首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Based on a least-squares model for double-difference GPS pseudoranges and carrier-phases, measurement residuals expressed in time series during an observation session are positively correlated between one sidereal day and the preceding days. As a result of the satellite’s period, the phenomenon, which takes place at a user receiving site, is attributed to multipath interference. Examples from a weekly measurement dataset of control baselines are shown, where the known end-point coordinates also serve as a benchmark for assessing positioning accuracy. The system of error equations for mixed-model adjustment is divided into two subsystems. One set of the error equations is related to the real range measurements, while the other involves the pseudo-observation with an empirical sample variance. According to the existing correlation between day-to-day residual estimates, a multipath-mitigating algorithm is proven to improve the accuracy of the GPS height determination by at least 40%. It is also found that the algorithm depends on a variance-component estimator that adaptively scales an error covariance matrix for both the real range and empirical delay measurements.  相似文献   

2.
当利用GPS测站坐标残差数据分析研究测站坐标周年非线性变化规律时,GPS技术本身的周年系统性误差是其中重要部分。本文针对GPS技术的周年变化特点利用并置站SLR残差数据对GPS测站残差数据中的部分周年系统性误差进行了检测分析,对于进一步量化GPS周年系统性误差对测站坐标精度以及测站坐标周年非线性变化的影响有一定的借鉴意义。  相似文献   

3.
基于经验模态分解的GPS基线解算模型   总被引:1,自引:1,他引:0  
非建模系统误差是影响高精度GPS基线解算精度的一个重要因素,文章给出基于经验模态分解的GPS基线解算模型,有效消弱系统误差对基线解的影响。在现有经验模态分解理论的基础上,定义经验模态分解的多尺度分解与重构结构,并由此给出基于经验模态的系统趋势分离模型,依据累积标准化模量的均值随尺度的变化确定系统误差与噪声分离尺度的选择标准。给出基于经验模态分解的GPS基线解算的技术路线,首先计算GPS相位双差观测方程的浮点解残差序列,分离出系统误差并用于修正GPS双差观测值,重新计算双差浮点解,采用Lambda算法固定整周模糊度,计算固定基线解,从而消弱系统误差对基线解算的影响,提高基线固定解的可靠性。并采用实测GPS数据验证模型,F-ratio指数与W-ratio指数表明系统误差消弱后,基线固定解可靠性得到明显提高,重新计算的残差序列表明系统误差得到很好的消弱。  相似文献   

4.
GPS形变监测网基线处理中系统误差的分析   总被引:18,自引:3,他引:18  
分析了高精度GPS形变监测网基线处理中系统误差产生的原因,分类及其对基线处理的影响,并在此基础上提出消除和削弱这些系统误差影响的一些原则和算法。  相似文献   

5.
系统分析了改进随机模型和改进函数模型两类GPS基线解算模型的优缺点,在此基础上,提出了一种基于序列平均的高精度GPS基线解算模型,即采用动态单历元技术进行静态基线解算,充分利用多路径效应的低频特性,采用小波变化理论,对坐标序列进行多路径效应的去除,提取低频残差项进行序列平均,得到基线向量解。同时,以动态坐标序列为依据,对出现粗差历元或者卫星进行处理,有效弥补了仅采用残差序列进行粗差判断的不足,提高了基线解算的精度和可靠性。实验表明,新模型可以更为有效地削弱多路径效应的影响,而且对于较短的观测时间尤为突出;结合坐标序列和残差序列,能更为有效地进行粗差的探测和去除,提高基线解的精度和可靠性。  相似文献   

6.
Integer carrier-phase ambiguity resolution is one of the critical issues for precise GPS applications in geodesy and geodynamics. To resolve as many integer ambiguities as possible, the ‘most-easy-to-fix’ double-difference ambiguities have to be defined. For this purpose, several strategies are implemented in existing GPS software packages, such as choosing the ambiguities according to the baseline length or the variances of the estimated real-valued ambiguities. Although their efficiencies are demonstrated in practice, it is proven in this paper that they do not reflect all effects of varying data quality, because they are based on theoretical considerations of GPS data processing. Therefore, a new approach is presented, which selects the double-difference ambiguities according to their probability of being fixed to the nearest integer. The probability is computed from estimates and variances of wide-lane and narrow-lane ambiguities. Together with an optimized ambiguity fixing procedure, the new approach is implemented in the routine data processing for the International GPS Service (IGS) at GeoForschungsZentrum (GFZ) Potsdam. Within a sub-network of about 90 IGS stations, it is demonstrated that more than 97% of the independent ambiguities are fixed correctly compared to 75% by a commonly used method, and that the additionally fixed ambiguities improve the repeatability of the station coordinates by 10–26% in regions with sparse site distribution.  相似文献   

