首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于指数分析法的西安市土地利用变化及驱动力研究   总被引:1,自引:0,他引:1  
基于2000和2007年2期TM遥感影像,利用指数分析法,分别提取出归一化差异建筑指数(NDBI)、修正归一化差异水体指数(MNDWI)和归一化差异植被指数(NDVI)3种指数模型,分别代表西安市的3种最主要的土地利用类型--建筑用地、水体和植被.采用神经网络分类器进行监督分类,借助ERDAS Imagine 9.0、ENVI、ArcGIS 9.2和Matlab等软件平台,计算出西安市土地利用类型的动态转移矩阵,构建了土地利用变化动态度指数模型,定量分析西安市土地利用的时空变化.依据研究区土地利用变化的结果分析,变化的驱动力因子主要是人口增长、经济增长和政策变动.  相似文献   

2.
本文在分析现有居民地提取方法的基础上,提出将归一化建筑指数(NDBI)、改进归一化差异水体指数(MNDWI)、土壤调节植被指数(SAVI)、比值居民地指数(RRI)相结合进行居民地信息提取的方法。以浙江省宁波市为例,通过光谱采样及各类地物在4种指数上的取值分析,建立模型进行居民地信息提取及精度验证,结果表明:利用该模型可以实现居民地信息的自动提取,能提高居民地与裸地的可分性,减少背景地物的影响,总体精度为91.08%。  相似文献   

3.
Abstract

Waterholes are a key resource that influences wildlife distribution in semi-arid ecosystems. Mapping waterholes can guide intervening decisions for supplementing water resources and managing wildlife distribution patterns. Although remote sensing provides a key to mapping distribution of waterholes, efficiency of existing remotely sensed methods for detecting waterholes have to be evaluated and even new ones developed. In this study, we evaluated performance of the Modified Normalized Difference Water Index (MNDWI) and Superfine Water Index (SWI) at selected optimum thresholds. Kappa results indicated that MNDWI detects waterholes better than SWI. We further validated MNDWI detected waterholes by testing response of waterhole area to temporal rainfall variability and waterhole persistence to spatial rainfall variability. Extent of MNDWI-detected waterholes varied in relation to temporal rainfall variability (p < 0.05). Waterhole persistence was not associated with spatial rainfall variability which could be explained by differences in waterhole types or low spatial rainfall variability.  相似文献   

4.
Abstract

Iraq has suffered severely from drought in recent years and the year 2008 was the driest, particularly in the Iraqi Kurdistan region. This study incorporated Geoinformation technology into mapping the drought that severely affected the Kurdistan region in the years 2007–2008. Geoinformation technology provides support in the theories, methods and techniques for building, and development of Digital Earth aspect. Five vegetation, soil, water, and land surface temperature (LST) indices were applied to two Landsat 7 ETM+ imageries of June 2007 and June 2008, to assess the drought impacts in Erbil governorate Kurdistan during the study period. The indices that were employed in this study were Normalized Difference Vegetation Index, Bare Soil Index, Normalized Differential Water Index, Tasseled Cap Transformation Wetness, and LST. The results revealed a significant decrease in the vegetative cover (56.7%) and a decline in soil/vegetation wetness (29.9%) of the total study area. Likewise, there was a significant reduction in the water bodies surface area in the region such as Dokan Lake, which lost 32.5% of its surface area in comparison with the previous year, 2007. The study results showed that the soil moisture content was the most effective actor on the vegetative cover, LST, and drought status in the study area.  相似文献   

5.
In remote sensing the identification accuracy of mangroves is greatly influenced by terrestrial vegetation. This paper deals with the use of specific vegetation indices for extracting mangrove forests using Earth Observing-1 Hyperion image over a portion of Indian Sundarbans, followed by classification of mangroves into floristic composition classes. Five vegetation indices (three new and two published), namely Mangrove Probability Vegetation Index, Normalized Difference Wetland Vegetation Index, Shortwave Infrared Absorption Index, Normalized Difference Infrared Index and Atmospherically Corrected Vegetation Index were used in decision tree algorithm to develop the mangrove mask. Then, three full-pixel classifiers, namely Minimum Distance, Spectral Angle Mapper and Support Vector Machine (SVM) were evaluated on the data within the mask. SVM performed better than the other two classifiers with an overall precision of 99.08%. The methodology presented here may be applied in different mangrove areas for producing community zonation maps at finer levels.  相似文献   

