首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Environmental change in Lake Taihu and its catchment since the early to middle part of the twentieth century has left a clear geochemical record in the lake sediments. The human activities in the lake and its catchment responsible for the change include agriculture, fishery, urbanisation, sewage and industrial waster disposal. Sediment cores were collected from Meilian Bay of northern Lake Taihu to investigate the record of anthropogenic impacts on the lake’s ecosystem and to assess its natural, pre-eutrophication baseline state. Two marked stratigraphic sediment units were identified on the basis of total phosphorus concentration (TP), pigments, total organic carbon (TOC)/total nitrogen (TN), δ13C and δ15N corresponding to stages in the lake history dominated by phytoplankton, and by aquatic macrophytes. Results show that as TP loading increased from the early 1950s the lake produced sediments with increasing amounts of organic matter derived from phytoplankton. In the early 1950s, the first evidence for eutrophication at the Meilian Bay site is recorded by an increase in C/N values and in sediment accumulation rate, but there is little change in phosphorus concentrations, pigments, δ13C and δ15N at this time. After 1990 a more rapid increase in trophic status took place indicated by increased levels of phosphorus, pigments, δ15N and by decreased δ13C and TOC/TN values in the lake sediments. The first increase in trophic status of the early 1950s results mainly from agricultural development in the catchment. In contrast, the acceleration from ca. 1990 originates from the recent development of fisheries and the urbanisation and industrialisation of the catchment.  相似文献   

2.
Lake sediments contain archives of past environmental conditions in and around water bodies and stable isotope analyses (δ13C and δ15N) of sediment cores have been used to infer past environmental changes in aquatic ecosystems. In this study, we analyzed organic matter (OM), carbon (C), nitrogen (N), phosphorus (P), and δ13C and δ15N values in sediment cores from three subtropical lakes that span a broad range of trophic state. Our principal objectives were to: (1) evaluate whether nutrient concentrations and stable isotope values in surface deposits reflect modern trophic state conditions in the lakes, and (2) assess whether stratigraphic changes in the measured variables yield information about shifts in trophic status through time, or alternatively, diagenetic changes in sediment OM. Three Florida (USA) lakes of very different trophic status were selected for this study. Results showed that both δ13C and δ15N values in surface sediments of the oligo-mesotrophic lake were relatively low compared to values in surface sediments of the other lakes, and were progressively lower with depth in the sediment core. Sediments of the eutrophic lake had δ13C values that declined upcore, whereas δ15N values increased toward the sediment surface. The eutrophic lake displayed δ13C values intermediate between those in the oligo-mesotrophic and hypereutrophic lakes. Sediments of the hypereutrophic lake had relatively higher δ13C and δ15N values. In general, we found greater δ13C and δ15N values with increasing lake trophic state.  相似文献   

3.
Total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) were determined in combination with stable isotope ratios of carbon and nitrogen (δ13COrg, δ15N) in a 63 cm sediment core from Longgan Lake, located in the middle reaches of the Yangtze River, China. These geochemical and isotopic records provide a continuous history of lake productivity and trophic state of Longgan Lake since 1890. Variations of δ13COrg, TOC, TN and TP indicate that primary productivity of Longgan Lake increased continuously during the last century and that the trophic state of the lake shifted from oligotrophic to mestrotrophic conditions accordingly. Anthropogenic sources of organic carbon (OC), nitrogen (N) and phosphorus (P) were distinguished from their natural background in the sediments using mass accumulation rates. Element mass accumulation rates suggested increased human activities in the lake’s catchment since 1950s, were especially the utilization of artificial fertilizers amplified the anthropogenic input of N and P into the lake. In the course of the improved availability of dissolved nutrients also primary productivity of Longgan Lake increased, resulting in an increase of the Suess-effect corrected organic carbon isotope ratios. δ15N of bulk sediments show a marked shift towards lower values around 1950 that has been attributed to the input of nitrogen from chemical fertilizers characterized by relatively depleted isotopic signatures into the lake.  相似文献   