7.
GPS has become an essential tool for the precise determination of point positions. Since GPS campaigns for geodynamic purposes – such as the monitoring of recent crustal movements – require major financial efforts, it is essential to ensure already in the planning phase a good network quality and the attainment of the scientific goals in a reasonable time. The paper outlines an operationally oriented procedure for these purposes based on the simulation and processing of GPS carrier-phase observations. Sensitivity analysis techniques are applied to describe both the network strain as it may be induced by gross errors and the detectability of point movements between two sessions or two campaigns. In addition, the eigenvalue decomposition of the variance-covariance matrix of the GPS coordinates will be used to identify weakly determined network components. The design of the SCAR Epoch 95 Campaign GPS network is discussed throughout the paper. It was realized in the Antarctic summer 1994/1995 on the Antarctic peninsula. Received: 30 November 1995 / Accepted: 1 July 1997  相似文献   

8.
GPS/GLONASS相位差分的数据处理方法   总被引:4,自引:1,他引:3  
由于GLONASS与GPS在系统上存在差异 ,致使GLONASS的载波相位差分的数据处理与GPS的有明显的不同 ,必须使用特殊的方法。本文给出了GPS、GLONASS及GPS/GLONASS联合相位差分的数学模型和一种数据处理方法 ,并对实测数据进行处理 ,给出了双卫星系统的定位结果及结果分析  相似文献   

9.
 A new method called Trop_NetAdjust is described to predict in real time the residual tropospheric delays on the GPS carrier phase observables using the redundant measurements from a network of GPS reference stations. This method can not only enhance the effectiveness and reliability of real-time kinematic users within the network, but also provide a valid approach to tropospheric parameter variation forecasting. Trop_NetAdjust is theoretically based upon LS prediction criteria and enables the prediction of residual tropospheric delays remaining after a standard model has been applied to the raw GPS measurements. Two cases are analyzed, namely a first case when the delay is required for an existing satellite at a new point within the network and a second case when the delay is required for a new satellite. Field tests were conducted using data collected in a network of 11 reference stations covering a 400×600 km region in southern Norway. The results were analyzed in the measurement domain (ionospheric-free double-difference residuals) and showed improvements of 20 to 65% RMS errors using Trop_NetAdjust. The estimates of the Trop_NetAdjust prediction accuracy were also obtained using the covariance analysis method. The agreement was consistently better than 30% when compared with data from a real network. Received: 28 February 2000 / Accepted: 9 January 2001  相似文献   

10.
Due to increased demands on the quality of the results of Global Positioning System (GPS) evaluations, various authors have studied improvements of the stochastic model of GPS carrier-phase observations. These improvements are based on the reasonable assumption that the commonly used stochastic model with independent and homoscedastic (i.e. equal variance) errors is unrealistic. However, this has not been proved rigorously so far. A statistical test procedure based on uncorrelated least–squares residuals, which allows verification of the hypothesis of a heterogeneous variance, is provided. The statistical test procedure is of interest in its own right, and is independent of the practical problem considered. The presented technique is applied to GPS carrier-phase observations. Results show that the variances of the investigated observations are far from homogeneous. It is indicated that the error variances of the presented data increase with decreasing GPS satellite elevation. These results confirm the assumption that the commonly used stochastic model of GPS observations is inadequate and has to be improved.  相似文献   

11.
This article describes a methodology to monitor dynamic vertical sub-centimeter displacement, of a GPS antenna. The dynamic movement of an antenna is determined by choosing the appropriate reference satellite for measurement differencing and by applying a FFT filter on the double-difference phase residuals. The validity of the method depends on the time variations of the GPS residuals and errors, such as, receiver noise, atmospheric contribution, multipath effects, and the antenna movement. This research is under development and results for simulated motion are presented here. ? 2002 Wiley Periodicals, Inc.  相似文献   

