首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The paper describes the details of a comparative study of geological interpretations carried out from Synthetic Aperture Radar (SAR) imagery, Landsat MSS (B & W) imagery and Aerial Photographs, covering 2100 sq km of area in Anantapur district of Andhra Pradesh. The area comprises Peninsular—Gneissic Complex and rocks of Dharwar and Cuddapah Super Groups beside the Quaternary alluvial deposits along the Penneru river and its tributaries. Geomorphologically the areas is represented by denudational, fluvial and structural landforms. The study indicates that the details of the geological and geomorphological maps prepared from SAR imagery and aerial photographs are comparable despite the smaller scale of SAR imagery while the same are not exhibited in Landsat imagery mainly due to its low resolution. Although broad lithological units are possible to be discriminated on SAR as well as aerial photographs, some of the finer rock types viz. gabbroic dykes could be discriminated from the delerite dykes in the SAR imagery due to their different surface roughness. Stereoscopic coverage and enhanced micro-relief of SAR imagery gives better geomorphological details in comparison to aerial photographs. A detailed study of lineaments has also been carried out which shows that in SAR imagery there is over-representation of short lineaments due to enhanced micro-relief and radarshadow effects across the look direction and under-representation of lineaments along the look direction. Landsat imagery is perhaps the best for demarcating lineaments of regional magnitude while aerial photographs are good for depicting shorter lineaments. However, certain lineaments seen in SAR imagery are often not continuously seen on aerial photographs.  相似文献   

2.
多光谱假彩色合成遥感影像已经广泛应用于线性构造解译,受构造应力场制约,区域构造均具有显著的定向性,当卫星影像拍摄时光照方向与区域线性构造方向不能匹配时,构造特征常常不能很好显示,从而影响解译效果。文章提出一种利用数字高程模型模拟特定方向光照模型增强多光谱影像的新方法,用垂直于解译目标的最佳光照模型替代原光照模型以增强区域构造线性特征,同一地区对不同方向的构造解译采用了不同方向的光照模型,有效提高了线性构造信息的可解译程度。以四川盆地西侧的龙门山以南地区为例,进行了断裂构造的遥感解译,对该区地震研究和油气勘探工作具有参考意义。  相似文献   

3.
Optical and microwave remote sensing data are used in conjunction with a digital elevation model to map lineaments in the central parts of the Aravalli region, Rajasthan, western India. Lineament maps interpreted from each data-set are subsequently combined to derive a composite lineament map of the area. Rose plots are used to identify the prominent trends of the lineaments and compared with published structural map of the study area. Three major trends are identified, namely, the NE–SW, NNE–SSW and EW, which are interpreted to be, related to the DF1, DF2 and DF4 deformation phases identified by the previous workers through field studies. The lineaments are classified as fold axes or faults, and a total of 10-fold axes and 30 faults mapped in the area.  相似文献   

4.
The Precambrian metamorphites of Northeastern Rajasthan belonging to Pre-Aravalli, Aravalli and Delhi Supergroups exhibit a mature topography where the physiography has faithfully depicted the major structures of area. Few important megalineaments demarcated on the imagery either represent major fault zones or the zones of intense granitic activity. Some of these are oblique to the regional strike of rocks and support drainage running in diagonally opposite direction within the same lineament, indicating thereby upheavels subsequent to the lineament formation. The lineaments fall broadly in two sets which are correlatable to the two major phases of Delhi orogeny. The lineaments of the first set trend NE-SW and are more prominent: than the NW-SE and WNW-ESE running lineaments. The major lineaments such as Sabi-Sota, Mendha and Kakor-Lalsot lineament together with other regional lineaments depict appreciable geomorphological expressions and significant geological evidences.  相似文献   

