首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
建筑物屋顶面点云分割结果的好坏对建筑物三维模型重建起着重要的作用。针对传统RANSAC算法建筑物屋顶面点云的分割问题,提出了一种基于局部约束的建筑物点云平面分割方法。利用点云局部曲面法向约束构建法向准则,利用半径约束的点云空间聚类的方法对共面屋顶面点云进行分解,从而抑制"伪屋顶面"的产生;利用局部抽样策略降低算法的迭代次数,减少运算量。实验表明该方法能够获得稳定可靠的建筑物屋顶点云分割结果,将有利于后续的建筑物三维模型重建。  相似文献   

2.
从数据量庞大且散乱的车载LiDAR点云中分割出建筑物立面数据是一项繁琐而艰巨的工作。本文提出一种结合机载LiDAR点云的车载LiDAR点云建筑物立面分割方法。该方法在空-地点云严格配准的基础上,从机载LiDAR点云中分割出每栋建筑物的顶部点云,提取建筑物顶部外轮廓线并进行规则矢量化处理,设置轮廓线缓冲区实现立面点云的粗分割;再采用基于稳健特征值的平面拟合法对单栋建筑物的每个立面进行去噪滤波,实现建筑物立面的精细分割。试验结果证明了该算法对城市场景中车载LiDAR点云处理的有效性。  相似文献   

3.
李鹏程  邢帅  徐青  周杨  刘志青  张艳  耿迅 《遥感学报》2014,18(6):1237-1246
利用机载LiDAR点云数据进行建筑物重建是当今摄影测量与遥感领域的一个热点问题,特别是复杂形状建筑物模型的精确自动构建一直是一个难题。本文提出一种基于关键点检测的复杂建筑物模型自动重建方法,采用RANSAC法与距离法相结合的分割方法自动提取建筑物屋顶各个平面的点云,并利用Alpha Shape算法提取出各个平面的精确轮廓,根据屋顶平面之间的空间拓扑关系分析建筑物的公共交线特征,在此特征约束下对提取的初始关键点进行修正,最终重建出精确的建筑物3维模型。选取不同类型复杂建筑物与包含复杂建筑物的城市区域点云进行实验,结果表明该算法具有较强实用价值。  相似文献   

4.
This article suggests a new approach to automatic building footprint modeling using exclusively airborne LiDAR data. The first part of the suggested approach is the filtering of the building point cloud using the bias of the Z‐coordinate histogram. This operation aims to detect the points of roof class from the building point cloud. Hence, eight rules for histogram interpretation are suggested. The second part of the suggested approach is the roof modeling algorithm. It starts by detecting the roof planes and calculating their adjacency matrix. Hence, the roof plane boundaries are classified into four categories: (1) outer boundary; (2) inner plane boundaries; (3) roof detail boundaries; and (4) boundaries related to the missing planes. Finally, the junction relationships of roof plane boundaries are analyzed for detecting the roof vertices. With regard to the resulting accuracy quantification, the average values of the correctness and the completeness indices are employed in both approaches. In the filtering algorithm, their values are respectively equal to 97.5 and 98.6%, whereas they are equal to 94.0 and 94.0% in the modeling approach. These results reflect the high efficacy of the suggested approach.  相似文献   

5.
The purpose of this study is to derive vectoral 3D roof planes from the LIDAR point cloud of the detected buildings. For segmentation of the LIDAR point cloud, the RANSAC algorithm has been used. Because the RANSAC algorithm is sensitive to the used parameters, and results in over- or under-segmentation of the clusters, a refinement method has been proposed. The detection of roof planes has been improved with use of the refinement method. Therefore, similar plane surfaces have been combined, followed by the region-growing algorithm, to split the under-segmented plane surfaces. The digitization of the roof boundaries is performed using the alpha-shapes algorithm, followed by line fitting to generalize the roof edges. The quality assessment has been done using the reference vector dataset with comparison using four different criteria.  相似文献   

6.
This paper presents a global plane fitting approach for roof segmentation from lidar point clouds. Starting with a conventional plane fitting approach (e.g., plane fitting based on region growing), an initial segmentation is first derived from roof lidar points. Such initial segmentation is then optimized by minimizing a global energy function consisting of the distances of lidar points to initial planes (labels), spatial smoothness between data points, and the number of planes. As a global solution, the proposed approach can determine multiple roof planes simultaneously. Two lidar data sets of Indianapolis (USA) and Vaihingen (Germany) are used in the study. Experimental results show that the completeness and correctness are increased from 80.1% to 92.3%, and 93.0% to 100%, respectively; and the detection cross-lap rate and reference cross-lap rate are reduced from 11.9% to 2.2%, and 24.6% to 5.8%, respectively. As a result, the incorrect segmentation that often occurs at plane transitions is satisfactorily resolved; and the topological consistency among segmented planes is correctly retained even for complex roof structures.  相似文献   