6.
ABSTRACT

Globally, drought constitutes a serious threat to food and water security. The complexity and multivariate nature of drought challenges its assessment, especially at local scales. The study aimed to assess spatiotemporal patterns of crop condition and drought impact at the spatial scale of field management units with a combined use of time-series from optical (Landsat, MODIS, Sentinel-2) and Synthetic Aperture Radar (SAR) (Sentinel 1) data. Several indicators were derived such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Land Surface Temperature (LST), Tasseled cap indices and Sentinel-1 based backscattering intensity and relative surface moisture. We used logistic regression to evaluate the drought-induced variability of remotely sensed parameters estimated for different phases of crop growth. The parameters with the highest prediction rate were further used to estimate thresholds for drought/non-drought classification. The models were evaluated using the area under the receiver operating characteristic curve and validated with in-situ data. The results revealed that not all remotely sensed variables respond in the same manner to drought conditions. Growing season maximum NDVI and NDMI (70–75%) and SAR derived metrics (60%) reflect specifically the impact of agricultural drought. These metrics also depict stress affected areas with a larger spatial extent. LST was a useful indicator of crop condition especially for maize and sunflower with prediction rates of 86% and 71%, respectively. The developed approach can be further used to assess crop condition and to support decision-making in areas which are more susceptible and vulnerable to drought.  相似文献   

7.
湛青青  王辉源 《东北测绘》2014,(2):62-65,69
以西安市长安区TM影像为例,研究关于城市建筑用地信息快速、准确提取的方法。通过对归一化差异型指数构成原理的分析,选取土壤调节植被指数( SAVI )、归一化水体指数( NDWI )和归一化差异型建筑指数( NDBI )来提取植被、水体和城市建筑用地专题影像,并将其构建为一幅新影像,分析新影像谱间特征,运用逻辑运算将城市建筑用地信息提取出来。本文方法总体提取效果十分有效,尤其是对于面积较大的城市建筑用地,总精度高达85.3%。综合指数法弥补了单靠某一指数提取城市建筑用地信息的不足,提取结果客观可信,是一种不经人为干预、快速有效的提取城市建筑用地的方法。  相似文献   

8.
A forest fire started on August 8th, 2016 in several places on Madeira Island causing damage and casualties. As of August 10th the local media had reported the death of three people, over 200 people injured, over 950 habitants evacuated, and 50 houses damaged. This study presents the preliminary results of the assessment of several spectral indices to evaluate the burn severity of Madeira fires during August 2016. These spectral indices were calculated using the new European satellite Sentinel-2A launched in June 2015. The study confirmed the advantages of several spectral indices such as Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Normalized Burn Ratio (NBR) and Normalized Difference Vegetation Index (NDVIreXn) using red-edge spectral bands to assess the post-fire conditions. Results showed high correlation between NDVI, GNDVI, NBR and NDVIre1n spectral indices and the analysis performed by Copernicus Emergency Management Service (EMSR175), considered as the reference truth. Regarding the red-edge spectral indices, the NDVIre1n (using band B5, 705 nm) presented better results compared with B6 (740 nm) and B7 (783 nm) bands. These preliminary results allow us to assume that Sentinel-2 will be a valuable tool for post-fire monitoring. In the future, the two twin Sentinel-2 satellites will offer global coverage of the Madeira Archipelago every five days, therefore allowing the simultaneous study of the evolution of the burnt area and reforestation information with high spatial (up to 10 m) and temporal resolution (5 days).  相似文献   

9.
Field experiment was conducted in a sandy loam soil of Indian Agricultural Research Institute, New Delhi during the year 2011–13 to see the effect of irrigation, mulch and nitrogen on canopy spectral reflectance indices and their use in predicting the grain and biomass yield of wheat. The canopy reflectances were measured using a hand held ASD FieldSpec Spectroradiometer at booting stage of wheat. Four spectral reflectance indices (SRIs) viz. RNDVI (Red Normalized Difference Vegetation Index), GNDVI (Green Normalized Difference Vegetation Index), SR (Simple Ratio) and WI (Water Index) were computed using the spectral reflectance data. Out of these four indices, RNDVI, GNDVI and SR were significantly and positively related with the grain and biomass yield of wheat whereas WI was significantly and negatively related with the grain and biomass yield of wheat. Calibration with the second year data showed that among the SRIs, WI could account for respectively, 85 % and 86 % variation in grain and biomass yield of wheat with least RMSE (395 kg ha?1 (15 %) for grain yield and 1609 kg ha?1 (20 %) for biomass yield) and highest d index (0.95 for grain yield and 0.91 for biomass yield). Therefore it can be concluded that WI measured at booting stage can be successfully used for prediction of grain and biomass yield of wheat.  相似文献   

