首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
准确固定非差模糊度是利用相位观测量获取高精度电离层延迟的关键。三频观测条件下常规的处理策略需依次固定超宽巷、宽巷以及窄巷模糊度,通常利用MW(melbourne-wubbena)组合解算宽巷模糊度时易受到码硬件延迟和观测噪声的影响而固定错误。利用北斗三频数据和GIM(grid ionosphenimap)产品,通过固定的超宽巷模糊度以及构造相位无几何组合解算宽巷模糊度,进而重构得到高精度电离层延迟,并且分离了码硬件延迟总量。结果表明,GIM模型辅助条件下宽巷模糊度固定成功率能达到100%,且消除了系统性偏差;电离层重构值与GIM模型改正值存在约1 m的差异,等效精度约6TECU;分离的码硬件延迟变化平稳,标准偏差不超过0.3 m。  相似文献   

2.
The reliability of the classical geometry- and ionospheric-free (GIF) three-carrier ambiguity resolution (TCAR) degrades when applied to long baselines of hundreds of kilometers. To overcome this deficiency, we propose two new models, which are used sequentially to resolve wide-lane (WL) and narrow-lane (NL) ambiguities and form a stepwise ambiguity resolution (AR) strategy. In the first model, after a successful extra-wide-lane AR, the pseudorange and phase observations are combined to estimate WL ambiguities, in which the residual ionospheric delays and geometry effects are eliminated. In the second model, using the resolved ambiguities from the first step, the two WL ambiguities are combined to remove ionospheric and geometry effects. The unknown coefficients in the two models are determined in such that they minimize the formal errors in the ambiguity estimates to optimize the ambiguity estimation. Using experimental BeiDou triple-frequency observations, we evaluate our method and identify three advantages. First, the two models use double-differenced phase observations that are not differences across frequency. Second, the two models are entirely free from ionospheric delay and geometry effects. Third, the unknown estimates in the two models satisfy the minimum noise condition, which makes the formal errors in the float NL ambiguity estimates much lower than those obtained with common GIF TCAR methods, thereby directly and significantly increasing the success rate of AR compared to the cascaded integer resolution method and two other GIF combinations.  相似文献   

3.
北斗中长基线三频模糊度解算的自适应抗差滤波算法   总被引:1,自引:1,他引:0  
针对经典TCAR(three carrier ambiguity resolution)算法受电离层延迟及测量噪声的影响,在中长基线下难以正确固定模糊度的问题,提出一种顾及电离层延迟影响并具有良好自适应抗差特性的改进TCAR算法。在无几何TCAR模型的基础上,通过对模糊度固定的超宽巷进行线性组合得到电离层延迟,再求解宽巷模糊度,通过构造最优组合观测量后用自适应抗差滤波求解窄巷模糊度,以提高窄巷模糊度固定正确率,减小粗差的不利影响。试验结果表明,改进TCAR算法可保证较高的宽巷模糊度固定正确率,有效提高了窄巷模糊度固定正确率,并具有良好抵抗粗差的能力。  相似文献   

4.
北斗三频宽巷组合网络RTK单历元定位方法   总被引:2,自引:1,他引:1  
利用三频超宽巷/宽巷模糊度波长较长从而易于固定的优势,提出了一种基于北斗三频宽巷组合的网络RTK单历元定位方法。数据处理中心利用基准站实时生成并播发包含双差对流层和电离层延迟改正信息的虚拟观测值;用户站利用载波、伪距组合及分步解算的TCAR方法基于单个卫星对、单历元可靠固定两个超宽巷或宽巷模糊度。最后利用已固定模糊度且噪声最小的宽巷观测值和内插得到的大气延迟改正进行实时动态定位解算。试验结果表明,对于本文提出的网络RTK单历元定位方法,用户站宽巷模糊度单历元解算准确率高于99.9%,统计的定位中误差平面为3~4cm,高程方向约为5cm。  相似文献   

5.
北斗卫星导航系统播发3个频点的导航信号,有利于载波相位模糊度解算。鉴于传统的三频模糊度解算方法由于受基线距离的限制难以在中长基线情形下可靠地固定模糊度,本文提出一种适用于北斗卫星系统中长基线模糊度固定的新方法。实验结果表明,改进的新算法不受基线长度的约束,在保证超宽巷、宽巷模糊度正确固定的同时,宽巷模糊度估值误差在0.3周以内;窄巷模糊度估值误差在3周以内。相比于传统算法,新方法的改进效果较好。  相似文献   

