首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
北京-天津(京津)城际铁路经过地面沉降漏斗边缘,其安全运营随着不均匀沉降的增加而威胁增加。采用时序干涉测量技术监测铁路沿线地表形变,结合剖面分析与时序分析方法探讨其与影响因素之间的响应特征,揭示铁路沿线不均匀地面沉降空间分布与演化特征。结果表明,梯度可以很好地体现区域地面沉降不均匀性,研究区可压缩层厚度、地下水开发利用情况、铁路运行等均与地面沉降呈现正相关关系。可压缩层的存在为沉降发生的基础条件,地下水开发利用与铁路运营为沉降产生的主导条件,二者的时空分布情况共同决定不均匀地面沉降的发展演化。  相似文献   

2.
基于63景Sentinel-1数据,采用PS-InSAR技术监测珠海市2018年10月—2020年11月地面沉降,利用GNSS地面同步观测数据进行精度评定,监测结果的均方根误差为4.58 mm,表明利用PS-InSAR监测研究区地面沉降具有较高的可靠性。分析珠海市地表形变的时空特征,结果表明,珠海市主体部分的平均形变速率在-55~15 mm/a,主要沉降区域分布在珠江水道周边的农垦区及沿海港口区域;主要交通线路为港珠澳大桥珠海连接线和广珠铁路珠海段,均存在年平均形变速率超过20 mm/a的明显形变异常区,需重点关注。结合地质条件、地下水开采情况对珠海市地表形变驱动力进行分析,结果表明,区域内地面沉降速率与软土层的厚度呈正相关,与地下水水位降深呈对数函数关系。  相似文献   

3.
张子文  杨帆  吴文豪  李陶 《测绘科学》2016,41(6):64-69,134
针对传统地面沉降监测手段阻碍了地下水的开采控制及其相关研究这一情况,该文基于短基线集时序分析方法提取了天津市平原地表形变信息。首先根据合成孔径雷达干涉结果分析了天津市地面沉降分布特征,然后定量研究了地面沉降漏斗分布特征,最后以北辰区为例将实测地下水降落漏斗与地面沉降中心进行耦合。结果表明:天津市地面沉降产生主导因素为超量开采造成的地下水位下降,两者直接相关;地下水超采区内的地面沉降中心与地下水漏斗中心大致吻合,并有整体稍向西北方向偏移的趋势,原因可能为地下水开采后,受岩土的厚度与性质控制,其软土层固结速滞后于地下水位的水头变化。  相似文献   

4.
多项式分布滞后模型在地面沉降预测中的应用   总被引:1,自引:0,他引:1  
凌胜任 《测绘工程》2016,25(3):64-67
介绍多项式分布滞后模型(PDL模型)建立过程,针对地面沉降相对于地下水水位变化的滞后作用,建立考虑滞后作用的多项式分布滞后预测模型,应用该模型对某地区地面沉降实测数据进行模拟预测,并评价模型各项指标。实例分析表明,PDL模型应用到地面沉降变形趋势具有预测精度高、拟合效果好的特点,可以有效实现地下水水位变化导致地面滞后性沉降的定量模拟和预测。  相似文献   

5.
基于自回归分布滞后模型的地面沉降预测   总被引:1,自引:0,他引:1  
地面沉降与地下水水位变化不同步,且地面下沉受自身影响较大,建立滞后作用下地面沉降预测模型,以某地区地面沉降为例进行模拟试验,并探讨模型拟合效果与预测精度。结果表明,自回归分布滞后模型的拟合效果较好,预测精度较高,可以用到地面沉降量计算中。  相似文献   

