首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
2.
3.
4.
5.
6.
7.
Inversion of seismic attributes for velocity and attenuation structure   总被引:1,自引:0,他引:1  
We have developed an inversion formuialion for velocity and attenuation structure using seismic attributes, including envelope amplitude, instantaneous frequency and arrival times of selected seismic phases. We refer to this approach as AFT inversion for amplitude, (instantaneous) frequency and time. Complex trace analysis is used to extract the different seismic attributes. The instantaneous frequency data are converted to t * using a matching procedure that approximately removes the effects of the source spectra. To invert for structure, ray-perturbation methods are used to compute the sensitivity of the seismic attributes to variations in the model. An iterative inversion procedure is then performed from smooth to less smooth models that progressively incorporates the shorter-wavelength components of the model. To illustrate the method, seismic attributes are extracted from seismic-refraction data of the Ouachita PASSCAL experiment and used to invert for shallow crustal velocity and attenuation structure. Although amplitude data are sensitive to model roughness, the inverted velocity and attenuation models were required by the data to maintain a relatively smooth character. The amplitude and t * data were needed, along with the traveltimes, at each step of the inversion in order to fit all the seismic attributes at the final iteration.  相似文献   

8.
9.
10.
11.
12.
13.
3-D finite-difference reflection travel times   总被引:5,自引:0,他引:5  
  相似文献   

14.
15.
16.
17.
18.
The frequency-domain version of waveform tomography enables the use of distinct frequency components to adequately reconstruct the subsurface velocity field, and thereby dramatically reduces the input data quantity required for the inversion process. It makes waveform tomography a computationally tractable problem for production uses, but its applicability to real seismic data particularly in the petroleum exploration and development scale needs to be examined. As real data are often band limited with missing low frequencies, a good starting model is necessary for waveform tomography, to fill in the gap of low frequencies before the inversion of available frequencies. In the inversion stage, a group of frequencies should be used simultaneously at each iteration, to suppress the effect of data noise in the frequency domain. Meanwhile, a smoothness constraint on the model must be used in the inversion, to cope the effect of data noise, the effect of non-linearity of the problem, and the effect of strong sensitivities of short wavelength model variations. In this paper we use frequency-domain waveform tomography to provide quantitative velocity images of a crosshole target between boreholes 300 m apart. Due to the complexity of the local geology the velocity variations were extreme (between 3000 and 5500 m s−1), making the inversion problem highly non-linear. Nevertheless, the waveform tomography results correlate well with borehole logs, and provide realistic geological information that can be tracked between the boreholes with confidence.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号