7.
以机载LiDAR点云数据为研究对象,提出一种新的基于点云数据的多层建筑物三维轮廓模型高精度自动重建方法。在已完成建筑物结构提取及轮廓规则化处理的基础上,利用多层屋顶轮廓在水平投影面内的相邻关系,将各层屋顶中同等级屋顶的相邻关系概括为平行边、不平行且不相交、相交3种相邻形式,结合多层屋顶的层级结构信息对相邻轮廓边界进行一致性处理。实验证明本文方法可以进一步消除多层建筑物各屋顶轮廓的规则化处理误差,使相邻轮廓边界在水平投影面内严格重合,同时重建后建筑物三维轮廓模型的正确性与完整性较高,拐点的定位精度优于激光点平均间距。  相似文献   

8.
许浩  程亮  伍阳 《测绘通报》2020,(6):104-110
面向数字城市和智慧城市建设急需城市建筑三维模型支撑的需要,本文基于机载LiDAR数据,以“顾及平整性的屋顶面片分割—屋顶层间连接—三维模型重建”为脉络,提出了一种采用层间连接和平滑策略的建筑屋顶三维模型重建方法。在屋顶面片提取过程中,充分顾及了屋顶面片的平整性;并在屋顶面片平整基础上,提出层间连接点的概念,以实现高效、快速的模型重建工作。试验部分,本文从屋顶面片重建完整率与正确率、重建几何精度及建筑物高程对于重建的影响3个方面作了较为详尽的评价与分析,并在国际摄影测量与遥感学会标准数据集支撑下,与国际同行进行试验对比。试验结果表明,建筑屋顶重建的完整率和正确率分别达到90%和95%;在偏移距离评价方面,平均偏移距离和标准差最优分别达0.05 m和0.18 m。因此,本文方法可有效完成建筑屋顶三维模型重建,重建模型准确度高、完整性好。  相似文献   

9.
杨必胜  韩旭  董震 《遥感学报》2021,25(1):231-240
为推进深度学习方法在点云配准、语义分割、实例分割等领域的发展,武汉大学联合国内外多家高等院校和研究机构发布了包含多类型场景的地面站点云配准基准数据集WHU-TLS和包含语义、实例的城市级车载点云基准数据集WHU-MLS。其中,WHU-TLS基准数据集涵盖了地铁站、高铁站、山地、公园、校园、住宅、河岸、文化遗产建筑、地下矿道、隧道等10种不同的环境,共包含115个测站、17.4亿个三维点以及点云之间的真实转换矩阵,为点云配准提供了迄今为止最大规模的基准数据集。WHU-MLS基准数据集涵盖了地面特征(机动车道、道路标线、井盖、非机动车道),动态目标(行人、车辆),植被(树木、树丛、低矮植被),杆状地物及其附属结构(电线杆、独立提示牌、路灯、信号灯、独立探头等),建筑和结构设施(房屋、道路隔离结构、围墙和栅栏)以及其他公共和便利设施(垃圾桶、邮筒、消防栓、街头座椅、电力线等)等6大类30余小类地物要素,共包含2亿多个点和超过5000个实例对象,为语义分割、实例分割点云深度学习网络的训练、测试和性能评估提供了当前最为丰富的基准数据集。  相似文献   

10.
Laser scanning systems have been established as leading tools for the collection of high density three-dimensional data over physical surfaces. The collected point cloud does not provide semantic information about the characteristics of the scanned surfaces. Therefore, different processing techniques have been developed for the extraction of useful information from this data which could be applied for diverse civil, industrial, and military applications. Planar and linear/cylindrical features are among the most important primitive information to be extracted from laser scanning data, especially those collected in urban areas. This paper introduces a new approach for the identification, parameterization, and segmentation of these features from laser scanning data while considering the internal characteristics of the utilized point cloud – i.e., local point density variation and noise level in the dataset. In the first step of this approach, a Principal Component Analysis of the local neighborhood of individual points is implemented to identify the points that belong to planar and linear/cylindrical features and select their appropriate representation model. For the detected planar features, the segmentation attributes are then computed through an adaptive cylinder neighborhood definition. Two clustering approaches are then introduced to segment and extract individual planar features in the reconstructed parameter domain. For the linear/cylindrical features, their directional and positional parameters are utilized as the segmentation attributes. A sequential clustering technique is proposed to isolate the points which belong to individual linear/cylindrical features through directional and positional attribute subspaces. Experimental results from simulated and real datasets demonstrate the feasibility of the proposed approach for the extraction of planar and linear/cylindrical features from laser scanning data.  相似文献   