6.
针对地表沉降与地下水变化之间的关系研究,助力资源开发与灾害防治之间突出矛盾的解决。该文利用GRACE/GRACE-FO卫星观测数据反演京津冀地区的地下水变化情况,利用Sentinel-1卫星观测结果,通过小基线集干涉测量技术(SBAS-InSAR)计算该区域的地面沉降速率,在地下水变化分析的基础上研究地下水变化与降雨的相关关系,并进而得到地表沉降与地下水变化的相关关系。结果表明,2003—2020年京津冀地区地下水储量呈减少趋势,变化速率达到-11.4 mm/a,降雨量年际变化较大,对地下水储量亏损存在影响;京津冀地区中,北京市地表形变相较于地下水变化滞后时间约为3个月,地下水变化与地表形变存在较高的相关性,二者相关系数达到0.758。  相似文献   

7.
时间主成分分析(temporal principal component analysis,TPCA)可用于地学领域中提取时空数据的时序特征和空间分布特征,北京平原区的地面沉降具有典型的时序和空间特征。在利用永久散射体干涉测量技术获取的北京平原区2003—2010年地面沉降数据的基础上,采用TPCA方法分析了北京平原区地面沉降时空演化特征。经分析发现:(1)TPCA分析得到的第一主成分反映了地面沉降在该长时序阶段的空间分布特征。(2)第二主成分得分为正的空间点与可压缩层厚度在130 m以上的区域在空间分布上有一致性和相关性。(3)在空间上,第一主成分为负值与第二主成分为正值的永久散射体点分布在年均沉降速率30 mm/a以上的严重沉降区域。严重沉降区具有明显的南北沉降分类现象和季节性差异,具体表现为:北部沉降区在春夏季节的沉降量大于秋冬季节;南部沉降区则与之相反。总之,基于时间主成分分析方法可分析得到研究区的地面沉降时空演化规律,为城市安全监测提供数据支撑。  相似文献   

8.
地面沉降具有时间持续性与空间扩张性的特点,获取长时间序列、覆盖范围广及精度较高的地面沉降时空演化特征可以预防地面沉降造成的潜在危害。本文采用SBAS-InSAR技术,结合2017年4月—2021年2月的Sentinel-1A影像对西宁市城市地面进行沉降监测。研究结果表明,监测期间西宁市地表形变具有城区形变稳定、局部区域沉降明显及存在缓慢隆升区域的趋势;3处明显快速沉降区域(城西区的沉降区Ⅰ、城东区的沉降区Ⅱ和城北区的沉降区Ⅲ)的沉降速率约为20~35 mm/a;沉降的驱动因素为沉降区域的湿陷性黄土地层,其具有土层结构性脆弱承重特点,在覆盖土层的自重应力及建筑物附加应力的综合作用下,土质受水浸湿后,土壤的结构性能被迅速破坏,土层会发生显著的附加下沉,其强度也迅速降低,从而引起建筑物的不均匀沉降。  相似文献   

9.
地面沉降具有时间持续性与空间扩张性的特点,获取长时间序列、覆盖范围广及精度较高的地面沉降时空演化特征可以预防地面沉降造成的潜在危害。本文采用SBAS-InSAR技术,结合2017年4月—2021年2月的Sentinel-1A影像对西宁市城市地面进行沉降监测。研究结果表明,监测期间西宁市地表形变具有城区形变稳定、局部区域沉降明显及存在缓慢隆升区域的趋势;3处明显快速沉降区域(城西区的沉降区Ⅰ、城东区的沉降区Ⅱ和城北区的沉降区Ⅲ)的沉降速率约为20~35 mm/a;沉降的驱动因素为沉降区域的湿陷性黄土地层,其具有土层结构性脆弱承重特点,在覆盖土层的自重应力及建筑物附加应力的综合作用下,土质受水浸湿后,土壤的结构性能被迅速破坏,土层会发生显著的附加下沉,其强度也迅速降低,从而引起建筑物的不均匀沉降。  相似文献   

