首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Error analysis of the NGS’ surface gravity database   总被引:1,自引:1,他引:0  
Are the National Geodetic Survey’s surface gravity data sufficient for supporting the computation of a 1 cm-accurate geoid? This paper attempts to answer this question by deriving a few measures of accuracy for this data and estimating their effects on the US geoid. We use a data set which comprises ${\sim }1.4$ million gravity observations collected in 1,489 surveys. Comparisons to GRACE-derived gravity and geoid are made to estimate the long-wavelength errors. Crossover analysis and $K$ -nearest neighbor predictions are used for estimating local gravity biases and high-frequency gravity errors, and the corresponding geoid biases and high-frequency geoid errors are evaluated. Results indicate that 244 of all 1,489 surface gravity surveys have significant biases ${>}2$  mGal, with geoid implications that reach 20 cm. Some of the biased surveys are large enough in horizontal extent to be reliably corrected by satellite-derived gravity models, but many others are not. In addition, the results suggest that the data are contaminated by high-frequency errors with an RMS of ${\sim }2.2$  mGal. This causes high-frequency geoid errors of a few centimeters in and to the west of the Rocky Mountains and in the Appalachians and a few millimeters or less everywhere else. Finally, long-wavelength ( ${>}3^{\circ }$ ) surface gravity errors on the sub-mGal level but with large horizontal extent are found. All of the south and southeast of the USA is biased by +0.3 to +0.8 mGal and the Rocky Mountains by $-0.1$ to $-0.3$  mGal. These small but extensive gravity errors lead to long-wavelength geoid errors that reach 60 cm in the interior of the USA.  相似文献   

2.
Well credited and widely used ionospheric models, such as the International Reference Ionosphere or NeQuick, describe the variation of the electron density with height by means of a piecewise profile tied to the F2-peak parameters: the electron density, $N_m \mathrm{F2}$ N m F 2 , and the height, $h_m \mathrm{F2}$ h m F 2 . Accurate values of these parameters are crucial for retrieving reliable electron density estimations from those models. When direct measurements of these parameters are not available, the models compute the parameters using the so-called ITU-R database, which was established in the early 1960s. This paper presents a technique aimed at routinely updating the ITU-R database using radio occultation electron density profiles derived from GPS measurements gathered from low Earth orbit satellites. Before being used, these radio occultation profiles are validated by fitting to them an electron density model. A re-weighted Least Squares algorithm is used for down-weighting unreliable measurements (occasionally, entire profiles) and to retrieve $N_m \mathrm{F2}$ N m F 2 and $h_m \mathrm{F2}$ h m F 2 values—together with their error estimates—from the profiles. These values are used to monthly update the database, which consists of two sets of ITU-R-like coefficients that could easily be implemented in the IRI or NeQuick models. The technique was tested with radio occultation electron density profiles that are delivered to the community by the COSMIC/FORMOSAT-3 mission team. Tests were performed for solstices and equinoxes seasons in high and low-solar activity conditions. The global mean error of the resulting maps—estimated by the Least Squares technique—is between $0.5\times 10^{10}$ 0.5 × 10 10 and $3.6\times 10^{10}$ 3.6 × 10 10 elec/m $^{-3}$ ? 3 for the F2-peak electron density (which is equivalent to 7 % of the value of the estimated parameter) and from 2.0 to 5.6 km for the height ( $\sim $ 2 %).  相似文献   