4.
We used elemental carbon, nitrogen, phosphorus and hydrogen ratios (C/N, N/P and H/C) with total organic carbon (TOC) and total phosphorus (TP) as well as stable carbon and nitrogen isotopes (δ13C and δ15N) to investigate the source and depositional conditions of organic matter in sediments from Zeekoevlei, the largest freshwater lake in South Africa. Typical C/N (10–12), H/C ratios (≥1.7) and δ13Corganic values (−22 to −19‰) together with the increase in TOC concentration indicate elevated primary productivity in lower middle (18–22 cm) and top (0–8 cm) sections of the sediment cores. Seepage of nutrients from a nearby waste water treatment plant, rapid urbanization and heavily fertilized farming in the catchments are responsible for the increased productivity. Consistent with this, measured δ15Norganic values (∼11‰) indicate increased raw sewage input towards the top-section of the core. Although cyanobacterial blooms are evident from the low δ15N values (∼3‰) in mid-section of the core, they did not outnumber the phytoplankton population. Low N/P ratio (∼0) and high TP (100–2,200 mg l−1) support cyanobacterial growth under N limited condition, and insignificant input of macrophytes towards the organic matter pool. Dredging in 1983, caused sub-aerial exposure of the suspended and surface sediments, and affected organic matter preservation in the upper mid-section (12–14 cm) of the core.  相似文献   

5.
The mass transport of nutrients by migratory animals can markedly alter the biogeochemistry and ecology of recipient ecosystems, particularly in nutrient-poor regions such as the Arctic. However, the role of biovectors in the global cycling of nutrients is often overlooked. Here we investigate nitrogen dynamics in two seabird-affected ponds in the Canadian High Arctic. The ponds lie at the base of a large seabird colony and have been greatly enriched in nutrients due to the input of guano and other wastes. Using sediment cores that span the last ~200 years, we measured stable isotopes of nitrogen (δ15N) in bulk sediments as well from the subfossil remains of chironomid (Diptera) head capsules and Daphnia ephippia. The bulk-sediment samples from our seabird-affected ponds had elevated δ15N values relative to seabird-free sites elsewhere in the Arctic. In general, the chironomid δ15N profiles roughly paralleled those of bulk sediments in both study ponds, while the Daphnia profile remained relatively stable in contrast to the considerable variation recorded in the bulk sediments and chironomids. Interestingly, no apparent pattern emerged among δ15N values recorded in the bulk sediments, chironomids, and Daphnia between the two study ponds. The stability recorded in the δ15N profiles from bulk sediments relative to the more variable invertebrate profiles point towards the complexity of nitrogen uptake by chironomids and Daphnia at these sites. These data suggest that the bulk sediments are integrating the different fractions of the overall δ15N pool and thus may be most appropriate for reconstructing overall trends in lake trophic status.  相似文献   

6.
Stable isotope analyses on cladoceran subfossil exoskeletons retrieved from sediment cores could allow the reconstruction of past changes in lake food webs provided the δ13C and δ15N values of the exoskeletons reflect those of the organisms’ whole body. The relationships between the C and N stable isotope compositions of the exoskeletons and those of the whole body were investigated for two freshwater cladoceran taxa (Bosmina sp. and Daphnia sp.) from modern samples. The C and N stable isotope compositions of the exoskeleton and those of the whole body were strongly correlated. Exoskeleton δ13C was similar to the whole body δ13C for both taxa. Daphnia exoskeletons were strongly depleted in 15N (−7.9‰) compared to the whole body. Stable isotope analyses were thereafter performed on cladoceran remains from five downcore samples from Lake Annecy, France. Results showed that Bosmina δ15N values increased by more than 4‰, between the early twentieth and twenty first centuries. Such changes might be the result of changes in nitrogen sources or cycling in the lake and/or of major shifts in Bosmina trophic position within the lake food web. This study sets up the potential of stable isotope analyses performed on cladoceran subfossil remains for paleo-ecological purposes.  相似文献   