12.
It is a known fact that obtaining accurate GPS carrier-phase measurements involves fixed, unknown whole-cycle ambiguity parameters. As the use of cosine functions to eliminate any double-difference integer ambiguities causes spatial ambiguity problems, both reasonably approximated positions and wavelength-dependent convergence ranges are of the utmost importance. Differential GPS-based position solutions are first smoothed to create a polynomial trajectory, leading to less variable position approximations. Long-wavelength wide-lane phase combinations will then be utilized to facilitate convergent GPS positioning, on a stage-by-stage basis. Although double-difference ionospheric path delays are often interpreted as nuisance parameters, they can be obtained when the respective cosines of the original L1 and L2 carrier phases undergo a simultaneous least-squares estimation. In particular, quadratic forms of the estimated phase residuals will be linked with hypothesis testing to allow for a meaningful statistical inference. Some low-dynamics experiments are then performed to prove the feasibility of the proposed hierarchical positioning concept. Electronic Publication  相似文献   

13.
The Reliability of GPS Ambiguity Resolution   总被引:9,自引:1,他引:8  
GPS ambiguity resolution is the process of resolving the unknown cycle ambiguities of double-difference (DD) carrier-phase data as integers. It is the key to fast and high-precision relative GPS positioning. Critical in the application of ambiguity resolution is its reliability. Unsuccessful ambiguity resolution, when passed unnoticed, will too often lead to unacceptable errors in the positioning results. High success rates are required for ambiguity resolution to be reliable. In this contribution we will introduce and evaluate such diagnostic measures. They complement existing methods of ambiguity resolution and allow the user and/or analyst to infer their reliability. ? 1999 John Wiley & Sons, Inc.  相似文献   

14.
The network-based approach to kinematic GPS positioning significantly increases the distance, over which carrier-phase ambiguity resolution can be performed. This can be achieved either by introducing geometric conditions based on the fixed reference locations, and/or through the use of reference network data to estimate the corrections to GPS observations that can be broadcast to the users. The Multi Purpose GPS Processing Software (MPGPS) developed at The Ohio State University uses the multiple reference station approach for wide area and regional differential kinematic GPS positioning. The primary processing algorithm uses the weighted free-net (WFN) approach with the distance-dependent weighting scheme to derive optimal estimates of the user coordinates and realistic accuracy measures. The WFN approach, combined with the single epoch (instantaneous) ambiguity resolution algorithm is presented here as one approach to real-time kinematic (RTK) GPS. Since for baselines exceeding ~100 km, the instantaneous ambiguity resolution may not always be possible due to the increasing observation noise and insufficient number of observations to verify the integer selection, an alternative approach, based on a single- (or multiple-) baseline solution, supported by a double-difference (DD) ionospheric delay propagated from the previous epoch is also presented. In this approach, some data accumulation, supported by the network-derived atmospheric corrections, is required at the beginning of the rover data processing to obtain the integer ambiguities; after this initialization period, the processing switches to the instantaneous RTK positioning mode. This paper presents a discussion on the effects of the network geometry, station separation and the data reduction technique on the final quality and reliability of the rover positioning solution. A 24-h data set of August 31, 2003, collected by the Ohio Continuously Operating Reference Station (CORS) network was processed by both techniques under different network geometry and reference station separation. Various solutions, such as (1) single-baseline solution for varying base-rover separation, (2) multi-baseline solution with medium-range base separation (over 100 km), and (3) multi-baseline solution with long-range base separation (up to 377 km), were obtained and compared for accuracy and consistency. The horizontal positioning accuracy achieved in these tests, expressed as the difference between the estimated coordinates and the known rover coordinates, is at the sub-decimeter level for the first approach, and at the centimeter-level for the second method, for baselines over 100 km. In the vertical coordinate, decimeter- and sub-decimeter levels were achieved for the two approaches, respectively. Even though all the results presented here were obtained in post-processing, both algorithms are suitable for real-time applications.  相似文献   

15.
GPS坐标转换方法对于GPS空间定位系统至关重要。目前已有很多方法被提出用于转换GPS坐标,但效果并不是很显著。究其原因,是因为大多数都存在模型误差和投影误差。针对目前方法的不足,本文利用深度学习对非结构化数据处理的优势,提出了一种基于卷积神经网络(CNN)的GPS坐标转换方法。该方法将GPS数据转化为非结构化图片数据,以其作为CNN的输入层来训练GPS坐标转换模型,这样能够最小化满足对数据的预处理要求,无监督地从数据中学习出有效特征。试验结果表明,该方法与传统坐标转换方法相比,具有更高的转换精度。  相似文献   