3.
A terrestrial survey, called the Geoid Slope Validation Survey of 2011 (GSVS11), encompassing leveling, GPS, astrogeodetic deflections of the vertical (DOV) and surface gravity was performed in the United States. The general purpose of that survey was to evaluate the current accuracy of gravimetric geoid models, and also to determine the impact of introducing new airborne gravity data from the ‘Gravity for the Redefinition of the American Vertical Datum’ (GRAV-D) project. More specifically, the GSVS11 survey was performed to determine whether or not the GRAV-D airborne gravimetry, flown at 11 km altitude, can reduce differential geoid error to below 1 cm in a low, flat gravimetrically uncomplicated region. GSVS11 comprises a 325 km traverse from Austin to Rockport in Southern Texas, and includes 218 GPS stations ( $\sigma _{\Delta h }= 0.4$ cm over any distance from 0.4 to 325 km) co-located with first-order spirit leveled orthometric heights ( $\sigma _{\Delta H }= 1.3$ cm end-to-end), including new surface gravimetry, and 216 astronomically determined vertical deflections $(\sigma _{\mathrm{DOV}}= 0.1^{\prime \prime })$ . The terrestrial survey data were compared in various ways to specific geoid models, including analysis of RMS residuals between all pairs of points on the line, direct comparison of DOVs to geoid slopes, and a harmonic analysis of the differences between the terrestrial data and various geoid models. These comparisons of the terrestrial survey data with specific geoid models showed conclusively that, in this type of region (low, flat) the geoid models computed using existing terrestrial gravity, combined with digital elevation models (DEMs) and GRACE and GOCE data, differential geoid accuracy of 1 to 3 cm (1 $\sigma )$ over distances from 0.4 to 325 km were currently being achieved. However, the addition of a contemporaneous airborne gravity data set, flown at 11 km altitude, brought the estimated differential geoid accuracy down to 1 cm over nearly all distances from 0.4 to 325 km.  相似文献   

4.
We develop a slope correction model to improve the accuracy of mean sea surface topography models as well as marine gravity models. The correction is greatest above ocean trenches and large seamounts where the slope of the geoid exceeds 100  \(\upmu \) rad. In extreme cases, the correction to the mean sea surface height is 40 mm and the correction to the along-track altimeter slope is 1–2  \(\upmu \) rad which maps into a 1–2 mGal gravity error. Both corrections are easily applied using existing grids of sea surface slope from satellite altimetry.  相似文献   

5.
We show that the current levels of accuracy being achieved for the precise orbit determination (POD) of low-Earth orbiters demonstrate the need for the self-consistent treatment of tidal variations in the geocenter. Our study uses as an example the POD of the OSTM/Jason-2 satellite altimeter mission based upon Global Positioning System (GPS) tracking data. Current GPS-based POD solutions are demonstrating root-mean-square (RMS) radial orbit accuracy and precision of \({<}1\)  cm and 1 mm, respectively. Meanwhile, we show that the RMS of three-dimensional tidal geocenter variations is \({<}6\)  mm, but can be as large as 15 mm, with the largest component along the Earth’s spin axis. Our results demonstrate that GPS-based POD of Earth orbiters is best performed using GPS satellite orbit positions that are defined in a reference frame whose origin is at the center of mass of the entire Earth system, including the ocean tides. Errors in the GPS-based POD solutions for OSTM/Jason-2 of \({<}4\)  mm (3D RMS) and \({<}2\)  mm (radial RMS) are introduced when tidal geocenter variations are not treated consistently. Nevertheless, inconsistent treatment is measurable in the OSTM/Jason-2 POD solutions and manifests through degraded post-fit tracking data residuals, orbit precision, and relative orbit accuracy. For the latter metric, sea surface height crossover variance is higher by \(6~\hbox {mm}^{2}\) when tidal geocenter variations are treated inconsistently.  相似文献   