7.
I addressed the effects of taphonomic and early diagenetic processes on the isotope composition of cladoceran remains, using both experimental and field approaches. An experiment was designed to mimic the conditions encountered by cladoceran remains when they settle through the water column and are buried in the sediment. Cladoceran exoskeletons were incubated for 4 months in oxic or anoxic water, and in sediment. Changes in their carbon (C) and nitrogen (N) content and isotope compositions were measured. Most changes in isotope composition of exoskeletons took place when they settled through the water column. Once buried in the sediment, however, the δ13C and δ15N values of cladoceran exoskeletons did not undergo further change. Taphonomic processes resulted in an increase in δ13C and δ15N of the cladoceran remains and this was related to microbial degradation, which selectively removed isotopically light C and N compounds from the remains. For δ13C, changes were minimal (<1‰) and occured within the first 3 months. Taphonomic effects on δ15N were larger, from +2 to +5‰, and occurred within the first 2–3 weeks. These effects depended on incubation conditions and were greater in anoxic waters than under oxic conditions. Monthly changes in the isotope composition of sedimenting cladoceran exoskeletons were also recorded in the field using sediment traps, and were compared to the isotope composition of the living cladoceran community. The isotope composition of sedimenting remains displayed values consistent with those that might be expected, considering the effects of taphonomic processes observed in the experiment. Because C and N in cladoceran exoskeletons might involve a different isotope routing, the δ15N value of the remains provides an annual record of the value in the parent community, with a 1-month delay, while δ13C of remains essentially reflects that of the parent community during the period of lake thermal stratification. These findings provide insights into paleolimnological interpretation of isotopic changes in cladoceran remains from sediment cores.  相似文献   

8.
Geochemical properties of sediments deposited in Lake Middle Marviken over the last 185 years record the impacts of a succession of environmental changes that have occurred in the watershed. Clear-cutting of forests for wood and charcoal and extensive water harnessing to support the local iron mills from 1897 to 1957 is recorded by low C/N ratios, high black carbon, and low TOC and Ntotal accumulation rates. Larger δ13C and δ15N values in sediments deposited during this period imply higher productivity. Fluctuations in Ntotal and Ptotal accumulation rates show that the lake chemistry has varied between P or N-depleted systems that affected the δ15N values. Organic matter in the sediments is predominantly immature terrestrial material. Furthermore, hydrocarbon CPI, TAR, and Paq values conform with the observed geochemical trends, variations in organic matter sources, and changes in the watershed. Accumulation rates of Cd, Pb, Zn, and S remained mostly unchanged throughout the period of mining, but an increase from 1957 to 1980 is most likely associated with air-borne industrial and fossil fuel emissions from regional urbanization. In situ microbial processes, such as iron and manganese reduction, also appear to be important in carbon cycling and in affecting the sediment and water chemistry of this lake.  相似文献   

9.
Total organic carbon (TOC) content, total nitrogen (TN) content, stable nitrogen isotope (δ15N) and stable organic carbon isotope (δ13Corg) ratios were continuously analysed on a high resolution sediment profile from Lake Sihailongwan (SHL), covering the time span between 16,500 and 9,500 years BP. Strong variations of the investigated proxy parameters are attributed to great climatic fluctuations during the investigated time period. Variations in organic carbon isotope ratios and the ratio of TOC/TN (C/N ratio) are discussed with respect to changing proportions of different organic matter (OM) sources to bulk sedimentary OM. Phases of high TOC content, high TN content, depleted δ13Corg values and high δ15N values are interpreted as times with increased productivity of lacustrine algae in relation to input of terrigenous organic matter. Two distinct phases of enriched nitrogen isotope ratios from 14,200 to 13,700 and 11,550 to 11,050 years BP point towards a reduced phytoplankton discrimination against 15N due to a diminished dissolved inorganic nitrogen pool. The combination of geochemical (TOC, TN, C/N ratio) and isotopic (δ13Corg, δ15N) proxy parameters points to a division of climate development into four stages. A cold and dry stage before 14,200 years BP, a warm optimum stage with high phytoplankton productivity from 14,200 to 12,450 BP, a colder and drier stage from 12,450 to 11,600 BP and a stage of climatic amelioration with high variability in TOC and TN contents after 11,600 BP. These results are discussed in relation to monsoon variability and Northern Hemisphere climate development of the late glacial.  相似文献   