10.
多时相MODIS影像水田信息提取研究   总被引:5,自引:0,他引:5  
水稻种植及其分布信息是土地覆被变化、作物估产、甲烷排放、粮食安全和水资源管理分析的重要数据源。基于遥感的水田利用监测中,通常采用时序NDVI植被指数法和影像分类法分别进行AVHRR和TM影像的水田信息获取。针对8天合成MODIS陆地表面反射比数据的特点和水稻生长特征,选取水稻种植前的休耕期、秧苗移植期、秧苗生长期和成熟期等多时相MODIS地表反射率影像数据,通过归一化植被指数、增强植被指数及利用对土壤湿度和植被水分含量较敏感的短波红外波段计算得到的陆表水指数进行水田信息获取。将提取结果与基于ETM+影像的国土资源调查水田数据,通过网格化计算处理并进行对比分析,结果表明,利用MODIS影像的8天合成地表反射率数据,进行区域甚至全国的水田利用监测是可行的。  相似文献   

11.
喜马拉雅山地区冰湖信息的遥感自动化提取   总被引:12,自引:0,他引:12  
在“全域—局部”分步迭代水体信息提取方法的基础上, 通过对水体信息提取指标——水体指数的物理特性的分析实现了算法中全域阈值的自动选择与局部阈值的自适应调整, 并结合DEM 生成的山体坡度和阴影信息,减少局部迭代过程中对其他地表特征与水体信息的误判。在此基础上, 建立一种适合于高山地区冰川湖泊的自动化提取方案。试验采用Landsat 数据对喜马拉雅山地区的冰川湖泊进行信息提取, 结果表明该方法能够快速准确地完 成大区域范围内的冰川湖泊制图, 并能最大程度地消除高山地区湖泊水体识别中冰川和山体阴影的影响。  相似文献   

12.
Vegetation phenology has a great impact on land-atmosphere interactions like carbon cycling, albedo, and water and energy exchanges. To understand and predict these critical land-atmosphere feedbacks, it is crucial to measure and quantify phenological responses to climate variability, and ultimately climate change. Coarse-resolution sensors such as MODIS and AVHRR have been useful to study vegetation phenology from regional to global scales. These sensors are, however, not capable of discerning phenological variation at moderate spatial scales. By offering increased observation density and higher spatial resolution, the combination of Landsat and Sentinel-2 time series might provide the opportunity to overcome this limitation.In this study, we analyzed the potential of combined Sentinel-2 and Landsat time series for estimating start of season (SOS) of broadleaf forests across Germany for the year 2018. We tested two common statistical modeling approaches (logistic and generalized additive models using thin plate splines) and the two most commonly used vegetation indices, the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI).We found strong agreement between SOS estimates from logistic and spline models (rEVI = 0.86; rNDVI = 0.65), whereas agreement was higher for EVI than for NDVI (RMSDEVI = 3.07, RMSDNDVI = 5.26 days). The choice of vegetation index thus had a higher impact on the results than the fitting method. The EVI-based SOS also showed higher correlation with ground observations compared to NDVI (rEVI = 0.51, rNDVI = 0.42). Data density played an important role in estimating land surface phenology. Models combining Sentinel-2A/B, with an average cloud-free observation frequency of 12 days, were largely consistent with the combined Landsat and Sentinel-2 models, suggesting that Sentinel-2A/B may be sufficient to capture SOS for most areas in Germany in 2018. However, in non-overlapping swath areas and mountain areas, observation frequency was significantly lower, underlining the need to combine Landsat and Sentinel-2 for consistent SOS estimates over large areas. Our study demonstrates that estimating SOS of temperate broadleaf forests at medium spatial resolution has become feasible with combined Landsat and Sentinel-2 time series.  相似文献   