6.
BDS网络RTK参考站三频整周模糊度解算方法   总被引:1,自引:1,他引:0  
北斗卫星导航系统是目前唯一一个全星座提供三频观测数据的卫星导航定位系统,三频观测值有助于载波相位整周模糊度的快速、准确固定。本文提出了一种BDS网络RTK参考站三频整周模糊度解算方法。首先利用B2、B3频率的观测值及严格的模糊度固定标准确定超宽巷整周模糊度,将固定的超宽巷整周模糊度与其他宽巷整周模糊度的线性关系作为约束条件,然后估计宽巷整周模糊度、相对天顶对流层延迟误差和电离层延迟误差,并搜索确定宽巷整周模糊度。利用固定的宽巷整周模糊度与三频载波相位整周模糊度的整数线性关系,将线性关系加入载波相位整周模糊度参数估计观测模型中,然后确定载波相位整周模糊度。使用实测的CORS网BDS三频观测数据进行算法验证,结果表明,该方法可正确有效地实现参考站间三频载波相位整周模糊度的快速解算。  相似文献   

7.
顾及GEO卫星约束的长距离BDS三频整周模糊度解算   总被引:1,自引:0,他引:1  
祝会忠  雷啸挺  徐爱功  李军  高猛 《测绘学报》1957,49(9):1222-1234
长距离BDS三频载波相位整周模糊度解算受大气误差残余的影响较大,GEO卫星相对于地球静止也非常不利于载波相位整周模糊度的解算。利用GEO卫星的信号传播路径相对较稳定、大气延迟误差的影响不随卫星空间位置变化的特点,对GEO卫星进行更符合实际情况的大气延迟误差约束研究。利用GEO卫星B2和B3载波相位整周模糊度线性关系,降低测站差分电离层延迟误差残余对模糊度备选值的影响,进行B2和B3载波相位整周模糊度备选值的选择。通过三频载波相位整周模糊度间不包含观测误差影响的线性关系对模糊度备选值组合进行检测,并对模糊度搜索空间进行约束。利用历元间GEO卫星的模糊度备选值判断历元间电离层延迟误差残余的变化,对GEO卫星的参数估计进行更符合实际情况的约束。研究了顾及GEO卫星实际大气延迟变化和整周模糊度约束的长距离BDS三频载波相位整周模糊度解算方法。提出了利用历元间模糊度备选值确定电离层延迟约束值的方法,对GEO卫星历元间随机游走的约束值进行符合实际情况的调整。试验结果表明,本文的方法能够提高三频载波相位整周模糊度解算的效率和测站位置的精度。  相似文献   

8.
The Chinese Beidou system, also known as Compass, has entered its trial operational stage and can already provide services for triple-frequency users. Using triple-frequency signals is expected to be of great benefit for ambiguity resolution. Based on error characteristic analysis of the Beidou frequencies, we introduce the procedure of selecting the best combinations of triple-frequency signals. The geometry-based model and geometry-free model of triple-frequency signals are presented. Three triple-frequency carrier ambiguity resolution (TCAR) methods are described, which include the cascading rounding method, the stepwise AR method and the modified stepwise AR method. In order to evaluate the performance of these methods, observations from baselines of various lengths were collected using Beidou triple-frequency receivers and were processed epoch-by-epoch using the three methods. The same observation data were also processed in a dual-frequency mode for comparison. The results show that, compared to the dual-frequency based solution, the single epoch ambiguity resolution success rate with triple frequency improved nearly 30 % for the short baselines (<20 km) and 100 % for the mid-length baselines (20–50 km) using the proposed modified stepwise AR method.  相似文献   

9.
基准站间整周模糊度的快速准确固定是实现网络RTK高精度快速定位的前提。对于GPS/GLONASS/BDS组合系统长基线,模糊度维数大幅度增加,加之观测噪声、大气残余误差等因素的影响,很难快速准确地固定所有模糊度,尤其是低高度角卫星模糊度。提出了一种基于部分固定策略的GPS/GLONASS/BDS组合网络长基线部分模糊度快速解算方法,以截止高度角、模糊度固定成功率以及Ratio值为主要参数,优选模糊度固定子集,以实现长距离基准站间模糊度快速固定。通过实测GPS/GLONASS/BDS三系统长基线数据的实验验证,部分模糊度固定方法可有效避免低高度角卫星对模糊度固定的影响,从而显著提高模糊度固定时的成功率及Ratio值,缩短长距离基准站间模糊度准确固定所需的时间。  相似文献   

