首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

In this study, deposit- and district-scale three-dimensional (3D) fault-and-intrusion structure models were constructed, based on which a numerical simulation was implemented in the Jiaojia gold district, China. The numerical simulation of the models shows the basic metallogenic path and trap of the gold deposits using mineral system theory. The objective of this study was to delineate the uncertainty of the geometry or buffer zones of the ore-forming and ore-controlling fault-and-intrusion domains in 3D environment representing the exploration criteria extraction and the gold potential targeting in the study area. The fast Lagrangian analysis of continua in three dimensions was used as the platform to define the stress deformation fracture ore storage and the hydrothermal seepage channel zone based on the gold deposit features and metallogenic model in the study area. The validity of the numerical simulation was verified by comparing it with robust 3D geological models of the large Xincheng gold deposit. The potential targeting zones are analyzed for uncertainty and then evaluated by Boolean operation in a 3D geological model using the computer-aided design platform. The research results are summarized as follows. (1) In the pre-mineralization period, the Jiaodong fault’s left lateral movement created the Jiaojia network faults and formed a fracture zone with NW- to NNW-trending dips of 20° to 40°. (2) During the mineralization period, hydrothermal flow was associated with the intrusion geometry and features. However, it was constrained by the Jiaojia fault, which blocked the vadose flow into the upper wall rock and made the hydrothermal route close to the fault in the footwall fracture zones. (3) Three gold potential targets were identified by the numerical simulation results in the study area: the NW-trending Sizhuang gold deposit, the NW-trending zone of Jiaojia gold deposit, and the NE-trending zone of the Xincheng gold deposit. (4) The numerical simulation results show the fault-and-intrusion metallogenic domain and the hydrothermal alteration zones, which reflect the main ore-controlling and ore-forming factors of mineralization. The information obtained through the numerical simulation discussed here can be used to define exploration criteria in the study area.

  相似文献   

2.
Volcanic hosted massive sulfides (VHMS) have been recognized for many years within the Arabian–Nubian Shield of western Ethiopia. The Shield is a collision belt formed when East and West Gondwana collided during the Neoproterozoic time. It covers NE Africa and the Middle East and is known to have hosted several economic mineral deposits. Situated within the Shield, the Katta VHMS mineralization is primarily made up of chalcopyrite, sphalerite, pyrite, pyrrhotite, and magnetite. These minerals are known to have contrasting values in resistivity, chargeability, and magnetic susceptibility with the enclosing host rocks. These physical attributes make resistivity, IP, and magnetic methods ideal to study and detect the mineralization and possibly delineate the ore body. Dipole–dipole DC resistivity and induced polarization data collected along parallel profiles are inverted to generate both 2D and 3D models of resistivity and chargeability. The chargeability model successfully delineates the zone of sulfide mineralization and the resistivity model gives information on the stratigraphic horizons and the structures. Magnetic data collected along more closely spaced profiles were also inverted to recover the 3D magnetic susceptibility model. The recovered model shows a linear magnetic anomaly that could be associated with the sulfides. This anomaly shows good spatial continuity and is in good agreement with the result obtained in the chargeability model. The geophysical inversion results indicate a NNW oriented mineralized zone of considerable strike length and extending to a depth of about 380 m. This study suggests the presence of exploitable VHMS presence in Katta district and that the inversion methodology is an important interpretation tool in guiding the exploration and exploitation of sulfide mineralization.  相似文献   

3.

Our study interprets large-scale gravity data to delineate concealed banded iron formation (BIF) iron mineralization in India's Rajasthan province. The study area belongs to the Bharatpur, Dausa, and Karauli districts of Rajasthan. We measured 1462 gravity readings to understand the rock types, depth and geometry of the different rock formations in the proposed study area. We also collected representative lithologies from more than 100 locations in the study area and calculated their density values. The measured gravity datasets are investigated via qualitative (e.g., Bouguer anomaly, first derivative and second derivative) and quantitative (radially averaged power spectrum, 3D Euler deconvolution, and 3D inversion) approach. The qualitative methods suggest a general NE–SW orientation of the BIFs, controlled by the general trend of the study area's structural setting. The lithological contact between the Bhilwara and Vindhyan Supergroups is demarcated by a NE–SW trending steep gravity gradient zone. In this area, representative lithologies yield high densities (about 3.746 gm/cc), and the samples identified as BIF represent exploration targets for iron ore. We have also developed our own in-house 3D gravity inversion code in this study. A model space inversion algorithm is converted into a data space using the identity relationship. It makes inversion algorithm very user-friendly on conventional desktop computers. The outcomes from the 3D inversion suggest that the concealed iron ore thickens to the west. This interpretation is also in good correlation with Euler 3D deconvolution of the gravity data.