16.
An efficient procedure is proposed to define realistic lower limits of velocity errors of a non-permanent GPS station (NPS), i.e., a station where the antenna is installed and operates for short time periods, typically 10–20 days per year. Moreover, the proposed method is aimed at being independent of standard GPS data processing. The key is to subsample appropriately the coordinate time series of several continuous GPS stations situated nearby or inside the considered NPS network, in order to simulate the NPS behavior and to estimate the velocity errors associated with the subsampling procedure. The obtained data are used as lower limits to accept or correct the error estimates provided by standard data processing. The proposed approach is applied to data from the dense, non-permanent network in the Central Apennine of Italy based on a sequence of solutions for the overlapping time spans 1999–2003, 1999–2004, 1999–2005 and 1999–2007. Both the original and error-corrected velocity patterns are used to compute the strain rate fields. The comparison between the corresponding results reveals large differences that could lead to divergent interpretations about the kinematics of the study area.  相似文献   

17.
GPS站坐标时间序列中存在的周期性与非周期性误差严重影响了对测站运动特征的分析及其非线性变化的物理机制解释。因此,为削弱噪声的影响,本文首先利用区域叠加滤波法去除了南加利福尼亚地区16个测站时间序列的共模误差,以此削弱时间序列中存在的包括周年和半周年误差在内的周期性误差。为去除滤波后残留的噪声,对滤波后的信号进行静态离散小波变换,提取了周期为半周年以上的信号。结果表明,联合区域叠加滤波法与小波变换对GPS站坐标时间序列进行处理,既能够削弱周期性误差对信号的影响,又能较好地提取测站的非线性运动信号。  相似文献   

18.
The propagation of unmodelled systematic errors into coordinate time series computed using least squares is investigated, to improve the understanding of unexplained signals and apparent noise in geodetic (especially GPS) coordinate time series. Such coordinate time series are invariably based on a functional model linearised using only zero and first-order terms of a (Taylor) series expansion about the approximate coordinates of the unknown point. The effect of such truncation errors is investigated through the derivation of a generalised systematic error model for the simple case of range observations from a single known reference point to a point which is assumed to be at rest by the least squares model but is in fact in motion. The systematic error function for a one pseudo-satellite two-dimensional case, designed to be as simple but as analogous to GPS positioning as possible, is quantified. It is shown that the combination of a moving reference point and unmodelled periodic displacement at the unknown point of interest, due to ocean tide loading, for example, results in an output coordinate time series containing many periodic terms when only zero and first-order expansion terms are used in the linearisation of the functional model. The amplitude, phase and period of these terms is dependent on the input amplitude, the locations of the unknown point and reference point, and the period of the reference point's motion. The dominant output signals that arise due to truncation errors match those found in coordinate time series obtained from both simulated data and real three-dimensional GPS data.  相似文献   

19.
Time-relative positioning is a recent method for processing GPS phase observations. The operational method undertaken in this paper consists of the following steps: first, recording phase observations at a station of known coordinates; second, moving the GPS receiver to an unknown station (which can be located up to a few hundred meters away, dependint on what type of transportation – e. g., walking, motorcycle – is available) while continuously observing carrier phases; and, third, recording phase observations at a second station of unknown coordinates with a single GPS receiver. To obtain the position of the unknown station relative to the first (known) station, the processing method uses combined observations taken at two different epochs and two different stations with the same receiver. For this reason, the errors that vary between two epochs must be taken into account in an appropriate way, especially errors in satellite clock corrections and ephemerides, and errors related to tropospheric and ionospheric delays. Ionospheric modeling using IONEX files (the ionospheric maps calculated by the International GPS Service) was also tested to correct L1 phase observations. This method has been used to calculate short vectors with an accuracy of a few centimeters (for a processing interval of 30 s) using a single civil GPS receiver. ? 2001 John Wiley & Sons, Inc.  相似文献   

20.
A. El-Mowafy 《GPS Solutions》2014,18(4):553-561
A method is presented for real-time validation of GNSS measurements of a single receiver, where data from each satellite are independently processed. A geometry-free observation model is used with a reparameterized form of the unknowns to overcome rank deficiency of the model. The ionosphere error and non-constant biases such as multipath are assumed changing relatively smoothly as a function of time. Data validation and detection of errors are based on statistical testing of the observation residuals using the detection–identification–adaptation approach. The method is applicable to any GNSS with any number of frequencies. The performance of validation method was evaluated using multi-frequency data from three GNSS (GPS, GLONASS, and Galileo) that span 3 days in a test site at Curtin University, Australia. Performance of the method in detection and identification of outliers in code observations, and detection of cycle slips in phase data were examined. Results show that the success rate vary according to precision of observations and their number as well as size of the errors. The method capability is demonstrated when processing four IOV Galileo satellites in a single-point-positioning mode and in another test by comparing its performance with Bernese software in detection of cycle slips in precise point-positioning processing using GPS data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号