6.
In March 2013, the fourth generation of European Space Agency’s (ESA) global gravity field models, DIR4 (Bruinsma et al. in Proceedings of the ESA living planet symposium, 28 June–2 July, Bergen, ESA, Publication SP-686, 2010b) and TIM4 (Migliaccio et al. in Proceedings of the ESA living planet symposium, 28 June–2 July, Bergen, ESA, Publication SP-686, 2010), generated from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) gravity observation satellite was released. We evaluate the models using an independent ground truth data set of gravity anomalies over Australia. Combined with Gravity Recovery and Climate Experiment (GRACE) satellite gravity, a new gravity model is obtained that is used to perform comparisons with GOCE models in spherical harmonics. Over Australia, the new gravity model proves to have significantly higher accuracy in the degrees below 120 as compared to EGM2008 and seems to be at least comparable to the accuracy of this model between degree 150 and degree 260. Comparisons in terms of residual quasi-geoid heights, gravity disturbances, and radial gravity gradients evaluated on the ellipsoid and at approximate GOCE mean satellite altitude ( $h=250$  km) show both fourth generation models to improve significantly w.r.t. their predecessors. Relatively, we find a root-mean-square improvement of 39 % for the DIR4 and 23 % for TIM4 over the respective third release models at a spatial scale of 100 km (degree 200). In terms of absolute errors, TIM4 is found to perform slightly better in the bands from degree 120 up to degree 160 and DIR4 is found to perform slightly better than TIM4 from degree 170 up to degree 250. Our analyses cannot confirm the DIR4 formal error of 1 cm geoid height (0.35 mGal in terms of gravity) at degree 200. The formal errors of TIM4, with 3.2 cm geoid height (0.9 mGal in terms of gravity) at degree 200, seem to be realistic. Due to combination with GRACE and SLR data, the DIR models, at satellite altitude, clearly show lower RMS values compared to TIM models in the long wavelength part of the spectrum (below degree and order 120). Our study shows different spectral sensitivity of different functionals at ground level and at GOCE satellite altitude and establishes the link among these findings and the Meissl scheme (Rummel and van Gelderen in Manusrcipta Geodaetica 20:379–385, 1995).  相似文献   

7.
We can map zenith wet delays onto precipitable water with a conversion factor, but in order to calculate the exact conversion factor, we must precisely calculate its key variable $T_\mathrm{m}$ . Yao et al. (J Geod 86:1125–1135, 2012. doi:10.1007/s00190-012-0568-1) established the first generation of global $T_\mathrm{m}$ model (GTm-I) with ground-based radiosonde data, but due to the lack of radiosonde data at sea, the model appears to be abnormal in some areas. Given that sea surface temperature varies less than that on land, and the GPT model and the Bevis $T_\mathrm{m}$ $T_\mathrm{s}$ relationship are accurate enough to describe the surface temperature and $T_\mathrm{m}$ , this paper capitalizes on the GPT model and the Bevis $T_\mathrm{m}$ $T_\mathrm{s}$ relationship to provide simulated $T_\mathrm{m}$ at sea, as a compensation for the lack of data. Combined with the $T_\mathrm{m}$ from radiosonde data, we recalculated the GTm model coefficients. The results show that this method not only improves the accuracy of the GTm model significantly at sea but also improves that on land, making the GTm model more stable and practically applicable.  相似文献   

8.
We present new insights on the time-averaged surface velocities, convergence and extension rates along arc-normal transects in Kumaon, Garhwal and Kashmir–Himachal regions in the Indian Himalaya from 13 years of high-precision Global Positioning System (GPS) time series (1995–2008) derived from GPS data at 14 GPS permanent and 42 campaign stations between $29.5{-}35^{\circ }\hbox {N}$ and $76{-}81^{\circ }\hbox {E}$ . The GPS surface horizontal velocities vary significantly from the Higher to Lesser Himalaya and are of the order of 30 to 48 mm/year NE in ITRF 2005 reference frame, and 17 to 2 mm/year SW in an India fixed reference frame indicating that this region is accommodating less than 2 cm/year of the India–Eurasia plate motion ( ${\sim }4~\hbox {cm/year}$ ). The total arc-normal shortening varies between ${\sim }10{-}14~\hbox {mm/year}$ along the different transects of the northwest Himalayan wedge, between the Indo-Tsangpo suture to the north and the Indo-Gangetic foreland to the south indicating high strain accumulation in the Himalayan wedge. This convergence is being accommodated differentially along the arc-normal transects; ${\sim } 5{-}10~\hbox {mm/year}$ in Lesser Himalaya and 3–4 mm/year in Higher Himalaya south of South Tibetan Detachment. Most of the convergence in the Lesser Himalaya of Garhwal and Kumaon is being accommodated just south of the Main Central Thrust fault trace, indicating high strain accumulation in this region which is also consistent with the high seismic activity in this region. In addition, for the first time an arc-normal extension of ${\sim }6~\hbox {mm/year}$ has also been observed in the Tethyan Himalaya of Kumaon. Inverse modeling of GPS-derived surface deformation rates in Garhwal and Kumaon Himalaya using a single dislocation indicate that the Main Himalayan Thrust is locked from the surface to a depth of ${\sim }15{-}20~\hbox {km}$ over a width of 110 km with associated slip rate of ${\sim }16{-}18~\hbox {mm/year}$ . These results indicate that the arc-normal rates in the Northwest Himalaya have a complex deformation pattern involving both convergence and extension, and rigorous seismo-tectonic models in the Himalaya are necessary to account for this pattern. In addition, the results also gave an estimate of co-seismic and post-seismic motion associated with the 1999 Chamoli earthquake, which is modeled to derive the slip and geometry of the rupture plane.  相似文献   