11.
以激光点云数据和倾斜多视影像为研究对象,提出了一种结合机载点云、地面点云及倾斜多视纹理的融合多源特征的建筑物三维模型重建方法。该方法结合点云面元以及影像边界特征,利用倾斜影像的线特征对顶面及立面模型进行边界规则约束,实现了面元自动拓扑重建;通过交互编辑完成不同复杂程度的建筑模型重建,并对模型进行纹理映射。实验结果表明,该方法能够有效提升城市建筑物三维模型重建的效率和边界精度,为利用多源数据的空地联合建筑物三维精细重建提供了一套切实可行的解决方案。  相似文献   

12.
本文基于机器视觉探讨数字摄影测量三维构像下的智能数据处理要素之二:海量点云分割处理技术。多模型拟合方法通过将点云拟合到不同模型中,依照点云空间分布特征和几何结构特征进行分割。针对点云数据量巨大、分布不均匀、结构复杂等特性,本文提出一种基于多模型拟合的点云分割方法。首先通过降采样,采用基于密度分布的聚类方法,实现对点云的预分割。在预分割基础上,利用基于分裂合并的多模型拟合方法对点云进行后续拟合分割。针对平面和弧面,本文采用不同的拟合方式,最终实现对室内密集点云分割。试验结果表明,该方法能够在无须提前设置模型数目的情况下实现点云的自动分割。且相较于现有的点云分割技术,此方法相较于现今的常规方法能取得更好的分割效果,在分割的正确率上要高于现有的常规分割方法,在处理相同数据量的点云分割时,能够达到远低于常规方法的时间消耗。通过本文提出的三维点云分割方法能够实现将大规模、复杂三维点云数据分割为较为精细、具有准确模型参数的三维几何图元,为后续实现大规模、复杂场景的精确三维构象提供有力支持。  相似文献   

13.
The paper presents a cycle graph analysis approach to the automatic reconstruction of 3D roof models from airborne laser scanner data. The nature of convergences of topological relations of plane adjacencies, allowing for the reconstruction of roof corner geometries with preserved topology, can be derived from cycles in roof topology graphs. The topology between roof adjacencies is defined in terms of ridge-lines and step-edges. In the proposed method, the input point cloud is first segmented and roof topology is derived while extracting roof planes from identified non-terrain segments. Orientation and placement regularities are applied on weakly defined edges using a piecewise regularization approach prior to the reconstruction, which assists in preserving symmetries in building geometry. Roof corners are geometrically modelled using the shortest closed cycles and the outermost cycle derived from roof topology graph in which external target graphs are no longer required. Based on test results, we show that the proposed approach can handle complexities with nearly 90% of the detected roof faces reconstructed correctly. The approach allows complex height jumps and various types of building roofs to be firmly reconstructed without prior knowledge of primitive building types.  相似文献   

14.
Automatic 3D extraction of building roofs from remotely sensed data is important for many applications including city modelling. This paper proposes a new method for automatic 3D roof extraction through an effective integration of LIDAR (Light Detection And Ranging) data and multispectral orthoimagery. Using the ground height from a DEM (Digital Elevation Model), the raw LIDAR points are separated into two groups. The first group contains the ground points that are exploited to constitute a ‘ground mask’. The second group contains the non-ground points which are segmented using an innovative image line guided segmentation technique to extract the roof planes. The image lines are extracted from the grey-scale version of the orthoimage and then classified into several classes such as ‘ground’, ‘tree’, ‘roof edge’ and ‘roof ridge’ using the ground mask and colour and texture information from the orthoimagery. During segmentation of the non-ground LIDAR points, the lines from the latter two classes are used as baselines to locate the nearby LIDAR points of the neighbouring planes. For each plane a robust seed region is thereby defined using the nearby non-ground LIDAR points of a baseline and this region is iteratively grown to extract the complete roof plane. Finally, a newly proposed rule-based procedure is applied to remove planes constructed on trees. Experimental results show that the proposed method can successfully remove vegetation and so offers high extraction rates.  相似文献   

15.
针对现有大规模点云数据平面特征分割方法中存在的错误识别、效率低、抗噪性差等问题,该文提出一种基于2D霍夫变换和八叉树的建筑物平面精细分割方法。该方法首先,对原始点云进行空间均匀降采样并向X-Y面投影,利用改进的2D霍夫变换算法提取投影后的点云线段,使用选权迭代法精确计算线段所在直线的方程及端点坐标,进一步确定立面的空间几何方程;接下来,建立原始点云数据的八叉树结构,利用端点坐标设计立方体并分割出立方体内的立面点云;最后,将立面点云从原始点云中剔除,对余下点云降采样并向X-Z面投影,重复以上过程分割水平面点云。试验验证了该文方法对建筑物面状特征分割的有效性。  相似文献   