5.
The geological studies of the eastern parts of Harda-Barwah basin covering about 3000 sq. km area on 1∶50,000 scale have been carried out using satellite imagery of IRS (FCC), supplemented by Landsat TM/MSS scences and air photos. The present studies with the aid of satellite imagery and remote sensing techniques have brought out the regional stratigraphy and structure of the area and helped in deciphering the interrelationship of various rock groups in the Narmada lineament zone. The area comprises Archaean/Proterozoic gneisses, the Mahakoshal volcano sedimentary suite, the Harda granitoids, the Bijawar Group and the rocks of Vindhyan Supergroup, Deccan Trap and Quaternary sediments. The Archaean/Proterozoic rocks comprising gneisses and schist form basement. The Mahakoshal Group of rocks occur along the ENE-WSW to E-W trending Narmada lineament zone and comprise foliated quartzite, actinolite-chlorite-sericite phyllite and metabasics. The Harda granitoids showing intrusive relationship with earlier rocks, comprise coarse-grained crudely foliated grey to pink granites, fine to medium grained homogeneous granites and porphyritic granites. The Bijawar Group comprises quarzite, chert breccia and dolomite in the order of younging and shows unconformable relationship with the Mahakoshal and the Harda granitoids. The Bijawar rocks show doubly plunging major synformal structure and numerous sympathetic minor folds along ENE-WSW to E-W axis and cross folds along NW-SW axis. The Bijawar rocks are unconformably overlain by a sequence of sandstone and shales belonging to the Rewa Group of the Vindhyan Supergroup. The Deccan Trap lava flows represent the last igneous activity in the area. The Quaternary deposits comprising a cyclic sequence of sand, silt, clay and rock gravels of the Narmada river represent the youngest formation of the area.  相似文献   

6.
The Uthangarai-Thirthamalai region in Dharmapuri district is a typical Precambrian tract in Tamil Nadu. IRS-1C satellite imagery was used for interpreting folds, faults, fractures and lineaments, in this region. As interpreted from the satellite imagery, there are five major structural domains, which control the Ponnaiyar, Pambar, Vaniyar and Kovilar river courses and other drainage pattern in this region. Presence of fault rock, epidotization and sympathetic fractures along such folds and faults reveals the intensity of tectonism in this sector. The interpreted lineaments have been classified into five major groups on the basis of their geometry and orientation. From the rose diagram, it is inferred that the NNW-SSE trending lineaments are fall in major frequency domain. The springs observed near Hanumanthirtham and Thirthamalai region could be structurally originated. The geomorphology interpreted from the satellite data has shown significant morphological expression of folds, faults and lineaments. The geophysical data have been analysed and correlated with intensity of weathering by fractures and lineaments.  相似文献   

7.
Seismically active lineaments of Kerala State were identified by correlating the lineaments mapped using IRS LISS-I data with the earthquake occurrences. There are 31 earthquake incidences in Kerala since 1821, out of which 22 are falling on/close to 9 major lineaments/faults (length more than 20 km) indicating the possible correlation between lineaments/faults and earthquakes. It was observed that the earthquake occurrences are mostly associated with the NNW-SSE to NW-SE trending lineaments (6 out of 9 lineaments), which are considered to be formed sympathetic to the West Coast Fault. Hence, there is a need to monitor these seismically active lineaments using advanced techniques such as GPS, SAR Interferometry etc. for better understanding of the influence of these lineaments on the seismic activities of Kerala.  相似文献   

8.
In order to examine the influence of tectonic and morphological characteristics on the occurrence and movement of ground water in Khondalitic (garnetiferrous sillimanite gneiss) suite of rocks, hydromorphogeological studies were carried out in a typical Khondalitic terrain situated in Viziangaram district of Andhra Pradesh, India. Different land forms have been identified with the aid of visual interpretation of Landsat imagery together with ground truth data in order to prepare hydromorphogeological and lineament maps. Drainage map and topographic slope map have been prepared using toposheets. These maps and other collateral data like well yields and geophysical data have been analysed to evaluate the ground water prospective geomorphic units. Ground water prospect areas are located in shallow buried pediplains and wash plains in such a way that they are identified on gently sloping uplands situated between the lineaments. Non potential areas are those, which are, low-lying areas near the streams and high slope areas near the residual hills. It is found near low lying areas i.e., beneath the streams that the khondalite must have transformed itself into kaoline and acting as barrier evidently preventing lateral movement of ground water forcing it to accumulate in flat upland areas between two streams or lineaments. From the lithologic cross sections it is found that there are four distinct subsurface layers namely (1) top soil, (2) highly weathered khondalite (kaolinised layer), (3) moderately weathered and fractured khondalite (aquifer layer) and (4) basement of granitic gneiss.  相似文献   