9.
This paper evaluates the sensitivity of ITRF2008-based satellite laser ranging (SLR) station positions estimated weekly using LAGEOS-1/2 data from 1993 to 2012 to non-tidal time-varying gravity (TVG). Two primary methods for modeling TVG from degree-2 are employed. The operational approach applies an annual GRACE-derived field, and IERS recommended linear rates for five coefficients. The experimental approach uses low-order/degree $4\times 4$ coefficients estimated weekly from SLR and DORIS processing of up to 11 satellites (tvg4x4). This study shows that the LAGEOS-1/2 orbits and the weekly station solutions are sensitive to more detailed modeling of TVG than prescribed in the current IERS standards. Over 1993–2012 tvg4x4 improves SLR residuals by 18 % and shows 10 % RMS improvement in station stability. Tests suggest that the improved stability of the tvg4x4 POD solution frame may help clarify geophysical signals present in the estimated station position time series. The signals include linear and seasonal station motion, and motion of the TRF origin, particularly in Z. The effect on both POD and the station solutions becomes increasingly evident starting in 2006. Over 2008–2012, the tvg4x4 series improves SLR residuals by 29 %. Use of the GRGS RL02 $50\times 50$ series shows similar improvement in POD. Using tvg4x4, secular changes in the TRF origin Z component double over the last decade and although not conclusive, it is consistent with increased geocenter rate expected due to continental ice melt. The test results indicate that accurate modeling of TVG is necessary for improvement of station position estimation using SLR data.  相似文献   

10.
Non-linear station motions in epoch and multi-year reference frames   总被引:5,自引:5,他引:0  
In the conventions of the International Earth Rotation and Reference Systems Service (e.g. IERS Conventions 2010), it is recommended that the instantaneous station position, which is fixed to the Earth’s crust, is described by a regularized station position and conventional correction models. Current realizations of the International Terrestrial Reference Frame use a station position at a reference epoch and a constant velocity to describe the motion of the regularized station position in time. An advantage of this parameterization is the possibility to provide station coordinates of high accuracy over a long time span. Various publications have shown that residual non-linear station motions can reach a magnitude of a few centimeters due to not considered loading effects. Consistently estimated parameters like the Earth Orientation Parameters (EOP) may be affected if these non-linear station motions are neglected. In this paper, we investigate a new approach, which is based on a frequent (e.g. weekly) estimation of station positions and EOP from a combination of epoch normal equations of the space geodetic techniques Global Positioning System (GPS), Satellite Laser Ranging (SLR) and Very Long Baseline Interferometry (VLBI). The resulting time series of epoch reference frames are studied in detail and are compared with the conventional secular approach. It is shown that both approaches have specific advantages and disadvantages, which are discussed in the paper. A major advantage of the frequently estimated epoch reference frames is that the non-linear station motions are implicitly taken into account, which is a major limiting factor for the accuracy of the secular frames. Various test computations and comparisons between the epoch and secular approach are performed. The authors found that the consistently estimated EOP are systematically affected by the two different combination approaches. The differences between the epoch and secular frames reach magnitudes of $23.6~\upmu \hbox {as}$ (0.73 mm) and $39.8~\upmu \hbox {as}$ (1.23 mm) for the x-pole and y-pole, respectively, in case of the combined solutions. For the SLR-only solutions, significant differences with amplitudes of $77.3~\upmu \hbox {as}$ (2.39 mm) can be found.  相似文献   