10.
首先基于PS-InSAR技术获取地铁15号线地面沉降信息,采用信息论方法计算研究区2003-2019年的熵值,然后通过转移矩阵分析地面沉降的转化规律及其与熵值变化的关系。发现2003-2020年,研究区受地质构造影响差异沉降明显,年均地面沉降速率区间为[-100.17,1.19]mm/a;2016年前信息熵不断增加,地面沉降差异性较大,之后信息熵逐渐降低,沉降一致性较好;熵值大小与地面沉降的发育程度有关,沉降严重区熵值较高,沉降稳定区熵值较低;熵值增大时各沉降类型的转出率高,此时地面沉降系统不稳定,熵值减小时各沉降类型的转出率低,沉降系统较稳定。  相似文献   

11.
本文以京雄城际铁路河北段固安站至雄安站沿线作为研究区,利用2018—2020年共34景Sentinel-1B影像,基于小基线集雷达干涉测量技术(SBAS-InSAR)获取京雄城际铁路河北段沿线的地面沉降时空分布信息,结合空间自相关分析方法,揭示研究区地面沉降的空间分布格局,并对沉降原因进行初步分析。研究结果表明,京雄城际铁路河北段沿线地面沉降发展由北向南存在一定的差异。北部年均沉降速率小于10 mm/a,南部沉降较为严重,最大年均沉降速率达-105.6 mm/a,且沿线西部年均沉降速率高于东部区域。通过分析影响因素得知,地面沉降量与地下水埋深值存在相关性,地下水埋深高的地区地面沉降量较高。同时结合研究区土地利用变化结果发现,城市化建设所产生的静载荷对京雄城际铁路沿线的地面沉降产生一定的影响。  相似文献   

12.
针对地面沉降与地下水水位变化的内在关系,考虑地面沉降受到自身变化规律的影响,建立基于库伊克变换的地面沉降预测模型,应用该模型对某地区地面沉降统计数据进行模拟预测,有效实现该地区地面沉降与地下水水位以及本身之间的定量模拟,并探讨模型的拟合效果和预测精度。结果表明库伊克模型拟合效果较好,预测精度较高,能较好地反映研究区域的地面沉降变形趋势。  相似文献   

13.
基于传统数值方法构建的地面沉降模拟预测模型需要大量的水文地质数据和实测数据,对于地质条件复杂地区的形变模拟预测难度大。本文基于PS-InSAR技术获取的北京平原东部地区的地面沉降信息,综合考虑不同层位地下水水位对沉降的影响,采用基于注意力机制的长短时记忆网络(AM-LSTM)对不同沉降发育地区典型位置处的地面沉降进行模拟。结果表明:(1)研究区地面沉降空间差异性明显,2010年11月—2016年8月最大沉降速率约153 mm/a,累计沉降量达到1063 mm,位于朝阳区三间房乡附近;(2)基于AM-LSTM模型的模拟精度优于传统LSTM模型,本次模拟精度最高提升了22%;(3)AM-LSTM模型注意力权重表明,第二承压含水层水位对地面沉降贡献最大。本次研究能够为地面沉降防控提供可靠的技术支撑。  相似文献   

14.
张彭  朱邦彦  孙静雯  王晓 《测绘通报》2019,(11):141-144
地面沉降风险评价对城市公共安全具有重要意义。本文结合InSAR沉降和地质数据对南京河西地面沉降进行风险性分析。首先,利用InSAR技术获取的2012-2016年河西地区的沉降信息,结合软土层厚度、土地利用类型、地面高程和轨道交通分布信息,采用层次分析法建立三级多因子的地面沉降风险评价模型;然后,分析了河西地面沉降灾害风险程度;最后,着重分析了轨道交通的沉降风险。结果表明,河西地面沉降风险空间特征明显,高风险区主要分布于河西北部的江东街道、凤凰街道及莫愁湖街道,面积约6.4 km2,其中地铁2号线地面沉降风险较大。  相似文献   

15.
采用北京平原地区的PS-InSAR时序监测结果(2003—2009年),结合GIS空间分析构建沉降速率坡度图,进一步叠加地质构造数据、水源数据和路网数据,从时间、空间、事件3个维度分析北京平原区不均匀沉降控制因素。研究结果表明,地质构造尤其是第四系沉积物岩性与厚度的差异是地面发成不均匀沉降的内因;地下水大量、持续的抽取活动、地面动载荷的增加使可压缩层水位被动降低,导致持续性应力转移、出现大面积不均匀沉降区域。当外因达到一定程度,就表现为控制因素。  相似文献   