  相似文献   

4.
Shang  Zhi  Chen  Yongqing  Xu  Xiaoting  Zhao  Binbin 《Natural Resources Research》2022,31(4):1963-1979

The method of bi-dimensional empirical mode decomposition (BEMD) and the combined methods of entropy weight–Technique for Order of Preference by Similarity to an Ideal Solution (TOPSIS) were used to decompose gravity–magnetic data and evaluate targets in the Luziyuan Pb–Zn–Fe polymetallic ore field and surrounding areas. Three meaningful bi-dimensional intrinsic mode function (BIMF) images were obtained by BEMD at different wavelengths, depicting different layers of geological architectures in the study area. The results are as follows. (1) The BIMF2 images depict the shallow local geological architecture and show positive gravity–magnetic anomalies of the skarn alteration and Pb–Zn–Fe mineralization distributed around concealed granites. (2) The BIMF3 images depict the medium-depth geological architecture, indicating that concealed granitic stocks, which are shallow extensions of a deeply concealed pluton, intruded along the NE-trending fault. (3) The BIMF4 images depict gravity–magnetic anomalies at greater depth, which likely reflect regional geological architectures, indicating the potential presence of a large, concealed intermediate-acid pluton in the negative anomaly zone. Three potential targets (A, B, and C) were delineated based on BEMD results of the original gravity–magnetic data. The entropy weight–TOPSIS evaluation results show that the ranking of the metallogenic potential of the delineated targets in the study area is B, A, and C, with relative proximity values of 0.4576, 0.3925, and 0.1499, respectively. The results of this study can be used to guide future exploration.

  相似文献   

5.
Lin  Nan  Chen  Yongliang  Lu  Laijun 《Natural Resources Research》2020,29(1):173-188

Mineral potential prediction is a process of establishing a statistical model that describes the relationship between evidence variables and mineral occurrences. In this study, evidence variables were constructed from geological, remote sensing, and geochemical data collected from the Lalingzaohuo district, Qinghai Province, China. Based on these evidence variables, a conjugate gradient logistic regression (CG-LR) model was established to predict exploration targets in the study area. The receiver operating characteristic (ROC) and prediction–area (P-A) curves were used to evaluate the effectiveness of the CG-LR model in mineral potential mapping. The difference between the vertical and horizontal coordinates of each point on the ROC curve was used to determine the optimal threshold for classifying the exploration targets. The optimal threshold corresponds to the point on the ROC curve where the difference between the vertical coordinate and the horizontal coordinate is the largest. In exploration target prediction in the study area, the CG algorithm was used to optimize iteratively the LR coefficients, and the prediction effectiveness was tested for different epochs. With increasing iterations, the prediction performance of the model becomes increasingly better. After 60 iterations, the LR model becomes stable and has the best performance in exploration target prediction. At this point, the exploration targets predicted by the CG-LR model occupy 14.39% of the study area and contain 93% of the known mineral deposits. The exploration targets predicted by the model are consistent with the metallogenic geological characteristics of the study area. Therefore, the CG-LR model can effectively integrate geological, remote sensing, and geochemical data for the study area to predict targets for mineral exploration.

