首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
为了对多个全球导航卫星系统(global navigation satellite system, GNSS)当前的广播星历精度进行一个全面的分析,对比了2014—2018年共5 a的GNSS广播星历与精密星历,并对全球定位系统(global positioning system, GPS)、格洛纳斯卫星导航系统(global navigation satellite system, GLONASS)、伽利略卫星导航系统(Galileo satellite navigation system, Galileo)、北斗卫星导航系统(BeiDou navigation satellite system, BDS)、准天顶卫星系统(quasi-zenith satellite system, QZSS)等5个系统的广播星历长期精度变化进行了分析。结果表明:5 a中GPS的广播星历轨道及钟差精度最稳定;GLONASS的广播星历轨道精度稳定性较好,但其钟差精度存在较大的离散度;Galileo得益于具备全面运行能力(full operational capability, FOC)卫星的大量发射及运行,其广播星历轨道、钟差精度大幅度变好,切向轨道、法向轨道与钟差精度已赶超GPS;BDS的广播星历轨道精度离散度较大,钟差精度出现不稳定现象;QZSS的广播星历轨道与钟差精度的稳定性与离散度相对最差。以2018年1 a的广播星历与精密星历为例分析了各个系统当前的广播星历精度,结果表明,当前GPS、GLONASS、Galileo、BDS、QZSS的考虑轨道误差与钟差误差贡献的空间信号测距误差(signal-in-space ranging error,SISRE)分别为0.806 m、2.704 m、0.320 m、1.457 m、1.645 m,表明Galileo广播星历整体精度最高,GPS次之,其次分别是BDS、QZSS和GLONASS。只考虑轨道误差贡献的SISRE分别为0.167 m、0.541 m、0.229 m、0.804 m、0.675 m,表明GPS广播星历轨道精度最高,其次分别是Galileo、GLONASS、QZSS和BDS。GPS卫星广播星历中新型号卫星的钟差精度总体要优于旧型号卫星。  相似文献   

2.
首次搭载GPS/BDS双模接收机全球导航卫星掩星探测仪(GNOS)的风云三号C星于2013年9月23日的成功发射,为研究低轨卫星对BDS定轨增强提供了便利。本文首先对低轨卫星GNOS搭载的GPS/BDS双模接收机的观测数据进行统计,并分析了伪距测量精度。然后在全球测站、区域测站两种布局情况下,对无GNOS的BDS单系统定轨、无GNOS的GPS/BDS双系统定轨、有GNOS的BDS单系统定轨增强、有GNOS的GPS/BDS双系统定轨增强4种方案进行北斗轨道及钟差比较分析。结果表明,GNOS对北斗卫星轨道增强在全球测站下,GEO卫星切向精度提升最为显著,提升程度达60%,其次是法向和其他类型卫星切向,部分弧段个别GEO卫星径向精度稍有下降。双系统定轨增强中可视弧段钟差重叠精度RMS值有0.1ns量级改善。7个国内测站区域监测网的定轨试验中对轨道进行了预报,结果表明GNOS对北斗GEO卫星轨道预报精度切向提升达85%,其余方向及卫星有较大改善,平均21.7%。可视弧段钟差重叠精度RMS值有0.5ns量级改善。  相似文献   

3.
随着北斗卫星导航系统(BeiDou navigation satellite system,BDS)的建设与运行,低轨卫星开始搭载GPS/BDS双系统接收机以实现卫星轨道确定.利用风云三号C(FengYun-3C,FY3C)卫星星载GPS/BDS双频伪距与载波相位观测数据,设置4种仿真试验方案,分别进行星载GPS/BDS在轨实时定轨数据处理,重点进行BDS观测数据对伪距实时定轨和载波相位实时定轨的精度影响分析和算法耗时分析.结果表明,采用伪距观测值,可获得1.0m的位置精度和1.0 mm/s的速度精度;采用载波相位观测值,可获得0.3 m的位置精度和0.3 mm/s的速度精度,且引入BDS观测值后,伪距实时定轨精度降低,相位实时定轨精度有所改善.  相似文献   