13.
This work aims to assess the soil microzonation of Agartala city and its surrounding areas based on spectral geophysical signatures. Different spectral resolutions of Landsat TM have been used for assessing the Normalized Difference Vegetative Index, spatial thermal emission representation and plant water moisture representation. Normalized Difference Vegetative Index (NDVI) was measured from band 4 (near-infrared (NIR)) and band 3 (photosynthetically active radiation (PAR)). The Digital Number (DN) values of thermal infrared band (TIR) were used for measuring spatial variation of thermal representation in the city area. A very simple model was developed for measuring thermal emission representative index from NDVI and automated classified TIR band. Overlaid NDVI and classified TIR shows the spatial distribution of thermal emission representative values. Classified mid-wave infrared band (MWIR) was used for measuring the surface geotherm units (τ) which are related with different types of soil. On the basis of spatial distribution of τ value which is clearly visible in a thermal emission representative map overlaid by classified MWIR, the soil microzonation map of the study area was prepared. This soil microzonation map shows that Agartala and its surrounding areas are characterized by four types of soil which are related to different geomorphic and geological units. The soil of this area is classified as dry sandy soil and sandy clay soil of the highland areas and wet sandy alluvium and clayey alluvium of the flood plain area.  相似文献   

14.
Wetlands are among the most productive ecosystems in the world and any alterations might lead to changes in their bio-physical, socio-economic and climatic conditions. Wetland dynamics as an index of land use change were studied. Satellite remote sensing was utilized to understand the periodic and seasonal dynamics of Samaspur wetlands using Landsat and RESOURCESAT-1 temporal data. Index-based (i.e., Normalized Difference Water Index (NDWI) and Normalized Difference Vegetation Index (NDVI)) classification resulted in meaningful discrimination of wetland classes. Results indicate (i) effective water spread areas have increased to optimum capacity at 1990 due to the influence of Sharda canal, (ii) expansion of the agricultural area has led to reduction of the wetland buffer area, and (iii) increase in vegetation biomass due to pesticide-fertilizer runoff and sedimentation load. We also reiterate (i) free availability of the Landsat satellite data in public domain facilitating such monitoring studies and (ii) availability and utility of SWIR band information in wetland classification exercise. The study concludes that policy-driven measures have both long and short term impacts on land use and its natural wetland ecosystems; and the characterizing the later serves as indictor of the former and perhaps vice versa.  相似文献   

15.
The use of multispectral satellite sensors for generation of hyperspectral indices is restricted because of their coarse spectral resolutions. In this study, we attempted to synthesize a few of these hyperspectral indices, viz. RedEdge Normalized Difference Vegetation Index (NDVI705), Plant Senescence Reflectance Index (PSRI) and Normalized-Difference-Infrared-Index (NDII), for crop stress monitoring at regional scale using multispectral images, simulated from Hyperion data. The Hyperion data were resampled and simulated to corresponding spatial and spectral resolutions of AWiFS, OCM-2 and MODIS sensors using their respective filter function. Different possible combinations of two bands (i.e. simple difference, simple ratio and normalized difference) were computed using synthetic spectral bands of each sensor, and were regressed with NDVI705, PSRI and NDII. Models with highest correlation were selected and inverted on Hyperion data of another date to synthesize respective multispectral indices. Synthetic broad band indices of multispectral sensors with their respective narrow band indices of Hyperion were found to be in good agreement.  相似文献   

16.
Vegetation phenology is commonly studied using time series of multi-spectral vegetation indices derived from satellite imagery. Differences in reflectance among land-cover and/or plant functional types are obscured by sub-pixel mixing, and so phenological analyses have typically sought to maximize the compositional purity of input satellite data by increasing spatial resolution. We present an alternative method to mitigate this ‘mixed-pixel problem’ and extract the phenological behavior of individual land-cover types inferentially, by inverting the linear mixture model traditionally used for sub-pixel land-cover mapping. Parameterized using genetic algorithms, the method takes advantage of the discriminating capacity of calibrated surface reflectance measurements in red, near infrared, and short-wave infrared wavelengths, as well as the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water Index. In simulation, the unmixing procedure reproduced the reflectances and phenological signals of grass, crop, and deciduous forests with high fidelity (RMSE?相似文献   