  相似文献   

6.
《Basin Research》2018,30(4):766-782
This paper proposes a new methodology to improve the location of potential karstified areas by gravity inversion of a 3D geological model. A geological 3D model is built from surface observations, 2D seismic reflection profiles and well data. The reliability of this geological 3D model obtained from integration, interpretation and interpolation of such data is first tested against the structural consistency of the model. Its theoretical gravimetric response is compared to gravity field during the forward problem in order to evaluate the validity/robustness of the geological model. The coherency between the gravity field and the gravimetric response is tested. The litho‐inversion modelling quantifies the distribution of rock density in a probabilistic way, taking into account the geology and physical properties of rocks, while respecting the geological structures represented in the 3D model. The result of the inversion process provides a density distribution within carbonate formations that can be discussed in term of karstification distribution. Thus, lower densities correlate with areas that are strongly karstified. Conversely, higher than mean densities are found in carbonate formations mostly located under marly and impervious formations, preserving carbonate from karstification and paleokarstification.  相似文献   

7.
This paper combines knowledge- and data-driven prospectivity mapping approaches by using the receiver operating characteristics (ROC) spatial statistical technique to optimize the process of rescaling input datasets and the process of data integration when using a fuzzy logic prospectivity mapping method. The methodology is tested in an active mineral exploration terrain within the Paleoproterozoic Peräpohja Belt (PB) in the Northern Fennoscandian Shield, Finland. The PB comprises a greenschist to amphibolite facies, complexly deformed supracrustal sequence of variable quartzites, mafic volcanic rocks and volcaniclastic rocks, carbonate rocks, black shales, mica schists and graywackes. These formations were deposited on Archean basement and 2.44 Ga layered intrusions, during the multiple rifting of the Archean basement (2.44–1.92 Ga). Younger intrusive units in the PB comprise 2.20–2.13 Ga gabbroic sills or dikes and 1.98 Ga A-type granites. Metamorphism and complex deformation of the PB took place during the Svecofennian orogeny (1.9–1.8 Ga) and were followed by intrusions of post-orogenic granitoids (1.81–1.77 Ga). The recent mineral exploration activities have indicated several gold-bearing mineral occurrences within the PB. The Rompas Au-U mineralization is hosted within deformed and metamorphosed calc-silicate veins enclosed within mafic volcanic rocks and contains uranium-bearing zones without gold and very high-grade (>10,000 g/t Au) gold pockets with uraninite and uraninite-pyrobitumen nodules. In the vicinity of the Rompas, a magnesium skarn hosted disseminated-stockwork gold mineralization was also recognized at the Palokas-Rajapalot prospect. The exploration criteria translated into a fuzzy logic prospectivity model included data derived from regional till geochemistry (Fe, Cu, Co, Ni, Au, Te, K), high-resolution airborne geophysics (magnetic field total intensity, electromagnetic, gamma radiation), ground gravity and regional bedrock map (structures). The current exploration licenses and exploration drilling sites for gold were used to validate the knowledge-driven mineral prospectivity model.  相似文献   

8.
Li  Nan  Cao  Rui  Ye  HuiShou  Li  Qiang  Wang  Yitian  Lv  Xiping  Guo  Na  Su  Yuanxiang  Hao  Jianrui  Yin  Shitao  Chu  Wenkai 《Natural Resources Research》2022,31(4):2129-2161

The mineral system modeling approach for prospectivity mapping is an efficient and economic method to assess undiscovered mineral potential quantitatively. It is a procedure of modeling, acquiring, and coupling the proxies of footprints of mineral systems at multiple scales (e.g., regional, district, and deposit scales). In this approach, the critical issue from multiple scales is that the data collected are asymmetrical from the superficial to the deep or from mine to its brown fields, so that it is hard to employ and integrate them. To complete this study, firstly, multi-tactic 3D geological modeling methods, including the explicit, the implicit, and inversion, were used to build geological models in the condition of asymmetrical datasets at the deposit and district scales. Secondly, indicators acquired in drill-intensive fields among multisource datasets composed of geology, geochemistry, geophysics and alteration data were transferred to studies in deep and brown fields. Finally, deep (~?1,100 m) and circumjacent potentials of mine were targeted in the Haoyaoerhudong gold deposit situated in the Urad Middle Banner area, Inner Mongolia, which is one of the largest black-rock-series-type gold mines in China. This proposed procedure is more visual, clear, intuitive, and transferable to drive mineral system approach to exploration discovery than previous GIS-based studies.