10.
A sediment sequence from the Gotland Basin, representing the Ancylus Lake/Litorina Sea transition, was analysed for pigments, stable isotopes (δ13C and δ15N), diatoms and carbon and nitrogen content. The negative correlation between the cyanobacterial specific pigment zeaxanthin and δ15N supports the hypothesis that cyanobacteria in the early Litorina Sea indeed were nitrogen fixers. Their incorporation of nitrogen could have acted as a trigger for eutrophication during the Litorina Sea stage of the Baltic Sea. As cyanobacteria normally flourish in eutrophicated waters, the increasing concentrations of zeaxanthin during early Litorina Sea also corroborate that high primary production was an important part of the formation of organic rich (sapropel) sediments in the Baltic Sea. The first occurrence pre-dates the formation of laminated sediments, but the peaks of both zeaxanthin and organic carbon are within laminated sequences. This implies that the oxygen conditions of the bottom water also play a major role in the formation of sapropel sediments.  相似文献   

11.
Rapid urbanization and increased tourism around Nainital Lake in the Kumaun Himalayan region in north India has raised concerns about sediment and water pollution. Lead-210 dated sediment cores from the lake represent ~95 years of accumulation and yield a mean sedimentation rate of ~4.7 mm year−1. Total organic carbon (TOC), percent N and S and their atomic C/N and C/S ratios, stable isotopes (δ13C, δ15N, and δ34S), and specific biomarkers (n-alkanes and pigments) were measured in the core. Organic matter is primarily derived from in-lake algal production and TOC flux varies from 1.0 to 3.5 g m−2 year−1. Sediments are anoxic (Eh −328 to −187 mV) and have low (0.10–0.30 g m−2 year−1) N, but high (0.37–1.0 g m−2 year−1) S flux. Shifts in δ13C, δ15N, and δ34S suggest in-lake microbial processes dominated by denitrification and sulfate reduction. The sediments are dominated by short-chain hydrocarbons with low Carbon Preference Index values. The pigments indicate a gradual shift to cyanobacterial domination of the phytoplankton community in recent years. Despite an increase in external input of nutrients, the trophic state of the lake has remained largely unchanged, and the perceived human-induced impacts are limited.  相似文献   

12.
Organic-rich sediment from Lake Louise, a dystrophic sinkhole lake in south Georgia, displays variations in C, N, P, C/N, δ13C, δ15N, biogenic silica (BSi) and diatom flora that document changes in trophic state over the past ~9,500 years. The lake initially was oligotrophic and moderately productive, but by the middle Holocene a rising regional water table, driven by eustatic sea level rise, caused expansion of wetlands around the lake and a shift to humic waters. Low rates of sediment accumulation, low C contents, rising C/N, and light δ13C and δ15N indicate this was a time of low productivity, more anoxic bottom waters and extensive recycling of littoral organic matter. These conditions persisted until ~1800 AD when a physical disturbance to the watershed, probably the Great Hurricane of 1780, resulted in a dramatic increase in productivity that has continued to the present day. We attribute this shift, recorded by a >tenfold increase in sediment accumulation rate, higher C, P, and δ15N, and lower BSi, to establishment of an inflow stream that increased nutrient delivery to the lake, raised water level, and expanded the wetland area around the lake. Since ~1930, logging, farming, and highway construction have impacted the lake, further accelerating biological productivity as well as the delivery of terrigenous sediment. Results of this study illustrate the potential of a single, catastrophic event to permanently alter the hydrology and chemistry of a lacustrine system and confirm that dystrophic lakes can be highly productive and therefore promising targets for paleolimnological study.  相似文献   

