首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
卫星遥感监测提供的气溶胶产品很多,而当前使用最多的是Terra和Aqua卫星上搭载的MODIS传感器获得卫星影像数据反演气溶胶光学厚度AOD。MODIS数据反演得到的气溶胶光学厚度产品目前经历了C002、C003、C004、C005、C006等版本。为了对比分析黑河流域的MODIS气溶胶产品,本文首先对黑河流域范围内C006版本的气溶胶光学厚度产品的精度进行了验证,然后对比分析了研究区气溶胶光学厚度的时空变化特征。采用黑河生态水文遥感试验(HIWATER)气溶胶光学厚度地基观测数据验证MODIS气溶胶光学厚度产品的精度。验证结果显示MODIS气溶胶产品的精度较高,可信度也较高,具有显著的适用性。对比分析发现研究区的气溶胶光学厚度的时空变化特征很明显,下午星Aqua的气溶胶光学厚度值比上午星Terra的高,并且中下游气溶胶光学厚度值比上游地区较高。夏季的气溶胶光学厚度比其他季节的气溶胶光学厚度值高,春季气溶胶光学厚度高值区域集中分布在下游地区,夏季的高值区域分布在上游区域,秋季的高值区域分布比较均匀,冬季高值主要分布在研究区的西部地区。  相似文献   

2.
通过IDL语言调用6S模型源码生成相应查找表,对北部湾及周边区域2008年MODIS高分辨率(1 km×1 km)影像进行气溶胶光学厚度反演。反演结果与AERONET公布的Bac_Giang、MuKdahan和Hongkong_poly站的气溶胶产品进行精度验证,得出北部湾地区的气溶胶光学厚度反演,春、秋、冬季选取大陆型气溶胶模式,夏季选取海洋型模式能更好地贴近实际情况。运用此方法对北部湾以及越南东北部地区2004年、2006年、2008年、2010年中晴空少云天进行气溶胶时空分布反演并分析结果。  相似文献   

3.
结合船基海上现场实测资料与卫星遥感MODIS光学厚度资料,分析了中国东部海域气溶胶光学厚度(AOD)的季节变化和地理分布特征。中国东部海域平均气溶胶光学厚度存在以中纬度为中心的纬向分布;同时受到陆源物质的影响,近海气溶胶光学厚度大于远海,且随着离海岸距离变大有线性递减的趋势。受沙尘、季风气候的影响,各海域气溶胶光学厚度存在明显季节变化和分布特征。渤海、黄海及东海有类似的变化特征,春季都受到沙尘气溶胶的影响,气溶胶平均光学厚度值为全年最高0.12,并且对东海的影响最明显;夏季最小,秋、冬季逐渐变大。  相似文献   

4.
梁玉  邹滨  冯徽徽  刘宁 《遥感学报》2022,26(8):1602-1613
MODIS 3 km DT(Dark Target)卫星气溶胶光学厚度AOD(Aerosol Optical Depth)数据产品已广泛应用于大气污染监测,但受反演方法限制,该数据产品像元缺失严重、时空覆盖度低、精度偏低。相比,MODIS 10 km DT_DB_Combined AOD数据产品因融合DT和DB(Deep Blue)两种反演算法,一定程度上可弥补MODIS 3 km DT AOD数据产品在时空覆盖度与精度方面的缺陷,但分辨率偏低。此外,受气溶胶组分来源的季节变化与地表反射率估算的季节性误差影响,MODIS AOD数据产品精度同时也存在季节性特征。本文由此以京津冀为试验区,顾及AOD季节变化特性,开展MODIS 10 km DT_DB_Combined AOD数据产品偏差纠正下的地统计反演模拟BGIM(Bias-corrected Geostatistical Inverse Model)降尺度算法研究。试验同时引入AERONET地基观测数据和MODIS 3 km DT AOD数据产品作为降尺度结果的绝对与相对验证标准。结果表明:季节偏差系数纠正下生成的MODIS 3 km DT_DB_Combined AOD与10 km DT_DB_Combined AOD、3 km DT AOD数据产品的绝对精度相当,验证R2分别为0.79、0.70、0.71;且相比MODIS 3 km DT AOD数据产品,季节偏差系数纠正下的MODIS 3 km DT_DB_Combined AOD数据与其相关系数可达0.93;在时间覆盖度和空间覆盖度方面可分别提升11.21%和11.44%,其中春、冬两季空间覆盖度提升效果尤为显著。研究结果证实BGIM降尺度算法可有效估算MODIS 3 km DT_DB_Combined AOD数据,提高MODIS 3 km AOD产品的时空覆盖度,并同时抑制原有MODIS 10 km DT_DB_Combined AOD数据产品的季节性高估现象。  相似文献   