9.
Lineament patterns detected from remotely sensed data provide useful information to geoscientists, specially in the study of basement tectonics, groundwater targetting and mineral exploration. Improvements in the spatial resolution of satellite images have resulted in the detection of short and faint lineaments which have hitherto gone unnoticed The IRS-1A LISS-II data offers a significant improvement in spatial resolution as compared to the Landsat MSS. A set of computer programmes developed for analysis of lineaments were used to study the parameters such as lineament frequency, length and density in order to quantify the added information derived using IRS-1A LISS-II images. The incremental contribution of LISS-II images are of the order of 100 per cent for lineament frequency and about 60 per cent for total line kilometers of lineaments detected.  相似文献   

10.
Deccan Trap lavas (Cretaceous to Tertiary), which cover a large area in the Western and the Central India, are generally regarded as structurally undisturbed save for certain areas along the west-coast and the Narmada Valley in Central India. Remote Sensing techniques have given a new dimension to the problem of locating such disturbed areas by virtue of the capacity of aerospace imagery to delineate lineaments, many of which represent structural geological features. Studies carried out in the areas west and north west of Pune, (above and below the western ghat scrap), the Narmada valley region north of Barwah and the Ramakona area of Central India, reveal that these areas are riddled with fractures. The fractures have generally given rise to narrow valley or escarpments. Some of the fractures show displacement along them, while some show intrusive dykes filling them. The fractures in Central India were sometimes found to the extensions of faults traversing the basement. Hence, in the regoins, where the basement is not exposed, they may be suggestive of the structural trends of the concealed basement.  相似文献   

11.
Geology in parts of Sainj Valley,Kulu district,Himachal Pradesh   总被引:1,自引:0,他引:1  
The paper highlights the findings of photogeological studies, with selective field checks, carried out in Sainj Valley. For the first time, a photogeological map of the area has been prepared using large scale aerial photographs Structurally the area forms‘Window in a Window’ structure as the oldest rocks of Kulu formation are thrusted over the younger rocks of Larji Group (Larji and Banjar formations) and further Banjars are thrusted over Larjis. Thus, Larjis being stratigraphically youngest, occupy the lowest tectonic position. The Kulu formation mainly consists of Central Crystalline, schists and gneisses. Banjar is composed of quartzite, metabasics, slate and phyllite. Larji predominantly consists of dolomite and quartzite with slate and phyllite. The photogeological studies have helped to bring out the lineament pattern, landslide zones, major structural trends and main geological formations. The lineaments mainly trend in NNE-SSW, NW-SE, NE-SW and NNW-SSE directions. A key for photo-characters of different litho units and terrain elements of the area is established.  相似文献   

12.
In the overall tectonic set up of various coal basins of the Peninsular India, the Son-Mahanadi Valley coal basins of Central India have a unique disposition. The coal measures sediments of Peninsular India are developed along well defined E-W and NW-SE trending linear narrow belts. The Son-Mahanadi Valley basins represent the tract where NW-SE trending Mahanadi Valley basins seemingly merge with the major east-west trending Damodar-Koel-Son-Satpura alignment. Landsat data of Son-Mahanadi Valley basins in the four spectral bands (0.5 to 1.1 Micrometers) were used to pick up the lineaments which are possibly of geologic origin. Detailed analysis of lineaments were carried out with the help of three softwares. Diglin (to produce rose diagram) and PLLIN (to plot digitized lineaments to produce a map on any scale) by a Hewlett Packard 45 series microcomputer equipped with graphics screen, plotter, digitiser and floppy disc unit. Detailed analysis revealed a pronounced direction roughly, N 70°E which is present in the northern half of the area while N 40°W direction is present alongwith N 70°E in the southern half. These trends correspond to the NW-SE trending Mahanadi Valley and to the E-W trending Damodar-Son Satpura belt. The above clearly brings out the striking parallelism between the lineament trends in the basement and the overlying coal bearing Gondwana Sediments. This parallelism is suggestive of a genetic relationship between the two.  相似文献   