13.
We present results from multiple stable isotope analyses (δ18O of chironomid larval head capsules, chironomid adult thoraxes and other insect remains and δD, δ13C, δ15N of total organic matter—TOM) of a lake sediment core (04-SVID-03) taken from Stora Vidarvatn in northeastern Iceland to reconstruct past environmental, limnological and δ18O of past lake water changes during the Holocene. Core 04-SVID-03 represents a ∼12,000 cal. yrs BP to present record. Large magnitude changes in δ18O occurred during the Holocene at the site. Downcore shifts in δ18O of chironomids did not correlate with measurements of the δ13C and δ15N of chironomid head capsules, implying that the δ18O changes were not primarily driven by changes in chironomid diet during the Holocene. The δD of TOM provided a proxy of relative lake-water δD changes at the site and also showed large magnitude changes during the record. This approach was supported by analyses of a modern training set where δDTOM analyses were conducted using surface sediments from a suite of freshwater lakes over a large latitudinal gradient. The magnitude of changes in both the δ18O and δD and the relatively negative δ18O values throughout much of the core suggest that the proxies represent more paleoenvironmental information than solely temperature. Additional possible influences on lake-water isotopic composition are discussed, including changes in the seasonality of precipitation, in the patterns of air masses supplying precipitation to Iceland and in the dominant mode of the North Atlantic Oscillation.  相似文献   

14.
Walker Lake, a hydrologically closed, saline, alkaline lake located along the western margin of the Great Basin of western United States, has experienced a 77% reduction in volume and commitment drop in lake level as a result of anthropogenic perturbations and climatic fluctuations over the last century. The history of lake-level change in Walker Lake has been recorded instrumentally since 1860. A high-resolution multi-proxy sediment core record from Walker Lake has been generated through analysis of total inorganic carbon (TIC), total organic carbon (TOC), and oxygen and carbon isotope ratios (δ18O and δ13 C) of both downcore bulk TIC and ostracods over the last 200 yr. This allows us to examine how these sediment indices respond to actual changes in this lake’s hydrologic balance at interannual to decadal timescales. In Walker Lake sediments, changes in %TIC, %TOC, and δ13C and δ18O of TIC and ostracods are all associated to varying degrees with changes in the lake’s hydrologic balance, with δ18O of the TIC fraction (δ18OTIC) being the most highly correlated and the most effective hydrologic indicator in this closed-basin lake. The δ18OTIC record from Walker Lake nearly parallels the instrumental lake-level record back to 1860. However, comparison with sporadic lake-water δ18O and dissolved inorganic carbon δ13C (δ13CDIC) results spanning the last several decades suggests that the isotopic values of downcore carbonate sediments may not be readily translated into absolute or even relative values of corresponding lake-water δ18O and δ13CDIC. Changes in the lake’s hydrologic balance usually lead to changes in isotopic composition of lake waters and downcore sediments, but not all the variations in downcore isotopic composition are necessarily caused by hydrologic changes.  相似文献   

15.
Zeekoevlei is the largest freshwater lake in South Africa and has a century-long history of anthropogenic impact that caused hyper-eutrophic conditions. We used biomarkers (alkanes and pigments), stable isotopes (δ13C and δ15N), rates of primary palaeoproduction and total inorganic carbon (TIC) accumulation rates in the lake sediments to investigate changes in plankton and macrophyte communities in response to anthropogenic activities in this shallow lake. Specific alkanes (ΣC15,17,19, pristane, phytane and n-C29/n-C17 ratio) and pigment (chlorophyll a, β,β-carotene, echinenone, fucoxanthin and zeaxanthin) concentrations in lake waters indicated the present-day hyper-eutrophic condition and seasonal fluctuations of cyanobacteria, zooplankton and diatom populations. Eutrophic conditions were initiated in the lake with the start of recreational activities and construction of a sewage treatment plant in the early 1920s. The lake transformed from a eutrophic to a hyper-eutrophic waterbody following damming, pondweed eradication and accelerated catchment-derived nutrient input. The change in lake trophic state was recorded by a sharp decline in the terrestrial to aquatic ratio (TAR) of specific n-alkanes, low carbon preference index (CPI) and increased δ13C values in the sediment core. In addition, the aquatic macrophyte n-alkane proxy (Paq) values (~1) indicated a slow takeover by floating macrophytes after the eradication of submerged pondweeds in 1951. Elevated n-alkane (ΣC15,17,19), total alkane and pigment (chlorophyll a, β,β-carotene, zeaxanthin and zeaxanthin to β,β-carotene ratio) concentrations, low δ15N values and low TIC accumulation rates in the upper middle section of the core indicated the beginning of intense cyanobacterial blooms after the dredging in 1983. Although the cyanobacterial population has decreased in recent years, hyper-eutrophic conditions are reflected by low CPI <0.04 and TAR <1 values at the top of the sediment core.  相似文献   