11.
Earth orientation parameters estimated from VLBI during the CONT11 campaign   总被引:1,自引:1,他引:0  
In this paper we investigate the accuracy of the earth orientation parameters (EOP) estimated from the continuous VLBI campaign CONT11. We first estimated EOP with daily resolution and compared these to EOP estimated from GNSS data. We find that the WRMS differences are about 31  $\upmu $ as for polar motion and 7  $\upmu $ s for length of day. This is about the precision we could expect, based on Monte Carlo simulations and the results of the previous CONT campaigns. We also estimated EOP with hourly resolution to study the sub-diurnal variations. The results confirm the results of previous studies, showing that the current IERS model for high-frequency EOP variations does not explain all the sub-diurnal variations seen in the estimated time series. We then compared our results to various empirical high-frequency EOP models. However, we did not find that any of these gave any unambiguous improvement. Several simulations testing the impact of various aspects of, e.g. the observing network were also made. For example, we made simulations assuming that all CONT11 stations were equipped with fast VLBI2010 antennas. We found that the WRMS error decreased by about a factor five compared to the current VLBI system. Furthermore, the simulations showed that it is very important to have a homogenous global distribution of the stations for achieving the highest precision for the EOP.  相似文献   

12.
M-estimation with probabilistic models of geodetic observations   总被引:1,自引:1,他引:0  
The paper concerns \(M\) -estimation with probabilistic models of geodetic observations that is called \(M_{\mathcal {P}}\) estimation. The special attention is paid to \(M_{\mathcal {P}}\) estimation that includes the asymmetry and the excess kurtosis, which are basic anomalies of empiric distributions of errors of geodetic or astrometric observations (in comparison to the Gaussian errors). It is assumed that the influence function of \(M_{\mathcal {P}}\) estimation is equal to the differential equation that defines the system of the Pearson distributions. The central moments \(\mu _{k},\, k=2,3,4\) , are the parameters of that system and thus, they are also the parameters of the chosen influence function. The \(M_{\mathcal {P}}\) estimation that includes the Pearson type IV and VII distributions ( \(M_{\mathrm{PD(l)}}\) method) is analyzed in great detail from a theoretical point of view as well as by applying numerical tests. The chosen distributions are leptokurtic with asymmetry which refers to the general characteristic of empirical distributions. Considering \(M\) -estimation with probabilistic models, the Gram–Charlier series are also applied to approximate the models in question ( \(M_{\mathrm{G-C}}\) method). The paper shows that \(M_{\mathcal {P}}\) estimation with the application of probabilistic models belongs to the class of robust estimations; \(M_{\mathrm{PD(l)}}\) method is especially effective in that case. It is suggested that even in the absence of significant anomalies the method in question should be regarded as robust against gross errors while its robustness is controlled by the pseudo-kurtosis.  相似文献   

13.
Fast error analysis of continuous GNSS observations with missing data   总被引:3,自引:0,他引:3  
One of the most widely used method for the time-series analysis of continuous Global Navigation Satellite System (GNSS) observations is Maximum Likelihood Estimation (MLE) which in most implementations requires $\mathcal{O }(n^3)$ operations for $n$ observations. Previous research by the authors has shown that this amount of operations can be reduced to $\mathcal{O }(n^2)$ for observations without missing data. In the current research we present a reformulation of the equations that preserves this low amount of operations, even in the common situation of having some missing data.Our reformulation assumes that the noise is stationary to ensure a Toeplitz covariance matrix. However, most GNSS time-series exhibit power-law noise which is weakly non-stationary. To overcome this problem, we present a Toeplitz covariance matrix that provides an approximation for power-law noise that is accurate for most GNSS time-series.Numerical results are given for a set of synthetic data and a set of International GNSS Service (IGS) stations, demonstrating a reduction in computation time of a factor of 10–100 compared to the standard MLE method, depending on the length of the time-series and the amount of missing data.  相似文献   