10.
The linear combinations of multi-frequency carrier-phase measurements for Global Navigation Satellite System (GNSS) are greatly beneficial to improving the performance of ambiguity resolution (AR), cycle slip correction as well as precise positioning. In this contribution, the existing definitions of the carrier-phase linear combination are reviewed and the integer property of the resulting ambiguity of the phase linear combinations is examined. The general analytical method for solving the optimal integer linear combinations for all triple-frequency GNSS is presented. Three refined triple-frequency integer combinations solely determined by the frequency values are introduced, which are the ionosphere-free (IF) combination that the Sum of its integer coefficients equal to 0 (IFS0), the geometry-free (GF) combination that the Sum of its integer coefficients equal to 0 (GFS0) and the geometry-free and ionosphere-free (GFIF) combination. Besides, the optimal GF, IF, extra-wide lane and ionosphere-reduced integer combinations for GPS and BDS are solved exhaustively by the presented method. Their potential applications in cycle slip detection, AR as well as precise positioning are discussed. At last, a more straightforward GF and IF AR scheme than the existing method is presented based on the GFIF integer combination.  相似文献   

11.
祝会忠  雷啸挺  李军  高猛  徐爱功 《测绘学报》1957,49(11):1388-1398
参考站载波相位整周模糊度的准确确定是实现BDS网络RTK定位的关键。本文研究了BDS参考站三频载波相位整周模糊度单历元确定方法。首先推导了参考站三频载波相位整周模糊度之间的多个整数线性关系,根据双频载波相位整周模糊度的整数线性关系,以及B1载波相位整周模糊度备选值,确定B1/B2和B1/B3载波相位整周模糊度的备选组合。然后利用不受误差影响的三频载波相位整周模糊度间整数线性关系,对整周模糊度备选值进行约束和确定。根据大气误差的空间相关性,采用以卫星高度角和方位角为依据的基准卫星选择方法,降低了对流层延迟误差残差对多频载波相位整周模糊度之间线性关系约束能力的影响。试验结果表明,本文方法能够实现参考站三频载波相位整周模糊度的单历元准确确定,且计算效率高,算法简单。  相似文献   

12.
基于几何无关(geometry-free,GF)和电离层无关(ionosphere-free,IF)的三频原始载波线性组合观测量,由于消除了一阶电离层延迟项以及同卫星与测站间几何距离相关误差项的影响,可有效应用于中长基线模糊度解算。对适用于北斗卫星导航系统(BDS)中长基线模糊度解算的GF和IF线性组合观测量进行了研究和优化,通过对载波观测量与伪距观测量组合,得到噪声最小且基于GF和IF的宽巷组合观测量,然后将模糊度得到固定的两个载波组合观测量与原始载波观测量进行最优线性组合,得到具有最低噪声的基于GF和IF的窄巷组合观测量。该方法充分利用了所有载波及伪距观测量信息,并根据其噪声水平进行了加权优化,公式推导具有普遍性和代表性。通过三频实测基线数据进行了论证分析。结果表明,经过一段时间的平滑之后,宽巷和窄巷模糊度浮点解的偏差能收敛到0.5周以内,从而实现模糊度的快速准确固定。  相似文献   

13.
All BeiDou navigation satellite system (BDS) satellites are transmitting signals on three frequencies, which brings new opportunity and challenges for high-accuracy precise point positioning (PPP) with ambiguity resolution (AR). This paper proposes an effective uncalibrated phase delay (UPD) estimation and AR strategy which is based on a raw PPP model. First, triple-frequency raw PPP models are developed. The observation model and stochastic model are designed and extended to accommodate the third frequency. Then, the UPD is parameterized in raw frequency form while estimating with the high-precision and low-noise integer linear combination of float ambiguity which are derived by ambiguity decorrelation. Third, with UPD corrected, the LAMBDA method is used for resolving full or partial ambiguities which can be fixed. This method can be easily and flexibly extended for dual-, triple- or even more frequency. To verify the effectiveness and performance of triple-frequency PPP AR, tests with real BDS data from 90 stations lasting for 21 days were performed in static mode. Data were processed with three strategies: BDS triple-frequency ambiguity-float PPP, BDS triple-frequency PPP with dual-frequency (B1/B2) and three-frequency AR, respectively. Numerous experiment results showed that compared with the ambiguity-float solution, the performance in terms of convergence time and positioning biases can be significantly improved by AR. Among three groups of solutions, the triple-frequency PPP AR achieved the best performance. Compared with dual-frequency AR, additional the third frequency could apparently improve the position estimations during the initialization phase and under constraint environments when the dual-frequency PPP AR is limited by few satellite numbers.  相似文献   