5.
北京地区Landsat 8 OLI高空间分辨率气溶胶光学厚度反演   总被引:3,自引:0,他引:3  
卫星气溶胶光学厚度(AOD)反演中,传统暗目标方法在反射率较低的水体、浓密植被覆盖区域取得了较好效果,在反射率较高且结构复杂的高反射地表上空目前多采用深蓝算法,但存在空间分辨率较低,对细节分布描述性较差等问题。为解决这一问题,本文首先以5年(2008年—2012年)长时间序列MODIS地表反射率产品为基础,采用最小值合成法建立500 m分辨率逐月地表反射率产品数据集,然后利用地物波谱库中典型地物波谱数据,分析建立MODIS与Landsat 8 OLI传感器蓝光波段反射率转换模型,最后北京地区AERONET地基观测数据确定了气溶胶光学物理参数,并反演获取了北京地区上空500 m分辨率的AOD分布。为验证反演算法的精度,分别将反演结果同AERONET及MODIS/Terra气溶胶产品(MOD04)进行交叉对比,同时利用相关系数R,均方根误差RMSE,平均绝对误差MAE以及MODIS AOD产品预期误差EE共4个指标进行衡量。结果表明:算法反演获取的AOD与AERONET观测值具有较高的一致性,各指标分别为R=0.963,RMSE=0.156,MAE=0.097,EE=85.3%,稍优于MOD04产品(R=0.962,RMSE=0.158,MAE=0.101,EE=75.8%),并且有效的对比点数也高于MOD04。通过与地基观测相比,卫星遥感获取的高分辨率城市地区AOD精度可作为定量评估城市空气质量的有效依据。  相似文献   

6.
通过遥感技术反演气溶胶光学厚度AOD对于全面、动态监测大气污染时空变化具有重要意义.可见光红外成像辐射仪VIIRS作为MODIS的后继传感器,可在全球范围内实现对气溶胶的连续时空监测.针对复杂的地表类型,通过构建基于像素的动态地表反射率关系库,能实现陆地AOD高分辨率反演.利用全球气溶胶自动观测网站AERONET地基站点观测结果对反演结果对比验证,发现二者具有显著的相关性,相关系数达到0.849,RMSE为0.184,优于官方产品的0.197;通过与2018-04-20真彩图比对,反演结果较官方产品更符合实际气溶胶分布趋势.该算法在陆地AOD反演上具有良好的性能,为进一步研究利用Suomi-NPP VIIRS数据反演大气颗粒物质量浓度提供了重要数据源.  相似文献   