16.
We developed a new method for reconstructing millennia-long hurricane records from coastal environments that uses Organic Geochemical Proxies (OGPs) of organic carbon and nitrogen concentrations and their δ13C and δ15N compositions. The new method is independent of presence/absence of sand layers and improves significantly the severe-storm history resolution. The subject of this investigation is a 1.5 m long sediment core raised at 2.8 m water depth from the center of Lake Shelby, Alabama, a freshwater lake located approximately 250 m from the Gulf of Mexico, from which an overwash sand-layer based record was previously derived. The core contains two distinct sediment units; an upper 62 cm thick, fine-grained, organic-rich lacustrine sapropel (gyttja) that shows no visible structures except one sand lamina at 23.7 cm depth, and an underlying 90 cm thick, organic-poor lagoon/estuary clay unit. The sapropel unit was deposited over a 682 ± 30 cal year time interval (1320–2002 A.D.) with a mean sedimentation rate of 0.79 ± 0.04 mm/year. Lake Shelby’s water column exhibits two contrasting states based on water chemistry surveys (i) an “isolated”, stratified, mode under calm weather conditions with a relatively low trophic state, and (ii) a “flooded” mode occurring during storm surges when nutrient-rich seawater floods the lake. Statistically significant δ13C and δ15N positive excursions in organic matter, up to maximum values of −25 (‰ PDB) and 4 (‰ Air N2), respectively, are interpreted as geochemical responses to the marine intrusions that fertilize the lake, increase light availability, and cause eutrophication spikes. Detailed OGPs analyses crossing a sand layer that offers visual evidence of a catastrophic hurricane overwash event at 1717 A.D. exhibit large δ13C and δ15N positive shifts bounded by rapid returns to base values, thus confirming the validity of the hurricane identification by the OGPs model. Our data indicate that 11 catastrophic hurricanes hit the Alabama coast over the past 682 years with a rough recurrence interval of one in 62 years.  相似文献   

17.
Total organic carbon (TOC), total nitrogen (TN), stable carbon and nitrogen isotopes (δ13C, δ15N), total phosphorus (TP) and organic phosphorus (OP) were measured in surface sediments and two short cores (DU-3 and WS-4) from Lake Nansihu, China to infer historical changes in anthropogenic nutrient inputs and corresponding shifts in lake primary productivity. Results indicate that organic matter preserved in the sediments is mainly autochthonous and that analyzed sediment variables were affected little by post-burial diagenesis. Increasing TOC, TN, OP and TP concentrations since the 1940s reflect increased P loading and elevated lake productivity. The δ13C values varied from ?21.5 to ?26.6‰ in the two sediment cores. Values were relatively more negative before the 1940s, but thereafter increased until the mid-1980s, reflecting elevated lake productivity. Since the mid-1980s, δ13C values remained relatively constant in core WS-4 and decreased in core DU-3, perhaps reflecting a change in the phytoplankton community. The δ15N values ranged from ?0.5 to 1.3‰ in core DU-3 and from 1.2 to 2.5‰ in core WS-4 before the mid-1980s, and increased to between 2.1 and 8.0‰ and 5.2 and 7.8‰, respectively, thereafter. Topmost sediments in the two cores display δ15N values similar to those recorded in the surface sediments (5.5–7.5‰). Higher δ15N values in recent deposits correspond to greater nitrogen concentration in water, and likely indicate anthropogenic nitrogen input, mainly from human and animal wastes.  相似文献   