4.
首先分析了GRACE-A、GRACE-B、FY3C 3颗低地球轨道(low earth orbit,LEO)卫星对于提升北斗卫星导航系统(BeiDou navigation satellite system,BDS)卫星和GPS卫星可见性的影响,其中BDS中圆地球轨道(medium earth orbit,MEO)卫星的提高最为显著,一重覆盖弧段提高了45.7%,四重覆盖弧段提高了10.7%,与GPS卫星相当。然后利用卫星位置精度衰减因子(satellite position dilution of precision,SPDOP)分析了LEO卫星对导航卫星定轨观测几何结构的增强作用。加入LEO卫星后,BDS地球静止轨道(geostationary earth orbit,GEO)卫星SPDOP值下降了49%;倾斜地球同步轨道(inclined geosynchronous orbit,IGSO)卫星SPDOP值下降了39.8%;MEO卫星SPDOP值下降了34.9%;GPS卫星SPDOP值下降了41.2%。最后利用7个区域监测站和3颗LEO卫星的实测数据分析了LEO卫星对导航卫星轨道精度的提升,GPS卫星轨道的外符合一维均方根(one-dimensional root mean square,1D RMS)由14.4 cm提高到10.2 cm,提高了29.1%;BDS的GEO卫星轨道重叠弧段1D RMS由359.8 cm提高到90.5 cm,提高了74.8%;IGSO卫星由175.6 cm提高到52.1 cm,提高了70.3%;MEO卫星由90.5 cm提高到30.4 cm,提高了66%。  相似文献   

5.
受限于区域监测站及地球静止轨道(geosynchronous earth orbit,GEO)卫星的静地特性,北斗卫星导航系统(BeiDou satellite navigation system,BDS)定轨精度较差,加入低轨卫星(low earth orbit,LEO)星载数据可显著提升定轨精度.使用一种由24颗L...  相似文献   

6.
与全球定位系统(global positioning system,GPS)不同,北斗区域卫星导航系统(BeiDou navigation satellite system,BDS)采用了5颗地球静止轨道卫星、5颗倾斜地球同步轨道卫星和4颗中圆轨道卫星的混合星座,星座分布不均匀。特殊星座决定了不同纬度地区用户的可见卫星数量和观测几何结构存在明显差异,用户的导航定位性能存在明显的纬度效应。分别从理论模型和实际观测两个方面对不同纬度地区用户的可见卫星数目、观测几何结构和导航定位性能进行较全面分析,使用了多家厂商的接收机,在不同纬度地区进行了GPS、BDS以及两系统融合定位试验。结果表明,BDS定位性能存在明显的纬度效应,即定位精度随纬度升高而降低;GPS导航定位性能没有明显的纬度效应;BDS/GPS数据融合可以减弱纬度效应,提高导航定位服务的精度和可靠性。  相似文献   

7.
李杰  张荣之  曾光  龚兵  王冲  房亚男  朱俊  李军锋  强文 《测绘学报》1957,49(11):1377-1387
本文针对全球连续监测评估系统(iGMAS)和国际多系统GNSS试验计划(MGEX)两个观测网接收到不同频率北斗卫星数据的情况,提出了一种北斗卫星(BDS)3个频率(B1I、B2I、B3I)的两种无电离层组合(B1/B3和B1/B2)数据精密定轨(POD)和钟差估计(CE)方法。该方法可以统一处理上述两个观测网收到的北斗二代(BDS-2),北斗三代试验系统(BDS-3e)和北斗三代全球系统(BDS-3g)3个频率的观测数据,并在一次程序运行中对所有北斗卫星进行联合处理,可有效提高一次运行的数据使用率,从而提高参数估计精度。采集了多天iGMAS、MGEX的GPS和BDS数据进行试验。结果表明,对BDS-3e+BDS-2+GPS联合定轨时,采用三频两组合方法后由于增强了观测几何,BDS轨道重叠RMS为15.9 cm,比传统双频法定轨精度提高11.3%。新方法引入了与卫星端3个频率相关的码偏差,该量多天估计结果稳定,证明了模型和方法可靠。将新方法用于BDS-3g+BDS-3e+BDS-2+GPS联合定轨,6颗BDS-3g的MEO卫星轨道重叠RMS为14.5 cm,钟差重叠RMS为0.43 ns,与BDS-3e的15.1 cm和0.49 ns相当。开展了北斗卫星精密单点定位(PPP)试验,结果显示增加了BDS-3g的6颗MEO的精密轨道和钟差后,测站定位精度水平为39.6 mm,天顶为37.8 mm,比仅用BDS-2和BDS-3e卫星定位精度提高了11.1%。  相似文献   