16.
Automatic building extraction is an important topic for many applications such as urban planning, disaster management, 3D building modeling and updating GIS databases. Its approaches mainly depend on two data sources: light detection and ranging (LiDAR) point cloud and aerial imagery both of which have advantages and disadvantages of their own. In this study, in order to benefit from the advantages of each data sources, LiDAR and image data combined together. And then, the building boundaries were extracted with the automated active contour algorithm implemented in MATLAB. Active contour algorithm uses initial contour positions to segment an object in the image. Initial contour positions were detected without user interaction by a series of image enhancements, band ratio and morphological operations. Four test areas with varying building and background levels of detail were selected from ISPRS’s benchmark Vaihingen and Istanbul datasets. Vegetation and shadows were removed from all the datasets by band ratio to improve segmentation quality. Subsequently, LiDAR point cloud data was converted to raster format and added to the aerial imagery as an extra band. Resulting merged image and initial contour positions were given to the active contour algorithm to extract building boundaries. In order to compare the contribution of LiDAR to the proposed method, the boundaries of the buildings were extracted from the input image before and after adding LiDAR data to the image as a layer. Finally extracted building boundaries were smoothed by the Awrangjeb (Int J Remote Sen 37(3): 551–579.  https://doi.org/10.1080/01431161.2015.1131868, 2016) boundary regularization algorithm. Correctness (Corr), completeness (Comp) and accuracy (Q) metrics were used to assess accuracy of segmented building boundaries by comparing extracted building boundaries with manually digitized building boundaries. Proposed approach shows the promising results with over 93% correctness, 92% completeness and 89% quality.  相似文献   

17.
廖晓和 《测绘通报》2020,(11):163-166
本文基于高速公路高精度点云数据,首先通过点云数据的分类处理实现对树木点云数据的提取,将树木点云投影到水平面,采用DBSCAN密度聚类算法实现单根树木的提取;然后在数据密集区域存在树木树冠点云重叠的区域,本文结合树干几何特征提取树干的位置信息,计算所有点云到树干中心的欧氏距离,将所有点云归类到最近的树干进行粗分割;最后根据粗分割的树木轮廓特征确定树冠模型与树冠中心,提出了采用基于密度特征的格网竞争算法对重叠的区域进行精细分割。试验表明,本文采用的树木分割方法能够实现单棵树木精确提取。  相似文献   

18.
李少先 《测绘通报》2022,(3):148-151
针对现有机载激光扫描数据的建筑物提取方法过程复杂且易受植被干扰的问题,本文提出了一种利用双向布料模拟策略的建筑物提取方法。首先在正向布料模拟滤波的基础上,构建归一化数字表面模型提取过高建筑物,并采用反向布料模拟,从其余地物点中粗提取建筑物顶面点云;然后进行穿透性分析,并结合形态学操作进一步剔除错提的植被点;最后,以包含顶面点云的三维格网为种子格网,根据格网之间的邻接关系和内部点云几何特征进行约束生长,获取完整建筑物点云。试验结果表明,在复杂场景中,该方法能够有效避免植被的干扰,快速提取建筑物点云,具有提取精度高、计算时间少的优点。  相似文献   

19.
半自动机载LiDAR点云建筑物三维重建方法   总被引:1,自引:1,他引:0  
针对全自动建筑物3D重建存在需要后续人工检验,且发现重建错误需要花费额外时间修改的问题,提出了一种半自动的面向对象的机载LiDAR点云建筑物3D重建方法。基于建筑物类别点云的联通分析和平面生长分割结果,提出了自动的建筑物栋数检测、单栋建筑物外轮廓提取、单栋建筑物内部结构线提取方法;同时,在计算机无法完成部分工作时,人工辅助计算机完成高程阶越线提取、识别建筑物屋顶附属物点云等工作。实验证明,该方法可以适用于高密度机载LiDAR点云数据中城区大部分建筑物的3D模型重建。  相似文献   

20.
针对室内点云数据无结构化属性、数据间无连接、不承载语义信息且数据点密度高的特点,结合建筑物点云几何特征和室内导航需求,通过数据降维简化建筑几何特征提取的复杂性,提出一种基于室内点云数据提取建筑物墙线的方法。该方法首先通过向特定方向投影,利用点云密度直方图完成天花板面、地板面和房间墙面的初步分割;然后将房间墙面点云数据向地面投影,生成点云分布矩阵并将其转化为二值图,利用Hough变换算法提取直线,并利用直线方程求取交点得到备选墙线;最后将备选墙线和墙线点云二值图进行叠加从而获取最终建筑墙线。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号