  相似文献   

9.
The study examines three satellite-based data sets to estimate long-term precipitation for the Thailand region: the Tropical Rainfall Mapping Mission (TRMM) 3B43, the Climate Prediction Centre morphing technique (CMORPH), and a locally developed regression model using the geostationary meteorological satellite (GMS) covering the Thailand region. Data for the first two sets were available at a spatial resolution of 0.25° × 0.25°, while the local regression model used data from the GMS at a resolution of 5 km × 5 km. The statistical regression model was developed by relating long-term monthly average precipitation from 27 rain gauge stations with concurrent satellite data in the visible and thermal infrared bands. The model was then tested against independent data from 27 rain gauge stations. Satellite/rain gauge ratios were estimated, and a smooth spline surface was used to correct the error from the model. Data from the three approaches were compared with a rain gauge network. The TRMM relation performed better than CMORPH, and the performance for GMS was comparable to TRMM with root mean square different and mean bias difference of 33.6 and 4.2%, respectively. The locally developed regression model was used to produce monthly and yearly total rainfall maps from the GMS data for the entire country.  相似文献   

10.
An application of the theory of fuzzy sets to the mapping of gold mineralization potential in the Baguio gold mining district of the Philippines is described. Proximity to geological features is translated into fuzzy membership functions based upon qualitative and quantitative knowledge of spatial associations between known gold occurrences and geological features in the area. Fuzzy sets of favorable distances to geological features and favorable lithologic formations are combined using fuzzy logic as the inference engine. The data capture, map operations, and spatial data analyses are carried out using a geographic information system. The fuzzy predictive maps delineate at least 68% of the known gold occurrences that are used to generate the model. The fuzzy predictive maps delineate at least 76% of the unknown gold occurrences that are not used to generate the model. The results are highly comparable with the results of previous stream-sediment geochemical survey in the area. The results demonstrate the usefulness of a geologically constrained fuzzy set approach to map mineral potential and to redirect surficial exploration work in the search for yet undiscovered gold mineralization in the mining district. The method described is applicable to other mining districts elsewhere.  相似文献   

11.
在勘查区内通过1∶10 000土壤地球化学测量工作发现多处异常,结合区内成矿地质条件及矿种属性可将异常划分为3个异常区带,即西部HT1、东部HT2、南部HT3。经地表探槽工程揭露部分异常与已知矿体较为吻合,并且在勘查区东部HT2-3异常带内新发现4条蚀变岩型Zn矿体。土壤地球化学测量在该区地质找矿中发挥了重要的指导作用,取得了良好的找矿效果。  相似文献   

12.
To provide guides for exploration of porphyry copper mineralization at a district scale, we examine the spatial association between known porphyry copper deposits and geologic features in Benguet, Philippines. The spatial associations between the porphyry copper deposits and strike-slip fault discontinuities, batholithic pluton margins and porphyry plutons are quantified using weights of evidence modeling. In the training and testing district, the porphyry copper occurrences are associated spatially with strike-slip fault discontinuities, batholithic pluton margins and contacts of porphyry plutons within distances of 3 km, 2.25 km, and 1 km, respectively. In addition, the porphyry plutons are associated spatially with strike-slip fault discontinuities and contacts of batholithic plutons within a distance of 2.25 km and 3 km, respectively. Based on these significant spatial associations, predictive maps are generated to delineate zones favorable for porphyry copper mineralization and zones favorable for emplacement of porphyry plutons in Benguet province, Philippines. Validations of the predictive models demonstrate their efficacy in pointing to zones for subsequent follow-up exploration work.  相似文献   

13.
The stratigraphic, paleogeographic and tectonic evolution of the intracratonic Congo Basin in Central Africa has been revised on the basis of an integrated interpretation of gravity, magnetic and reflection seismic data, together with a literature review of papers sometimes old and difficult to access, map compilation and partial reexamination of outcrop and core samples stored in the Royal Museum for Central Africa (RMCA). The Congo Basin has a long and complex evolution starting in the Neoproterozoic and governed by the interplay of tectonic and climatic factors, in a variety of depositional environments.This multidisciplinary study involving 2D gravity and magnetic modeling as additional constraints for the interpretation of seismic profiles appears to be a powerful tool to investigate sedimentary basins where seismic data alone may be difficult to interpret. The tectonic deformations detected in the Congo Basin after the 1970–1984 hydrocarbon exploration campaign in the Democratic Republic of Congo (DRC) have been attributed to crustal contraction and basement uplift at the center of the basin, following a transpressional inversion of earlier graben structures. Two‐dimensional gravity and magnetic models run along key seismic lines suggest the presence of evaporite sequences in some of the deeper units of the stratigraphic succession, in the lateral continuity with those observed in the Mbandaka and Gilson exploration wells. The poorly defined seismic facies that led to the previous basement uplift interpretation of the crystalline basement is shown to correspond to salt‐rich formations that have been tectonically de‐stabilized. These features may be related to vertical salt‐tectonics connected to the near/far‐field effects of the late Pan‐African and the Permo‐Triassic compressive tectonic events that affected this African part of Gondwana.  相似文献   