8.
利用全球约110个国际GNSS服务(International GNSS Service,IGS)测站2013年全年观测数据,分析和研究了GPS和全球卫星导航系统(global navigation satellite system,GLONASS)卫星偏航姿态对其精密轨道和钟差的影响。结果表明,偏航姿态对不同型号GPS卫星轨道和钟差的影响程度不同,当采用偏航姿态改正后地影期的BLOCK ⅡA型卫星轨道改善可达17 mm,BLOCK ⅡF为近5 mm,而BLOCK ⅡR几乎不受影响。由于偏航姿态对GLONASS-M卫星定轨精度影响较大,因此,当改正偏航姿态后所有GLONASS卫星相对于IGS最终轨道平均一维差异提高10 mm,相对于德国地学中心(German Research Center for Geosciences,GFZ)最终钟差平均标准差提升0.034 ns。  相似文献   

9.
介绍导航卫星精密轨道与钟差确定的相关方法,重点研究了联合双差与非差GNSS数据处理技术实现精密定轨与钟差估计的原理与实现方法,基于GPS实测数据进行了定轨与钟差确定精度分析,结果表明:利用全球均匀分布的30余个测站一天的观测数据,R、T、N方向定轨精度可以达到0.031 m、0.074 m、0.077 m,卫星钟差确定精度可以达到0.22 ns。  相似文献   

10.
风云三号C(Fengyun 3C,FY3C)卫星于2013年发射,搭载了全球导航卫星掩星探测仪(GNSS occultation sounder,GNOS),是国际首台兼容GPS和北斗卫星导航系统(BeiDou navigation satellite system, BDS)的掩星探测仪,可同时提供GPS和BDS双频观测数据,为研究星载GPS/BDS组合定轨提供了机会。为了实现分米级精度的星载GPS/BDS组合实时定轨,首先推导了基于载波相位观测值的星载GPS/BDS实时定轨数学模型;然后重点分析了GPS与BDS广播星历误差的变化特性,对不同类型轨道的BDS广播星历误差在信号传播路径(location of signal,LOS)方向的投影进行统计,并以此为依据,建立载波相位观测值的伪模糊度待估参数及其随机模型,用来吸收LOS方向的广播星历误差,从而实现分米级精度的实时定轨。采用自主研制的实时定轨软件SATODS对FY3C卫星GPS/BDS实测数据模拟在轨实时处理,结果表明,在使用广播星历的条件下,基于星载GPS/BDS载波相位实时定轨,可以达到30 cm的位置精度以及0.3 mm/s的速度精度。加入BDS观测数据后,虽然BDS卫星的广播星历整体精度低于GPS,但是通过合理设置伪模糊度参数的随机模型,实时定轨结果相对于单GPS有了一定的提高,当FY3C卫星经过亚太地区上空时,实时定轨精度可提高10%以上。  相似文献   

11.
The GNSS Occultation Sounder instrument onboard the Chinese meteorological satellite Fengyun-3C (FY-3C) tracks both GPS and BDS signals for orbit determination. One month’s worth of the onboard dual-frequency GPS and BDS data during March 2015 from the FY-3C satellite is analyzed in this study. The onboard BDS and GPS measurement quality is evaluated in terms of data quantity as well as code multipath error. Severe multipath errors for BDS code ranges are observed especially for high elevations for BDS medium earth orbit satellites (MEOs). The code multipath errors are estimated as piecewise linear model in \(2{^{\circ }}\times 2{^{\circ }}\) grid and applied in precise orbit determination (POD) calculations. POD of FY-3C is firstly performed with GPS data, which shows orbit consistency of approximate 2.7 cm in 3D RMS (root mean square) by overlap comparisons; the estimated orbits are then used as reference orbits for evaluating the orbit precision of GPS and BDS combined POD as well as BDS-based POD. It is indicated that inclusion of BDS geosynchronous orbit satellites (GEOs) could degrade POD precision seriously. The precisions of orbit estimates by combined POD and BDS-based POD are 3.4 and 30.1 cm in 3D RMS when GEOs are involved, respectively. However, if BDS GEOs are excluded, the combined POD can reach similar precision with respect to GPS POD, showing orbit differences about 0.8 cm, while the orbit precision of BDS-based POD can be improved to 8.4 cm. These results indicate that the POD performance with onboard BDS data alone can reach precision better than 10 cm with only five BDS inclined geosynchronous satellite orbit satellites and three MEOs. As the GNOS receiver can only track six BDS satellites for orbit positioning at its maximum channel, it can be expected that the performance of POD with onboard BDS data can be further improved if more observations are generated without such restrictions.  相似文献   