13.
The paper decribes the lineaments in the coastal area of Goa identified on aerial photographs and their correlation with the lineaments reported from the adjoining areas. The majority of lineaments along the coastal part of Goa follows a NW-SE, NE-SW and a few ENE-WSW trends. The NW-SE direction is predominant and corresponds with the regional Dharwarian trend followed by NE-SW trending linears due to cross folding of Dharwar Orogeny.  相似文献   

14.
The Bundi-Indergarh sector in southeast Rajasthan is characterized by folded and faulted Vindhyan rocks that are exposed as NE-SW trending long parallel ridges. The sector is separated from older rocks by the Great Boundary Thrust and is traversed by younger cross faults at several localities. The thematic maps of geomorphology, slope, vegetation index and morphotectonic parameters of Bundi-Indergarh sector have been prepared using IRS ID L1SS III and WiFS and, Landsat ETM digital data. These theme are integrated in GIS environment to assess the neotectonic potential in the area. The neotectonic potential map of the sector has been generated that indicates relative potential values as high (55–85), medium (35–55) and low (5–35) on 100-point scale. The observed four high potential zones in the area are located at the intersection of NE-SW and NW-SE lineaments. The study brings out methodology for assessing active tectonic potential of the area.  相似文献   

15.
Gondwana-derived terranes are now separated by major faults or suture zone, which are rarely simple and easily recognizable lineaments. Different association of ore mineral systems such as deposits of sediment-hosted/orogenic gold and granite-related minerals is discovered in collision and subduction zones of the Gondwana-derived terranes. They are associated with large-scale, terrane-bounding fault systems and broad areas of deformation. Mineralization mostly associated with structurally-controlled complex lodes, veins, sheeted veins and veinlets in diverse orientations. Recognizing the structural significance of lineaments and curvilinear is very difficult in tropical, arid and Antarctic regions due to environmental obstacles. Remote sensing data could be used to detect geological structures associated with suture zones between Gondwana-derived terranes especially for large inaccessible regions where fieldwork is limited or nonexistent. In this investigation, the Phased Array type L-band Synthetic Aperture Radar (PALSAR) satellite remote sensing data were used to map major geological structures in the Bentong-Raub Suture Zone of Peninsular Malaysia. It is one of the major structural zones in Sundaland, Southeast Asia, which forms the boundary between the Gondwana-derived the Sibumasu terrane and Sukhothai-Indochina arc. Structural features associated with sediment-hosted/orogenic gold deposits in the Central Gold Belt and tin mineralization in S-type granites in the Main Range were investigated using PALSAR data and comprehensive fieldwork. Results indicate that main faults strike along 340° to 350° that are intersected by many shear or lateral fault zones are high potential zone for gold mineralization in the Central Gold Belt. Hydrothermally alteration mineral zones and cataclastic rocks are also the other indicators of gold mineralized veins in the gold belt. High potential zones for tin mineralization are N–S strike-slip faults, fault zones and shear zones trending E–W, NE–SW and WNW–ESE in dissected crystalline granitic rocks that are associated with hydrothermal alteration zones in the Western Tin Belt. Lineament analysis using PALSAR satellite remote sensing data is a useful tool for mapping major geological structural features and detection of the boundary between the Gondwana-derived terranes and detailed structural analysis of fault systems and deformation with high potential for a variety of mineral resources, especially in tropical, arid and Antarctic regions.  相似文献   

