over a large region and permit lateral variations in lithospheric deformation and thermal properties to be clearly defined, a difficult quest in studies based on single-point or profile data. In addition, the use of crustal thickness, derived from a regional interpretation of gravity data and constrained by seismic refraction results, as an input allows reliable estimates of extension to be made despite recent deformation of sedimentary strata in Hecate Strait. We present results for a model which used a prerift crustal thickness of ≈34 km and a short rifting period from 25 to 20 Ma. This model infers that significant thinning occurred beneath south-western Hecate Strait and southern Queen Charlotte Sound, and several kilometres of igneous crust were added at these sites, without requiring elevated asthenospheric temperatures prior to extension. Net lithospheric extension is surprisingly uniform within the basin and averages 76%, or ≈50 km, across the margin. This amount is consistent with other estimates of extension and may provide information useful in refining models of plate motion along this margin.  相似文献   

19.
A wide-angle seismic profile across the western peninsulas of SW Ireland was performed. This region corresponds to the northernmost Variscan thrust and fold deformation. The dense set of 13 shots and 109 stations along the 120  km long profile provides a detailed velocity model of the crust.
  The seismic velocity model, obtained by forward and inverse modelling, defines a five-layer crust. A sedimentary layer, 5–8  km thick, is underlain by an upper-crustal layer of variable thickness, with a base generally at a depth of 10–12  km. Two mid-crustal layers are defined, and a lower-crustal layer below 22  km. The Moho lies at a depth of 30–32  km. A low-velocity zone, which coincides with a well-defined gravity low, is observed in the central part of the region and is modelled as a Caledonian granite which intruded upper-crustal basement. The granite may have acted as a buffer to northward-directed Variscan thrusting. The Dingle–Dungarvan Line (DDL) marks a major change in sedimentary and crustal velocity and structure. It lies immediately to the north of the velocity and gravity low, and shows thickness and velocity differences in many of the underlying crustal layers and even in the Moho. This suggests a deep, pre-Variscan control of the structural development of this area. The model is compatible with thin-skinned tectonics, which terminated at the DDL and which incorporated thrusts involving the sedimentary and upper-crustal layers.  相似文献   

20.
We present new methods for the interpretation of 3-D seismic wide-angle reflection and refraction data with application to data acquired during the experiments CELEBRATION, 2000 and ALP 2002 in the area of the Eastern Alps and their transition to the surrounding tectonic provinces (Bohemian Massif, Carpathians, Pannonian domain, Dinarides). Data was acquired on a net of arbitrarily oriented seismic lines by simultaneous recording on all lines of seismic waves from the shots, which allows 2-D and 3-D interpretations. Much (80%) of the data set consists of crossline traces. Low signal to noise (S/N) ratio in the area of the young orogens decreases the quality of travel time picks. In these seismically heterogeneous areas it is difficult to assign clearly defined arrivals to the seismic phases, in particular on crossline record sections.
In order to enhance the S/N ratio, signal detection and stacking techniques have been applied to enhance the Pg -, Pn - and PmP phases. Further, inversion methods have been developed for the interpretation of WAR/R-data, based on automated 1-D inversion ( Pg ) and the application of the delay time concept ( Pn ). The results include a 3-D velocity model of the crust based on Pg waves, time and depth maps of the Moho and a Pn -velocity map. The models based on stacked data are robust and provide a larger coverage, than models based on travel time picks from single-fold (unstacked) traces, but have relatively low resolution, especially near the surface. They were used as the basis for constructing models with improved resolution by the inversion of picks from single-fold data. The results correlate well with geological structures and show new prominent features in the Eastern Alps area and their surrounds. The velocity distribution in the crust has strong lateral variations and the Moho in the investigation area appears to be fragmented into three parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号