12.
本文在简述非差非组合理论模型以及参数估计的基础上,结合IGS/MGEX精密轨道和精密钟差等产品,对地处低纬度高海拔的云南地区进行了BDS/GPS/GLONASS系统非差非组合PPP性能分析。通过试验研究分析得出,在该地区单系统定位模式下可视卫星数为BDS>GPS>GLONASS;组合模式下,BDS系统与其他系统的可视卫星数基本都大于GPS跟GLONASS系统组合,可视卫星数依次为GRC>GC>RC>GR,PDOP值依次为GR>RC>GC>GRC。其中,组合模式下可视卫星数基本是单系统可视卫星数的2~3倍,表明在低纬度高海拔地区BDS系统的贡献大于其他两系统。多系统组合能够获得更好的卫星几何构型,较单系统有显著的优越性。在定位精度上,7种组合模式下定位精度基本能达到厘米至毫米级。  相似文献   

13.
针对系统地评估我国北斗卫星导航系统广播星历精度与保障实时导航定位服务的需求,对BDS广播星历提供的卫星轨道、钟差以及用户测距误差(URE)的精度性能进行分析,统计了2015年连续4周全部BDS在轨健康卫星的广播星历各项精度指标值。分析结果表明:BDS的MEO和IGSO卫星轨道精度优于GEO卫星结果,且径向精度优于法向和切向精度;BDS搭载的国产星载铷钟卫星钟差序列相对比较稳定,其均方根误差优于4ns;GEO/IGSO卫星的用户距离误差(URE)在6m以内,MEO的URE优于20m。研究结果对北斗系统的建设、后期的发展和用户市场的拓展,都具有重要的参考价值。  相似文献   

14.
随着北斗三号卫星导航系统(BeiDou navigation satellite system-3, BDS-3)开始向全球提供导航服务,独立使用BDS为在轨运行的卫星提供全球覆盖、全时段的定位服务成为可能。结合风云三号D星(FengYun-3D, FY-3D)全球卫星导航系统掩星探测仪(global navigation satellite system occultation sounder, GNOS)的真实在轨数据对天基BDS的定位性能进行了详细的分析。首先, 使用BDS真实广播星历计算了在不同轨道高度下的可见卫星数和定位精度因子(position dilution of precision,PDOP),并结合精密星历分析了广播星历的轨道误差、时钟误差及空间信号测距误差(signal-in-space range error, SISRE)。仿真结果表明,在95%的置信水平下,从地面到2 000 km的轨道高度,BDS在全球范围内最小可见卫星数为6,最大PDOP小于5,星座可用性已经达到100%,全球平均可见卫星数BDS比GPS(global positioning system)高50%以上;BDS广播星历的轨道误差为1.5 m,时钟误差为2.4 ns,SISRE达到了0.79 m,BDS-3的卫星时钟精度已达到GPS相当的水平。然后, 使用GNOS在轨数据测试了BDS的可见卫星数、信号强度、伪距测量精度、定位精度等,重点对BDS-2卫星的码偏移进行了详细的分析。在轨数据分析表明,只使用BDS-2信号时在服务区域内可实现100%的定位,三维定位精度为5.53 m;确认了北斗地球同步轨道、倾斜地球同步轨道、中地球轨道卫星均存在随仰角变化的码偏移,其中北斗地球同步轨道卫星在仰角低于40°时的码偏移是直接测量得到;使用BDS双频测量数据获得了836 km轨道高度以上顶部电离层的全球相对分布,电离层对伪距的相对延时在0.6 m左右。研究对于BDS的天基应用有重要意义,为天基BDS接收机的设计奠定基础。  相似文献   