7.
在中国东北地区,卫星气溶胶产品尚缺乏有效的验证机制,相关应用存在较大不确定性。利用2009–2011年中国地区太阳分光光度计观测网(CSHNET)沈阳站地基观测资料,借助后向轨迹模式分析了该地区气溶胶来源和季节变化特征,并同步对比了FY-3A/MERSI和Terra/MODIS气溶胶产品精度的季节差异及误差来源。结果表明:沈阳站气溶胶光学厚度和Angstrom波长指数季节变化明显,气溶胶受远程输送和区域排放的共同影响,人为源和自然源丰富。不同粒径粒子对气溶胶光学厚度的贡献因季节而异,导致卫星反演算法中气溶胶模型选择误差较大,影响了卫星反演精度。观测期间MODIS与MERSI气溶胶产品与地基观测数据的总匹配率分别为68%和83%。当气溶胶光学厚度较低时(AOD0.35),MODIS产品出现低估,MERSI出现高估,与实测值的相对误差分别为–46%—54%、7%—135%;当气溶胶光学厚度较高时(0.35—0.75),MODIS和MERSI均出现不同程度的低估,两者与实测值的相对误差分别为–34%—54%、–21%—75%;当气溶胶光学厚度大于0.75时,低估尤为严重,与实测值的相对误差可达–34%—100%、–9%—58%。能与地基观测匹配的MODIS和MERSI有效样本数春、秋季较高(春季分别为69%、80%,秋季分别为73%、70%),夏季次之(69%、73%),冬季最少(2%、49%);MODIS与地基观测的相关性总体优于MERSI;但在冬季,MODIS与MERSI产品均不具备代表性。MODIS与MERSI气溶胶产品落入误差线的比例均为春季最高(22%、25%),秋季次之(19%、16%),夏季最小(6%、5%)。MERSI对粗模态气溶胶(α≤0.5)反演效果优于MODIS,而MODIS对混合模态气溶胶(0.5≤α1.5)反演效果优于MERSI。MERSI与MODIS气溶胶产品在春、秋季可比性较好,夏季可比性较差,总体来说,春、秋季MERSI比MODIS低估更为严重。从气溶胶产品在辽宁省的区域分布来看,FY-3A/MERSI比Terra/MODIS覆盖范围略广,各季节FY-3A/MERSI与Terra/MODIS的总体空间分布特征基本一致,但对于某些地区,两者数值上依然存在较大偏差。  相似文献   

8.
气溶胶作为环境监测的重要指标,采用环境卫星数据对其进行反演时,深蓝算法和暗像元法各有不足。以北京市为研究对象,采用HJ-1卫星数据,使用暗像元法和深蓝算法相结合的方法对北京市气溶胶光学厚度(Aerosol Optical Depth,AOD)进行反演,并分析其时空分布特征。实验结果表明:基于HJ-1卫星数据反演的北京市AOD与AERONET地基观测数据的相关系数达到了0.934;通过HJ-1卫星数据反演的北京市AOD在时间上表现出明显的季节性特征,其中夏季AOD值最大,冬季最小;在空间分布上AOD高值主要集中在人口密集的城区中心,整体分布呈现西北低东南高的趋势;采用MODIS数据对反演结果进行验证分析,结果表明,二者时空变化趋势一致。这些结果说明使用暗像元法和深蓝算法相结合的方法反演北京市AOD是可行的,为北京市AOD反演提供了新思路,有助于北京市环境污染监测和气候变化研究。  相似文献   

9.
李丁  秦凯  薛勇  饶兰兰  张亦舒  何秦 《遥感学报》2022,26(5):897-912
气溶胶单次散射反照率SSA(Single Scattering Albedo)的卫星定量遥感对气候评估和大气污染治理均具有重要意义。搭载于S5P(Sentinel-5 Precursor)上的对流层监测仪(TROPOMI)具有目前同类卫星传感器中最优的空间分辨率。本文基于S5P/TROPOMI数据开展了中国东部地区的SSA反演研究。首先利用中国东部地区AERONET(Aerosol Robotic Network)站点数据对OPAC(Optical Properties of Aerosols and Clouds)气溶胶模型进行约束改进,构建了更为合适的气溶胶类型,并使用地基激光雷达(Lidar)预设相应气溶胶类型的垂直结构。然后使用辐射传输模型SCIATRAN构建查找表LUT(Look-Up Table),将TROPOMI UVAI(Ultraviolet Absorbing Index)和MODIS AOD(Aerosol Optical Depth)数据联合输入反演气溶胶SSA数据。反演结果与地基站点数据对比,相关系数R2为0.61,均方根误差为0.05;和OMI SSA产品相比,总体趋势一致且具有空间连续性更好。基于TROPOMI的高分辨率SSA算法和数据将有助于中小尺度下气溶胶时空分布、光学特性等研究。  相似文献   