14.
Recent research has demonstrated that the undifferenced integer ambiguities can be recovered using products from a network solution. The standard dual-frequency PPP integer ambiguity resolution consists of two aspects: Hatch-Melbourne-Wübbena wide-lane (WL) and ionosphere-free narrow-lane (NL) integer ambiguity resolution. A major issue affecting the performance of dual-frequency PPP applications is the time it takes to fix these two types of integer ambiguities, especially if the WL integer ambiguity resolution suffers from the noisy pseudorange measurements and strong multipath effects. With modernized Global Navigation Satellite Systems, triple-frequency measurements will be available to global users and an extra WL (EWL) model with very long wavelength can be formulated. Then, the easily resolved EWL integer ambiguities can be used to construct linear combinations to accelerate the PPP WL integer ambiguity resolution. Therefore, we propose a new reliable procedure for the modeling and quality control of triple-frequency PPP WL and NL integer ambiguity resolution. First, we analyze a WL integer ambiguity resolution model based on triple-frequency measurements. Then, an optimal pseudorange linear combination which is ionosphere-free and has minimum measurement noise is developed and used as constraint in the WL and the NL integer ambiguity resolution. Based on simulations, we have investigated the inefficiency of dual-frequency WL integer ambiguity resolution and the performance of EWL integer ambiguity resolution. Using almanacs of GPS, Galileo and BeiDou, the performances of the proposed triple-frequency WL and NL models have been evaluated in terms of success rate. Comparing with dual-frequency PPP, numerical results indicate that the proposed triple-frequency models can outperform the dual-frequency PPP WL and NL integer ambiguity resolution. With 1 s sampling rate, generally, only several minutes of data are required for reliable triple-frequency PPP WL and NL integer ambiguity resolution. Under benign observation situations and good geometries, the integer ambiguity can be reliably resolved even within 10 s.  相似文献   

15.
针对北斗三号新的三频观测值,通过分析BDS-3三频线性组合观测值特性,选取高质量组合观测值,采用无几何相关GF(Geometry-Free)模型和无几何无电离层相关GIF(Geometry-Ionospheric-Free)模型分别对实测BDS-3卫星数据进行单历元三频相位模糊度解算TCAR(Triple-frequency Carrier Ambiguity Resolution)。试验结果表明,短基线时GF模型模糊度误差都在0.5周以内,且模糊度固定成功率都在88.43%以上;中长基线时GF模型模糊度固定能力明显降低,宽巷下降到73.47%,窄巷也只有25.44%。GIF模型在中长基线解算时相比于GF模型具有更好的模糊度固定能力。中长基线GIF模型宽巷模糊度固定成功率达85.31%,相对于GF模型提高了13%。中长基线GIF模型窄巷模糊度固定成功率在43.58%以上,相对于GF模型提高了51%。  相似文献   

16.
This paper presents a general modeling strategy for ambiguity resolution (AR) and position estimation (PE) using three or more phase-based ranging signals from a global navigation satellite system (GNSS). The proposed strategy will identify three best “virtual” signals to allow for more reliable AR under certain observational conditions characterized by ionospheric and tropospheric delay variability, level of phase noise and orbit accuracy. The selected virtual signals suffer from minimal or relatively low ionospheric effects, and thus are known as ionosphere-reduced virtual signals. As a result, the ionospheric parameters in the geometry-based observational models can be eliminated for long baselines, typically those of length tens to hundreds of kilometres. The proposed modeling comprises three major steps. Step 1 is the geometry-free determination of the extra-widelane (EWL) formed between the two closest L-band carrier measurements, directly from the two corresponding code measurements. Step 2 forms the second EWL signal and resolves the integer ambiguity with a geometry-based estimator alone or together with the first EWL. This is followed by a procedure to correct for the first-order ionospheric delay using the two ambiguity-fixed widelane (WL) signals derived from the integer-fixed EWL signals. Step 3 finds an independent narrow-lane (NL) signal, which is used together with a refined WL to resolve NL ambiguity with geometry-based integer estimation and search algorithms. As a result, the above two AR processes performed with WL/NL and EWL/WL signals respectively, either in sequence or in parallel, can support real time kinematic (RTK) positioning over baselines of tens to hundreds of kilometres, thus enabling centimetre-to-decimentre positioning at the local, regional and even global scales in the future.  相似文献   