14.
This paper describes a method for determining Moho depth, lithosphere thinning factor (γ= 1 − 1/β) and the location of the ocean–continent transition at rifted continental margins using 3-D gravity inversion which includes a correction for the large negative lithosphere thermal gravity anomaly within continental margin lithosphere. The lateral density changes caused by the elevated geotherm in thinned continental margin and adjacent ocean basin lithosphere produce a significant lithosphere thermal gravity anomaly which may be in excess of −100 mGal, and for which a correction must be made in order to determine Moho depth accurately from gravity inversion. We describe a method of iteratively calculating the lithosphere thermal gravity anomaly using a lithosphere thermal model to give the present-day temperature field from which we calculate the lithosphere thermal density and gravity anomalies. For continental margin lithosphere, the lithosphere thermal perturbation is calculated from the lithosphere thinning factor (γ= 1 − 1/β) obtained from crustal thinning determined by gravity inversion and breakup age for thermal re-equilibration time. For oceanic lithosphere, the lithosphere thermal model used to predict the lithosphere thermal gravity anomaly may be conditioned using ocean isochrons from plate reconstruction models to provide the age and location of oceanic lithosphere. A correction is made for crustal melt addition due to decompression melting during continental breakup and seafloor spreading. We investigate the sensitivity of the lithosphere thermal gravity anomaly and the predicted Moho depth from gravity inversion at continental rifted margins to the methods used to calculate and condition the lithosphere thermal model using both synthetic models and examples from the North Atlantic.  相似文献   

15.
The Resourcing Future Generations (RFG) program is a global strategy proposed by the International Union of Geological Sciences to meet global demand for natural resources. The Belt and Road (B&R) initiative of China provides a great opportunity for promoting the RFG across much of the Eurasian continent. The countries covered by the B&R initiative are mostly low-income economies. With rapid developments of economy and infrastructure construction, these countries are set to have huge demands for mineral resources in the future. However, the proven mineral reserves in this region are too limited, and the region’s overall level of metal recycling is far from optimistic. These countries are expected to have obstacles in meeting future demands. However, the regional Tethyan metallogenic domain and Central Asia metallogenic district are key areas for new discoveries of mineral resources, possessing a variety of mineral resources with a positive prospecting potential. The B&R initiative of China provides favorable opportunity for mutual beneficial cooperation to improve regional exploration and prospecting through geological mapping, inter-comparison study on Tethyan metallogenic domain, joint assessment of mineral resource potentials, joint training of geological engineers and workers and building information systems.  相似文献   

16.
三维含拓扑地质剖面三角剖分可视化研究   总被引:1,自引:0,他引:1  
三维剖面是地质对象表达和地质问题分析中最基本和最常用的数据。该文分析三维复杂地质折剖面可视化存在的问题,并提出展开剖分算法。该方法保证了各点之间的水平距离与剖面拓扑关系不变,能够对由"多边形-弧段-结点"矢量结构构成的三维折剖面进行有效剖分。在此基础上实现了三维剖面的可视化,尤其合理解决了纹理映射中的纹理变形与重复接缝等问题。  相似文献   

17.
基于GIS的地质勘察信息系统设计与实现   总被引:14,自引:0,他引:14  
从地质勘察领域分析入手,揭示三类主要数据内容及其内在联系,把握地质勘察领域的实质问题。采用信息系统实现关键技术与方法,建立地质勘察领域UML可视化需求模型,构建系统的三层架构体系,设计系统功能可视化组件图和系统数据库结构图。此研究内容与方法在深圳市地质勘察信息系统中成功实现,研究成果被列为科技项目成果推广应用。  相似文献   