10.
以湖北省东部的大悟—红安一带为研究区,选用资源三号立体测绘卫星(简称ZY-3)多光谱数据与MODIS L1B级数据实现气溶胶光学厚度(AOD)反演,从而对比分析两种影像反演结果的差异性。ZY-3数据的AOD反演是在Gilabert算法的基础上增加漫反射项,选择多个暗像元,应用空间插值的方法来实现;MODIS数据的AOD反演同样采用暗像元法实现。两种卫星影像数据的反演结果显示ZY-3数据反演结果比MODIS数据的反演结果更为精细,更适合小范围地区的研究。  相似文献   

11.
本文通过对2000年—2013年长时间序列的MODIS气溶胶产品进行统计,分析了珠三角地区气溶胶光学厚度(AOD)和细粒子光学厚度(FAOD)的空间分布特征以及年度和季节变化特点,有助于深入研究珠三角地区颗粒物污染水平变化及颗粒物的排放与输送等。研究结果显示珠三角地区中部为AOD高值区,东西两翼地区为AOD低值区。AOD和FAOD的最高值通常分别出现在春季和秋季,最低值则通常都出现在冬季。2006年之后,珠三角地区大气气溶胶总消光虽在部分年份仍有反弹上升的现象出现,但已有明显降低。然而,该地区细粒子消光在2000年—2012年期间则呈逐年增加的趋势,且其空间差异性也越加显著,细颗粒物污染仍需进一步控制。  相似文献   

12.
利用NPP卫星的VIIRS传感器数据,基于暗像元法反演陆地气溶胶光学厚度AOD。首先,根据红外波段的归一化植被指数NDVI来对暗像元进行识别;然后,利用6S软件进行辐射传输计算构建查找表;最后,根据VIIRS数据从查找表插值得到AOD,并对其进行海拔校正。选取华北地区作为反演实验区,获得了2013年9月1日的气溶胶分布。利用AERONET北京站太阳光度计地基观测结果对反演结果对比验证,发现二者具有显著的相关性,相关系数达到0.7920。将2013年9月1日的MODIS AOD产品与本研究反演的AOD进行比对,发现二者分布趋势一致,相关系数为0.7059,相关性显著。反演结果表明,本文算法反演陆地AOD效果较好,为大气颗粒物环境监测提供了良好方法手段和数据源。  相似文献   

13.
暗目标法的Himawari-8静止卫星数据气溶胶反演   总被引:1,自引:0,他引:1  
Himawari-8(H8)是由日本气象厅发射的新一代静止气象卫星,可实现10 min/次的高频次对地观测,搭载的AHI(Advanced Himawari Imager)传感器设置有与MODIS暗目标气溶胶反演算法所需的类似波段。本文参考暗目标算法构建了针对该卫星传感器的陆地气溶胶反演算法:首先,通过基于地基站点观测数据的精确大气校正,统计得到短波红外与可见光波段的地表反射率比值关系,将此作为先验知识用于地—气解耦时的反射率估计;然后,初步假设大陆型气溶胶类型,利用辐射传输模型建立查找表;最后,通过模拟与卫星观测的表观反射率误差最小实现气溶胶光学厚度反演解算。选取2016年5月覆盖京津冀地区的观测数据进行测试,将反演结果与对应时间的MODIS气溶胶光学厚度产品进行对比验证,空间分布趋势一致、相关性较高,相关系数R达到0.852;通过与地基观测网AERONET站点实测数据对比验证,所有站点的相关系数R~2均大于0.88,精度较高。利用反演的高时间分辨率产品,分析了京津冀地区的大气空间分布和日变化情况,结果表明:采用暗目标法对H8静止卫星陆地气溶胶光学厚度反演具有一定的潜力和可行性,能反映气溶胶的高时间变化信息,有望成为大气环境污染变化监测新的重要手段。  相似文献   

14.
ABSTRACT

Increasing attention has been paid to the deterioration of air quality in China during the past decade. This study presents the spatiotemporal variations of aerosol concentration across China during 2000–2016 using aerosol optical depth (AOD) from the atmospheric product of Moderate Resolution Imaging Spectroradiometer. Percentile thresholds are applied to define AOD days with different loadings. Temporally, aerosol concentration has increased since 2000 and reached the highest level in 2011; then it has declined from 2011 to 2016. Seasonally, aerosol concentration is the highest in summer and the lowest in winter. Spatially, North China and Sichuan Basin are featured by high aerosol concentration with increasing trends in North China and decreasing trends in Sichuan Basin. North, Southeast and Southwest China have been through increasing days with low AOD loading; however, Northeast China has experienced increasing days with high AOD loading. It is likely that air quality influenced by aerosols has notably improved over North China in spring and summer, over Southwest and Southeast China in autumn, but has degraded over Northeast China in autumn.  相似文献   