14.
Homogeneous reprocessing of GPS,GLONASS and SLR observations   总被引:3,自引:2,他引:1  
The International GNSS Service (IGS) provides operational products for the GPS and GLONASS constellation. Homogeneously processed time series of parameters from the IGS are only available for GPS. Reprocessed GLONASS series are provided only by individual Analysis Centers (i. e. CODE and ESA), making it difficult to fully include the GLONASS system into a rigorous GNSS analysis. In view of the increasing number of active GLONASS satellites and a steadily growing number of GPS+GLONASS-tracking stations available over the past few years, Technische Universität Dresden, Technische Universität München, Universität Bern and Eidgenössische Technische Hochschule Zürich performed a combined reprocessing of GPS and GLONASS observations. Also, SLR observations to GPS and GLONASS are included in this reprocessing effort. Here, we show only SLR results from a GNSS orbit validation. In total, 18 years of data (1994–2011) have been processed from altogether 340 GNSS and 70 SLR stations. The use of GLONASS observations in addition to GPS has no impact on the estimated linear terrestrial reference frame parameters. However, daily station positions show an RMS reduction of 0.3 mm on average for the height component when additional GLONASS observations can be used for the time series determination. Analyzing satellite orbit overlaps, the rigorous combination of GPS and GLONASS neither improves nor degrades the GPS orbit precision. For GLONASS, however, the quality of the microwave-derived GLONASS orbits improves due to the combination. These findings are confirmed using independent SLR observations for a GNSS orbit validation. In comparison to previous studies, mean SLR biases for satellites GPS-35 and GPS-36 could be reduced in magnitude from \(-35\) and \(-38\)  mm to \(-12\) and \(-13\)  mm, respectively. Our results show that remaining SLR biases depend on the satellite type and the use of coated or uncoated retro-reflectors. For Earth rotation parameters, the increasing number of GLONASS satellites and tracking stations over the past few years leads to differences between GPS-only and GPS+GLONASS combined solutions which are most pronounced in the pole rate estimates with maximum 0.2 mas/day in magnitude. At the same time, the difference between GLONASS-only and combined solutions decreases. Derived GNSS orbits are used to estimate combined GPS+GLONASS satellite clocks, with first results presented in this paper. Phase observation residuals from a precise point positioning are at the level of 2 mm and particularly reveal poorly modeled yaw maneuver periods.  相似文献   

15.
Comparison of GOCE-GPS gravity fields derived by different approaches   总被引:2,自引:1,他引:1  
Several techniques have been proposed to exploit GNSS-derived kinematic orbit information for the determination of long-wavelength gravity field features. These methods include the (i) celestial mechanics approach, (ii) short-arc approach, (iii) point-wise acceleration approach, (iv) averaged acceleration approach, and (v) energy balance approach. Although there is a general consensus that—except for energy balance—these methods theoretically provide equivalent results, real data gravity field solutions from kinematic orbit analysis have never been evaluated against each other within a consistent data processing environment. This contribution strives to close this gap. Target consistency criteria for our study are the input data sets, period of investigation, spherical harmonic resolution, a priori gravity field information, etc. We compare GOCE gravity field estimates based on the aforementioned approaches as computed at the Graz University of Technology, the University of Bern, the University of Stuttgart/Austrian Academy of Sciences, and by RHEA Systems for the European Space Agency. The involved research groups complied with most of the consistency criterions. Deviations only occur where technical unfeasibility exists. Performance measures include formal errors, differences with respect to a state-of-the-art GRACE gravity field, (cumulative) geoid height differences, and SLR residuals from precise orbit determination of geodetic satellites. We found that for the approaches (i) to (iv), the cumulative geoid height differences at spherical harmonic degree 100 differ by only \({\approx }10~\%\) ; in the absence of the polar data gap, SLR residuals agree by \({\approx }96~\%\) . From our investigations, we conclude that real data analysis results are in agreement with the theoretical considerations concerning the (relative) performance of the different approaches.  相似文献   