16.
基于Sentinel-1获取的9景影像,采用新型TOPS成像模式Stacking技术分析淮南矿区地面沉降特征。首先,针对TOPS干涉影像burst间存在相位跳变的问题,采用三步法对影像进行精确配准,配准精度高达0. 001个像元;然后,利用多项式拟合方法消除差分干涉图中的趋势性相位;最后,基于最小二乘法线性回归得到研究区的沉降速率。沉降结果表明,淮南矿区呈现多个沉降中心,主要分布于研究区的西部和北部,沉降速率在空间上呈不均一分布,最大年沉降速率在80~90 cm/a;研究区开采沉陷具有幅度大、范围小的特点,沉降幅度在10~80 cm/a间变化,沉降面积占整个研究区面积的3. 13%;矿井地面沉降非线性特征明显,即沉降中心在不同时间段的形变量不同。  相似文献   

17.
由于针对地面沉降不均匀态势的量化分析较少,采用永久散射体干涉测量(persistent scatterer inteferomotry,PSI)方法获取北京平原地面沉降信息。根据浅地表空间利用差异在沉降漏斗区选取5个典型区,基于空间自相关分析和小波分析方法,量化了各区地面沉降空间和时序不均匀程度。并研究了浅地表空间利用差异和地下水位变化对空间和时序不均匀沉降的影响。研究发现:①5个区域每年累计沉降量和时序沉降量的莫兰指数大小关系相同,均为I_5 I_3 I_1 I_2 I_4,结合浅地表空间利用情况,区域3和4不均匀沉降的影响因素较复杂,区域1,2和5沉降空间不均匀程度与空间利用复杂程度呈正相关;②各区地下水流场变化的波动大小和持续时间长短直接影响区域时序沉降不均匀程度。  相似文献   

18.
针对地下水的过度开采容易导致地面沉降问题,为了更好地管理地下水开采,防控地面沉降,该文结合使用了InSAR时序数据和ICA方法,将衡水市部分地区2017—2020年地面沉降分解为3个模式,并结合地下水等数据对独立成分的时空特征进行分析。通过IC时间序列与地面沉降序列较高的相关系数(0.98、0.74和0.84以上),验证了独立成分时间序列与地面沉降的一致性;通过各分量的贡献占比,可知地面沉降的主导成分;IC3与地下水的相关系数(0.9以上)表明IC3受到地下水变化的控制。实验结果表明,研究区地面沉降有长期沉降、城市生活和工业用水引发的沉降以及季节性沉降3种沉降模式,其中长期沉降为地面沉降的主导成分,季节性沉降与冬小麦-夏玉米的耕作制度有关。  相似文献   

19.
地面沉降是一种对地面及地下基础设施造成安全隐患,对经济可持续发展和环境保护产生破坏影响的地质灾害现象。本文使用2017年5月至2018年5月16景Sentinel-1A卫星SAR影像,根据D-InSAR的初步形变监测结果将即墨城区内沉降明显的区域作为研究区,基于PS和SBAS两种时序InSAR方法对该区域进行地面沉降监测,获得的沉降分布和形变时序结果吻合。地面沉降的分布与新建高层建筑区吻合,地面形变趋势与区域降水量和地下水水位变化有较高的相关性。研究结果有助于了解即墨城区的地表沉降状况以及原因,为地面沉降综合治理和地下水水资源开发利用提供参考依据。  相似文献   

20.
钟金宁  尚明 《现代测绘》2007,30(3):32-33
城市建设和地下水开采引起地面沉降与地表土层物理性质的改变等问题,已受到政府、社会和广大学者的高度重视.本文结合南京河西地面沉降监测项目研究地面沉降监测网的建立、数据采集和数据处理的方法与模型,分析造成地面沉降的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号