15.
GNSS是实时定位导航最重要的方法,精密卫星轨道钟差产品是GNSS高精度服务的前提。国际GNSS服务中心(IGS)及其分析中心长期致力于GNSS数据处理的研究及高精度轨道和钟差产品的提供。GFZ作为分析中心之一,提供GBM多系统快速产品。本文基于2015—2021年GBM提供的精密轨道产品,阐述了数据处理策略,分析了轨道的精度,介绍了非差模糊度固定的原理和对精密定轨的影响。结果表明:GBM快速产品中的GPS轨道精度与IGS后处理精密轨道相比的精度约为11~13 mm,轨道6 h预报精度约为6 cm;GLONASS预报精度约为12 cm,Galileo在该时期的精度均值为10 cm,但是在2016年底以后精度提升到5 cm左右;北斗系统的中轨卫星(medium earth orbit,MEO)在2020年以后预报精度约为10 cm;北斗的静止轨道卫星(geostationary earth orbit,GEO)卫星和QZSS卫星的预报精度在米级;卫星激光测距检核表明,Galileo、GLONASS、BDS-3 MEO卫星轨道精度分别为23、41、47 mm;此外,采用150 d观测值的试验结果表明,采用非差模糊度固定能显著改善MEO卫星轨道精度,对GPS、GLONASS、Galileo、BDS-2和BDS-3的MEO卫星的6 h时预报精度改善率分别为9%~15%、15%~18%、11%~13%、6%~17%和14%~25%。  相似文献   

16.
不同卫星天线参数对BDS定轨定位精度的影响   总被引:1,自引:0,他引:1  
胡一帆  张帅 《测绘学报》2019,48(7):908-918
论证了BDS精密单点定位时卫星天线参数与卫星轨道、钟差产品保持一致的必要性。基于4组不同卫星天线参数BDS精密定轨RTN 3方向内符合精度,GEO卫星均在9.3、18.6、11.5 cm左右,IGSO卫星均在1.7、4.2、2.7 cm左右,MEO卫星均在2.1、5.1、4.8 cm左右,在R方向的差异小于5 mm,在TN方向的差异最大为2.4 cm;定轨结果与GFZ的事后精密产品比较,RTN 3方向外符合精度差异较明显,排除GEO卫星因定轨策略与GFZ差异较大的因素,IGSO和MEO外符合精度ESA和WHU相近,RTN 3方向均在10 cm以内,各分量上优于IGS和EST 1~10 cm,其中TN方向差异最显著。在保持BDS PPP使用的卫星天线参数与卫星轨道、钟差产品一致的前提下,4组卫星天线参数定位精度相近,其中静态定位最后一个历元水平和高程方向坐标偏差均在5 cm以内,动态定位收敛后坐标偏差RMS水平方向在10 cm以内、高程方向在15 cm以内;使用ESA和WHU天线参数动态定位平均收敛时间在46 min左右,IGS和EST天线参数动态定位平均收敛时间在56 min左右,略差于基于GFZ事后产品的收敛时间,其平均收敛时间在34 min左右。  相似文献   

17.
北斗三号卫星导航系统(BDS-3)开通已一年有余,通过研究2019-08—2021-08共2 a的北斗卫星导航系统(BDS)广播星历数据,采用事后精密星历对北斗二号卫星导航系统(BDS-2)和BDS-3卫星的轨道、钟差和空间信号测距误差(SISRE)进行分析. 结果表明:BDS-3系统开通后,卫星轨道精度比BDS-2提升明显,径向(R)误差均方根(RMS)值从0.87 m左右提升至优于0.23 m,精度提升约74%,3D误差RMS值从1.63 m以内提升到优于0.75 m,精度提升约54%;氢原子钟和铷原子钟精度相当,BDS-3钟差误差RMS值精度提升与BDS-2提升基本相同,精度提升约1 ns;SISRE精度比对中,BDS-2 SISRE的RMS值从0.9 m提升到0.7 m,BDS-3从0.8 m提升到0.5 m. 综合比较,BDS-3系统性能提升较大.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号