16.
Deformations of radio telescopes used in geodetic and astrometric very long baseline interferometry (VLBI) observations belong to the class of systematic error sources which require correction in data analysis. In this paper we present a model for all path length variations in the geometrical optics of radio telescopes which are due to gravitational deformation. The Effelsberg 100 m radio telescope of the Max Planck Institute for Radio Astronomy, Bonn, Germany, has been surveyed by various terrestrial methods. Thus, all necessary information that is needed to model the path length variations is available. Additionally, a ray tracing program has been developed which uses as input the parameters of the measured deformations to produce an independent check of the theoretical model. In this program as well as in the theoretical model, the illumination function plays an important role because it serves as the weighting function for the individual path lengths depending on the distance from the optical axis. For the Effelsberg telescope, the biggest contribution to the total path length variations is the bending of the main beam located along the elevation axis which partly carries the weight of the paraboloid at its vertex. The difference in total path length is almost \(-\) 100 mm when comparing observations at 90 \(^\circ \) and at 0 \(^\circ \) elevation angle. The impact of the path length corrections is validated in a global VLBI analysis. The application of the correction model leads to a change in the vertical position of \(+120\)  mm. This is more than the maximum path length, but the effect can be explained by the shape of the correction function.  相似文献   

17.
Continental hydrology loading observed by VLBI measurements   总被引:1,自引:1,他引:0  
Variations in continental water storage lead to loading deformation of the crust with typical peak-to-peak variations at very long baseline interferometry (VLBI) sites of 3–15 mm in the vertical component and 1–2 mm in the horizontal component. The hydrology signal at VLBI sites has annual and semi-annual components and clear interannual variations. We have calculated the hydrology loading series using mass loading distributions derived from the global land data assimilation system (GLDAS) hydrology model and alternatively from a global grid of equal-area gravity recovery and climate experiment (GRACE) mascons. In the analysis of the two weekly VLBI 24-h R1 and R4 network sessions from 2003 to 2010 the baseline length repeatabilities are reduced in 79 % (80 %) of baselines when GLDAS (GRACE) loading corrections are applied. Site vertical coordinate repeatabilities are reduced in about 80 % of the sites when either GLDAS or GRACE loading is used. In the horizontal components, reduction occurs in 70–80 % of the sites. Estimates of the annual site vertical amplitudes were reduced for 16 out of 18 sites if either loading series was applied. We estimated loading admittance factors for each site and found that the average admittances were 1.01 \(\pm \) 0.05 for GRACE and 1.39 \(\pm \) 0.07 for GLDAS. The standard deviations of the GRACE admittances and GLDAS admittances were 0.31 and 0.68, respectively. For sites that have been observed in a set of sufficiently temporally dense daily sessions, the average correlation between VLBI vertical monthly averaged series and GLDAS or GRACE loading series was 0.47 and 0.43, respectively.  相似文献   

18.
We report on the susceptibility of the Scintrex CG-5 relative gravimeters to tilting, that is the tendency of the instrument of providing incorrect readings after being tilted (even by small angles) for a moderate period of time. Tilting of the instrument can occur when in transit between sites usually on the backseat of a car even using the specially designed transport case. Based on a series of experiments with different instruments, we demonstrate that the readings may be offset by tens of $\upmu $ Gal. In addition, it may take hours before the first reliable readings can be taken, with the actual time depending on how long the instrument had been tilted. This sensitivity to tilt in combination with the long time required for the instrument to provide reliable readings has not yet been reported in the literature and is not addressed adequately in the Scintrex CG-5 user manual. In particular, the inadequate instrument state cannot easily be detected by checking the readings during the observation or by reviewing the final data before leaving a site, precautions suggested by Scintrex Ltd. In regional surveys with car transportation over periods of tens of minutes to hours, the gravity measurements can be degraded by some 10  $\upmu $ Gal. To obtain high-quality results in line with the CG-5 specifications, the gravimeters must remain in upright position to within a few degrees during transits. This requirement may often be unrealistic during field observations, particularly when observing in hilly terrain or when walking with the instrument in a backpack.  相似文献   