15.
基于6S传输模型,本文利用中分辨率成像光谱仪(MODIS)数据并结合较新的NASA的V5.2气溶胶业务反演算法,以上海市MODIS数据为研究数据源,结合晴朗天气(晴朗且无云或云稀薄)与AERONET发布的探测日(即发布AOD探测值日期)选取8组MODISLIB数据集,对其进行气溶胶厚度反演。同时将反演结果与AERONET架设在太湖区域点(31N,120E)的太阳光度观测的光学厚度进行验证。结果表明:V5.2反演算法结果与观测值呈现相同的变化趋势,反演值与观测值误差不大,在气溶胶光学厚度反演中具有较好的应用。  相似文献   

16.
定量分析气溶胶与痕量气体之间的时空变化关系有助于进一步研究气粒转化。本文采用2006年—2015年MODIS气溶胶光学厚度(AOD)、细粒子模态比(FMF)和OMI痕量气体(SO_2、NO_2和HCHO)数据,对黄海、东海和南海区域上空的细粒子气溶胶与痕量气体进行定量分析。先对气溶胶和痕量气体作均值分析发现:AOD_(fine)、SO_2、NO_2和HCHO的均值在黄海、南海、东海均依次减小;再对气溶胶对痕量气体的敏感度分析发现:黄海地区的AOD_(fine)对SO_2最敏感,敏感度为0.424,这与中国东部沿海城市的人为排放有关;而东海和南海地区对HCHO的敏感度较高,依次为0.664和0.545,主要受东南亚和中国南方地区生物质燃烧影响。最后,对3个区域的气溶胶与痕量气体按季节作相关性分析发现:黄海地区AOD_(fine)在夏秋两季与SO_2的相关性较强(R0.5),主要由于夏秋两季的温湿度大,利于发生气—粒转化;东海地区夏季HCHO与AOD_(fine)相关性较明显(R=0.57);南海春季HCHO与AOD_(fine)相关性较好(R=0.57),呈现出区域与季节性的变化。最终发现,气溶胶与痕量气体随着时空变化存在相关关系。  相似文献   

17.
利用CE-318太阳光度计、MPL激光雷达与卫星观测数据,分别采用光谱消光法、Fernald方法以及MODIS暗像元法(DDV)反演南京地区气溶胶光学厚度,并进行了对比分析。通过研究分析3月3日、6日卫星反演气溶胶光学厚度的空间分布图,发现长江流域附近以及市区(除老山、中山陵等山区地带之外)的AOD较高。3月3日太阳光度计、激光雷达与卫星数据在站点位置(南京信息工程大学,118.7°E,32.2°N)的AOD值分别为0.455、0.289、0.4;3月6日的AOD值分别为0.373、0.267、0.25。通过对比分析3月至9月之间的多天数据,可得3种数据计算所得AOD相差不大,说明卫星与激光雷达反演数据相对可靠。其中,3月3日与3月6日的太阳光度计数据显示,观测地区出现常见的两种AOD变化类型:一种是早晚高,中午低;一种是早低晚高。此外,激光雷达所得数据结果随着时间的变化幅度较大,且可以在有云的天气条件下探测气溶胶;本文利用激光雷达数据计算出的9 km以下AOD值多数在0.3左右,3月3日与3月6日两天之中,2 km以下较脏,出现了一些气溶胶层,6km以上相对比较干净,个别时段6 km以上高空存在云层。与地基观测相比,卫星虽然时间分辨率虽然低,但是对于大面积的趋势分析却有着绝对的优势。在今后的气溶胶观测发展中,结合三者的优势,有助于以较高精度,大面积反演大气气溶胶空间分布情况,获得较准确的气溶胶参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号