16.
The present study is based on digital analysis of IRS 1C/1D LISS-III and IRS P6 LISS-IV images for identification of lineaments in Meja Thermal Power Plant site in Allahabad district. In spite of all limitations due to anthropogenic activities of stone quarrying and criss cross unmetalled roads, almost non-existent vegetation indicators and soil moisture, the efforts were made to identify and map a number of lineaments in the study area and these were subsequently verified in the field. Most of the lineaments identified and mapped are not having any major displacement along them or are not displacing or truncating any major rock unit. Field investigations have revealed that there is no drastic change in the trend of rocks along the lineaments mapped in the study area. On the basis of digital analysis of IRS P6 LISS-IV data NE–SW and NW–SE trending lineaments have been identified and mapped. Some NNE–SSW trending lineaments have also been mapped. All the lineaments demarcated in this area still need to be correlated with the seismic data of the area by superimposing the microseismicity data over lineaments.  相似文献   

17.
Through the analysis of LANDSAT-MSS images and Digital Elevation Model (DEM) from the Vulsini Volcanic District (VVD), Central Italy, 62 lineaments have been detected. All data sets have been converted into thematic maps showing the correspondence of the lineaments with geological limits, geophysical anomalies trends, mineral hot water locations, eruptive fractures and volcanic centres. Lastly, some lineaments have been correlated with basement tectonics and magma composition.  相似文献   

18.
The geology of northwestern part of Indian peninsula is considered to be important due to complete preservation of rocks from Archaean to Upper Proterozoic. Further, these rocks have served as ideal host of varieties of economic minerals. The present work is an attempt to study the structurally deformed granulitic terrain in parts of Gujarat and Rajasthan in light of remote sensing. The study area falls under Sirohi, Banas Kantha and Sabar Kantha districts of Rajasthan and Gujarat. Remote sensing technique is utilized for the understanding of structural geology and deciphering the shear pattern. The methods adopted in this study include generation of False Color Composite (FCC) of satellite data, interpretation of lineaments from FCC and study the drainage pattern, structural basin delineation, profiling, and field mapping. It is observed that the area has undergone extensive deformation. There are two major sets of lineaments interpreted in the granulitic terrain such as WNW-ESE and NE-SW directions. Majority of the WNW-ESE lineaments are brittle in nature and N-S, NE-SW trending lineaments are ductile in nature. Overall the study area bifurcated into seven structural basins comprises of basic granulites, calc granulites and pelitic granulites.  相似文献   

19.
Numerous palaeochannels, oxbow lakes and elongated sediment fills in Eastern India, particularly along the lower Ajay River, provide a record of channel shifting during the Late Quaternary. Proper characterization of these features is useful for discussing the dynamic evolution of the river system in the Ajay-Damodar Interfluve region. Remote sensing data, archaeological evidence and sedimentology aid in reconstructing the geomorphic history of the lower Ajay River. Archaeological studies help in calculating the rate and direction of channel migration. The channel migration rate varies from 0.32 to 3.41 m/year in the study area. Bouguer gravity anomalies suggest that the rate of channel migration may be controlled by the density variations of the basement rocks. Furthermore, neotectonics activity played a significant role in the migration of Ajay River towards north-east direction.  相似文献   

20.
Lineament extraction approach allowed mapping of larger number of lineaments in a classical manner in tectonic and structural studies. In the present study, various techniques were adopted to extract lineaments using Landsat ETM+ images. To remove the biasness of the images, some pre-processing techniques like stream ordering, band differencing, colour texturing were employed to enhance the edges of the structural features. Extracted lineaments and its distribution and orientation were mapped using ArcGIS Spatial analyst tool. Results of the study showed maximum number of lineaments were oriented in the ENE–SWS direction with 63° overall inclination. Accuracy assessment and validation were made with respect to visual interpretation and overlaying the lineament on Digital Topographic Model as well as with respect to an existing geological lineament map of the study site. The result of accuracy assessment indicates higher compatibility of Central Indian Suture with the geological map of the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号