19.
Determining how the global mean sea level (GMSL) evolves with time is of primary importance to understand one of the main consequences of global warming and its potential impact on populations living near coasts or in low-lying islands. Five groups are routinely providing satellite altimetry-based estimates of the GMSL over the altimetry era (since late 1992). Because each group developed its own approach to compute the GMSL time series, this leads to some differences in the GMSL interannual variability and linear trend. While over the whole high-precision altimetry time span (1993–2012), good agreement is noticed for the computed GMSL linear trend (of $3.1\pm 0.4$  mm/year), on shorter time spans (e.g., ${<}10~\hbox {years}$ ), trend differences are significantly larger than the 0.4 mm/year uncertainty. Here we investigate the sources of the trend differences, focusing on the averaging methods used to generate the GMSL. For that purpose, we consider outputs from two different groups: the Colorado University (CU) and Archiving, Validation and Interpretation of Satellite Oceanographic Data (AVISO) because associated processing of each group is largely representative of all other groups. For this investigation, we use the high-resolution MERCATOR ocean circulation model with data assimilation (version Glorys2-v1) and compute synthetic sea surface height (SSH) data by interpolating the model grids at the time and location of “true” along-track satellite altimetry measurements, focusing on the Jason-1 operating period (i.e., 2002–2009). These synthetic SSH data are then treated as “real” altimetry measurements, allowing us to test the different averaging methods used by the two processing groups for computing the GMSL: (1) averaging along-track altimetry data (as done by CU) or (2) gridding the along-track data into $2^{\circ }\times 2^{\circ }$ meshes and then geographical averaging of the gridded data (as done by AVISO). We also investigate the effect of considering or not SSH data at shallow depths $({<}120~\hbox {m})$ as well as the editing procedure. We find that the main difference comes from the averaging method with significant differences depending on latitude. In the tropics, the $2^{\circ }\times 2^{\circ }$ gridding method used by AVISO overestimates by 11 % the GMSL trend. At high latitudes (above $60^{\circ }\hbox {N}/\hbox {S}$ ), both methods underestimate the GMSL trend. Our calculation shows that the CU method (along-track averaging) and AVISO gridding process underestimate the trend in high latitudes of the northern hemisphere by 0.9 and 1.2 mm/year, respectively. While we were able to attribute the AVISO trend overestimation in the tropics to grid cells with too few data, the cause of underestimation at high latitudes remains unclear and needs further investigation.  相似文献   

20.
This paper describes the historical sea level data that we have rescued from a tide gauge, especially devised originally for geodesy. This gauge was installed in Marseille in 1884 with the primary objective of defining the origin of the height system in France. Hourly values for 1885–1988 have been digitized from the original tidal charts. They are supplemented by hourly values from an older tide gauge record (1849–1851) that was rediscovered during a survey in 2009. Both recovered data sets have been critically edited for errors and their reliability assessed. The hourly values are thoroughly analysed for the first time after their original recording. A consistent high-frequency time series is reported, increasing notably the length of one of the few European sea level records in the Mediterranean Sea spanning more than one hundred years. Changes in sea levels are examined, and previous results revisited with the extended time series. The rate of relative sea level change for the period 1849–2012 is estimated to have been \(1.08\pm 0.04\)  mm/year at Marseille, a value that is slightly lower but in close agreement with the longest time series of Brest over the common period ( \(1.26\pm 0.04\)  mm/year). The data from a permanent global positioning system station installed on the roof of the solid tide gauge building suggests a remarkable stability of the ground ( \(-0.04\pm 0.25\)  mm/year) since 1998, confirming the choice made by our predecessor geodesists in the nineteenth century regarding this site selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号