17.
利用北斗三频超宽巷模糊度波长较长易于固定的优势,提出一种基于北斗三频的BDS/GPS宽巷模糊度逐级单历元固定方法。首先利用载波和伪距组合固定BDS(0,-1,1)和(1,4,-5)两个超宽巷模糊度,根据固定后的超宽巷模糊度变换得到BDS宽巷模糊度(1,-1,0),然后将BDS宽巷模糊度作为约束条件与GPS宽巷观测方程联立得到GPS宽巷模糊度浮点解和其方差协方差阵,最后采用LAMBDA算法实现GPS宽巷模糊度的固定。实验结果表明,BDS超宽巷组合可实现100%固定,采用BDS约束GPS宽巷模糊度固定时ratio值均大于2,大于5的占97.8%以上,因此文中提出的方法可实现BDS/GPS双系统宽巷模糊度单历元固定,有效提升GNSS模糊度解算的时效性。  相似文献   

18.
We investigate triple-frequency ambiguity resolution performance using real BeiDou data. We test four ambiguity resolution (AR) methods which are applicable to triple-frequency observations. These are least squares ambiguity decorrelation adjustment (LAMBDA), GF-TCAR (geometry-free three-carrier ambiguity resolution), GB-TCAR (geometry-based three-carrier ambiguity resolution) and GIF-TCAR (three-carrier ambiguity resolution based on the geometry-free and ionospheric-free combination). A comparison between LAMBDA, GF-TCAR and GB-TCAR was conducted over three short baselines and two medium baselines. The results indicated that LAMBDA is optimal in both short baseline and medium baseline cases. However, the performances of GB-TCAR and LAMBDA differ slightly for short baselines. Compared with GF-TCAR, which uses the geometry-free model, the GB-TCAR using the geometry-based model improves the AR performance significantly. Compared with dual-frequency observations, the LAMBDA AR results show a significant improvement when using triple-frequency observations over short baselines. The performance of GIF-TCAR is evaluated using multi-epoch observations. The results indicated that multi-path errors on carrier phases will have a significant influence on GIF-TCAR AR results, which leads to different GIF-TCAR AR performance for different type of satellites. For GEO (Geostationary Orbit) satellites, the ambiguities can barely be correctly fixed because the multi-path errors on carrier phases are very systematic. For IGSO (Inclined Geosynchronous Orbit) and MEO (Medium Earth Orbit) satellites, when the elevation cutoff angle is set as 30°, several tens to several hundreds of epochs are needed for correctly fixing the narrow lane ambiguities. The comparison of positioning performance between dual-frequency observations and triple-frequency observations was also conducted. The results indicated that a minor improvement can be achieved by using triple-frequency observations compared with using dual-frequency observations.  相似文献   

19.
As the Chinese BeiDou Navigation Satellite System (BDS) has become operational in the Asia-Pacific region, it is important to better understand and demonstrate the benefits of combining triple-frequency BDS with dual-frequency GPS observations for network-based real-time kinematic (NRTK) services. Undifferenced NRTK is a new NRTK service mode, it extends the concept of NRTK by not requiring reference station and specified reference satellite at the rover processing. In order to realize the undifferenced NRTK service, a strategy for real-time modeling the undifferenced (UD) augmentation information is given, in which the fixed double-differenced ambiguities are transformed into UD ones with the help of datum settings. Since this strategy is insensitive to existing ephemeris products, it is applicable to the services of current BDS regional reference networks. Furthermore, a processing scheme for ambiguity resolution (AR) with arbitrary-frequency observations is also presented in detail. An instantaneous and reliable BDS + GPS positioning service can be provided to the rovers in undifferenced NRTK processing mode. With the data collected at 31 stations from a continuously operating reference station network in Guangdong Province (GDCORS) of China, the efficiency of the proposed approaches using combined BDS and GPS observations is confirmed. For three rover stations during days 327–329, a total of 12,960 1-min tests were performed separately to demonstrate the performance of AR. Thanks to the dynamically refined priori information of residual tropospheric and ionospheric error, and the availability of more satellites and observations, the AR fixing rates of combined BDS and GPS systems improve by 13 to 65%, compared with those of the GPS-only system using the traditional WL-L1-IF scheme. The positioning accuracy has also significantly improved.  相似文献   

20.
利用北斗三频模糊度易固定的特点,提出一种具有北斗三频约束的BDS/GPS基础模糊度快速解算方法。针对中长基线,利用多历元平滑无电离层组合模糊度,从无电离层组合模糊度中分离出北斗基础模糊度;然后将北斗基础模糊度带入基线解算模型中,约束求解出GPS基础模糊度,最后将GPS与BDS基础模糊度回带观测方程,可实现基线的快速解算。经北斗实测数据验证表明,文中方法可快速固定GPS基础模糊度,较传统卡尔曼滤波求解模糊度方法,大大减少正确固定模糊度所需的原始观测历元数,实现基线的快速解算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号