18.
20 magnetotelluric (MT) soundings were collected on the Isle of Skye, Scotland to provide a high-resolution three-dimensional (3-D) electrical resistivity model of a volcanic province within the framework of a project jointly interpreting gravity, seismic, geological and MT data. The full 3-D inversion of the MT data jointly interpreted with gravity data reveals upper crustal structure. The main features of the model are interpreted in conjunction with previous geological mapping and borehole data. Our model extends to 13 km depth, several kilometres below the top of the Lewisian basement. The top of the Lewisian basement is at approximately 7–8 km depth and the topography of its surface was controlled by Precambrian rifting, during which a 4.5 km thick sequence of Torridonian sediments was deposited. The Mesozoic sediments above, which can reach up to 2.2 km thick, have small-scale depocentres and are covered by up to 600 m of Tertiary lava flows. The interpretation of the resistivity model shows that 3-D MT inversion is an appropriate tool to image sedimentary structures beneath extrusive basalt units, where conventional seismic reflection methods may fail.  相似文献   

19.
Geographical information system (GIS) techniques were used to investigate the spatial association between metallic mineral sites and lithodiversity in Nevada. Mineral site data sets include various size and type subsets of about 5,500 metal-bearing occurrences and deposits. Lithodiversity was calculated by counting the number of unique geological map units within four sizes of square-shaped sample neighborhoods (2.5-by-2.5, 5-by-5, 10-by-10, and 20-by-20 km) on three different scales of geological maps (national, 1:2,500,000; state, 1:500,000; county, 1:250,000). The spatial association between mineral sites and lithodiversity was observed to increase with increasing lithodiversity. This relationship is consistent for (1) both basin-range and range-only regions, (2) four sizes of sample neighborhoods, (3) various mineral site subsets, (4) the three scales of geological maps, and (5) areas not covered by large-scale maps. A map scale of 1:500,000 and lithodiversity sampling neighborhood of 5-by-5 km was determined to best describe the association. Positive associations occurred for areas having >3 geological map units per neighborhood, with the strongest observed at approximately >7 units. Areas in Nevada with more than three geological map units per 5-by-5 km neighborhood contain more mineral sites than would be expected resulting from chance. High lithodiversity likely reflects the occurrence of complex structural, stratigraphic, and intrusive relationships that are thought to control, focus, localize, or expose mineralization. The application of lithodiversity measurements to areas that are not well explored may help delineate regional-scale exploration targets and provide GIS-supported mineral resource assessment and exploration activity another method that makes use of widely available geological map data.  相似文献   

20.
The Hokuroku district, extending over 40 × 40 km2 in northern Japan, is known to be dominated by kuroko-type massive sulfide deposits that have a genetic relation to submarine volcanic activity. The deposits are hosted in a specific stratigraphic zone of Miocene volcanic rocks. Because kuroko-type deposits are under exploration in several countries, it is important to integrate the geologic and geochemical data that have been accumulated in the Hokuroku district to characterize the distribution of deposits and produce a map of mineral potential. Thus, we collected data on multiple chemical components from 1917 rock cores at 143 drillhole sites and concentrated on components with relatively large amounts of data, which are SiO2, Al2O3, and Fe2O3 as major elements and Cu, Pb, and Zn as trace elements. Although frequencies of these data can be approximated by normal or lognormal distributions, spatial correlation structures cannot be extracted from the semivariograms of each component nor from the cross-semivariograms between two components of the major or minor elements. To handle such complexity, a spatial method of modeling content distribution, SLANS, is developed by applying a feedforward neural network. The principle of SLANS is to train a network repeatedly to recognize the relation between the data value and the location and lithology of a sample point. One-hundred outputs for each element are obtained by changing the numbers of neurons in a middle layer from 1 to 10 and sample data used for training from 3 to 12, and finally one output is selected based on the estimation precision of the network which is restricted near the target point. After constructing a geologic distribution model from the geological column classified into 25 rock codes, three-dimensional distributions of Cu, Pb, and Zn contents are estimated over the study area. The content models are considered to be valid because high-content zones are located on the known mine sites and the margins of ancient volcanoes or calderas. Some zones are distributed along strikes of major deep-seated fractures in the district.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号