18.
Stable carbon and nitrogen isotope ratios have been determined on 41 strains ofArtemia sp. from different geographic regions around the world. The δ13C and δ15N values ranged between −13.7 to−25.0 per mil and −0.7 to 21.2 per mil respectively.Artemia δ13C values from coastal environments are consistent with a marine origin for the food sourceArtemia from inland salt lakes have a range of carbon isotope values suggesting C3, C4 and CAM based organic matter could form the base of theArtemia food chain. These data indicate thatArtemia having a wide range of carbon and nitrogen isotope values are available for tropho-dynamic research studies that quantify the effect of respired CO2 on tissue and CaCO3 shell13C/12C ratios. Such stable isotope variation also suggests that stable isotope fingerprinting remains a viable technique for identifying specificArtemia collection sites.  相似文献   

19.
We present a paleolimnological record from shallow Lake Wuliangsu in the Yellow River Basin, north China, using a short (56 cm) sediment core. Our objective was to investigate environmental changes in this semi-arid region over the past ~150 years. The sediment core was dated using 137Cs and 210Pb. We examined stratigraphic trends in core lithology, nutrients, stable isotopes (δ13C and δ15N) and trace element concentrations in the Lake Wuliangsu core to discern between natural sediments and those affected by human agency. A lithologic transition from yellow, coarse-grained sediment to grey, fined-grained sediment marked the lake’s formation about 1860. Until ~1950, sediments displayed relatively low and constant heavy metal concentrations, indicating little human influence. In the 1950s, enrichment factors (EFs) increased, reflecting greater impact of human activities. Carbon and nitrogen stable isotopes in organic matter (OM), along with heavy metal concentrations, were used to infer past shifts in trophic state and identify pollutants that came from agriculture, industry and urbanization. In the late 1950s, the first evidence for environmental change is recorded by increases in total organic carbon (TOC), total organic nitrogen (TN), TOC/TN, EFs, δ13C and a decrease in δ15N. After about year 2000, a more rapid increase in trophic status occurred, as indicated by greater total phosphorus (TP), EFs, δ15N and lower δ13C values. Changes in isotope and TOC/TN values in the lake sediments may reflect a shift in lake ecology during this period. The first increase in trophic status during the late 1950s was mainly a result of agricultural development in the catchment. In contrast, the change after ca. AD 2000 was driven largely by urban and industrial development. Agreement between paleolimnologic data from Lake Wuliangsu, and both instrumental and written records, indicates that the lake sediments provide a reliable archive for investigating the formation and environmental history of the lake.  相似文献   

20.
We analyzed pollen, spores, diatoms, organic carbon, nitrogen, and δ13C of organic matter in lake sediments to infer climate changes and reconstruct the paleo-environment of subtropical Taiwan over the past ∼1300 years. A 31.5-cm sediment core that represents deposition from 650 AD to present was taken from a mountain lake, Duck Pond, located 760 m a.s.l. We differentiated five zones using cluster analysis on pollen and spore assemblages. Fluctuations in the relative abundances of arboreal taxa, herbaceous plants, and ferns reflect changes in the relative amounts of woody versus grassland vegetation. Such shifts are associated with changes in temperature and humidity and are consistent with climatic periods reported for the temperate region of central China. Climate changes inferred from the pollen assemblages are also correlated well with changes in the ratios of fern spores to pollen, with organic carbon to nitrogen, and with the δ13C values in the sediments. Fluctuations in these data throughout the entire core were in good agreement with the changes in pH inferred from diatom assemblages. This study provides evidence of climate change in northern Taiwan over the past 1.3 millennia, assuming that climate can be inferred from the ratio of arboreal to non-arboreal pollen and from the pH of the aquatic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号