17.
In this paper, six image-based Relative Radiometric Normalization (RRN) techniques were applied to normalize the bi-temporal Landsat 5 TM data-set. RRN techniques do not require any atmospheric and ground information at the time of image acquisition. The target image for the year 2009 was normalized in such a way that it resembled the atmospheric and sensor conditions similar to those under which the reference image of the same season for the year 1990 was acquired. Among the selected methods applied, it was found that the Iteratively Reweighted Multivariate Alteration Detection (IR-MAD) method performed better, based on the error statistic. The IR-MAD technique was found to be advantageous as it identified a large set of true time-invariant pixels automatically from the change background using iterative canonical component analysis. The technique also stretches the values of Normalized Difference Vegetation Index and Normalized Difference Water Index and may help to distinguish different vegetation and water bodies better.  相似文献   

18.
Mangrove forests grow in intertidal zones in tropical and subtropical regions and have suffered a dramatic decline globally over the past few decades. Remote sensing data, collected at various spatial resolutions, provide an effective way to map the spatial distribution of mangrove forests over time. However, the spectral signatures of mangrove forests are significantly affected by tide levels. Therefore, mangrove forests may not be accurately mapped with remote sensing data collected during a single-tidal event, especially if not acquired at low tide. This research reports how a decision-tree −based procedure was developed to map mangrove forests using multi-tidal Landsat 5 Thematic Mapper (TM) data and a Digital Elevation Model (DEM). Three indices, including the Normalized Difference Moisture Index (NDMI), the Normalized Difference Vegetation Index (NDVI) and NDVIL·NDMIH (the multiplication of NDVIL by NDMIH, L: low tide level, H: high tide level) were used in this algorithm to differentiate mangrove forests from other land-cover and land-use types in Fangchenggang City, China. Additionally, the recent Landsat 8 OLI (Operational Land Imager) data were selected to validate the results and compare if the methodology is reliable. The results demonstrate that short-term multi-tidal remotely-sensed data better represent the unique nearshore coastal wetland habitats of mangrove forests than single-tidal data. Furthermore, multi-tidal remotely-sensed data has led to improved accuracies using two classification approaches: i.e. decision trees and the maximum likelihood classification (MLC). Since mangrove forests are typically found at low elevations, the inclusion of elevation data in the two classification procedures was tested. Given the decision-tree method does not assume strict data distribution parameters, it was able to optimize the application of multi-tidal and elevation data, resulting in higher classification accuracies of mangrove forests. When using multi-source data of differing types and distributions to map mangrove forests, a decision-tree method appears to be superior to traditional statistical classifiers.  相似文献   

19.
Impervious surfaces have a significant impact on urban runoff, groundwater, base flow, water quality, and climate. Increase in Anthropogenic Impervious Surfaces (AIS) for a region is a true representation of urban expansion. Monitoring of AIS in an urban region is helpful for better urban planning and resource management. Cost effective and efficient maps of AIS can be obtained for larger areas using remote sensing techniques. In the present study, extraction of AIS has been carried out using Double window Flexible Pace Search (DFPS) from a new index named as Normalized Difference Impervious Surface Index (NDAISI). NDAISI is developed by enhancing Biophysical Composition Index (BCI) in two stages using a new Modified Normalized Difference Soil Index (MNDSI). MNDSI has been developed from Band 7 and Band 8 (PAN) of Landsat 8 data. In comparison to existing impervious surface extraction methods, the new NDAISI approach is able to improve Spectral Discrimination Index (SDI) for bare soil and AIS significantly. Overall accuracy of mapping of AIS, using NDAISI approach has been found to be increased by nearly 23% when compared with existing impervious surface extraction methods.  相似文献   

20.
高邮湖湿地是江苏省重要湿地之一,对生态、环境控制、调节气候和保护生物多样性具有重要意义。采用2007年的LandsatTM影像作为遥感信息源,选择影像的光谱特征和比值植被指数(RVI)、差值植被指数(DVI)、归一化植被指数(NDVI)、归一化差异绿度指数(NDGI)、土壤调节植被指数(SAVI)和最佳土壤调节植被指数(OSAVI)6种植被指数做了光谱特征分析,从而确定出最佳指数模型,并基于决策树方法,实现研究区景观信息的遥感分类。研究结果表明,决策树分类法易于综合多种特征进行遥感影像分类,植被指数参与到决策树分类中能够提高分类的总体精度,其总体精度达到79.58%,Kappa系数为0.721 0,分类结果理想且人工参与灵活。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号