首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 The AUSGeoid98 gravimetric geoid model of Australia has been computed using data from the EGM96 global geopotential model, the 1996 release of the Australian gravity database, a nationwide digital elevation model, and satellite altimeter-derived marine gravity anomalies. The geoid heights are on a 2 by 2 arc-minute grid with respect to the GRS80 ellipsoid, and residual geoid heights were computed using the 1-D fast Fourier transform technique. This has been adapted to include a deterministically modified kernel over a spherical cap of limited spatial extent in the generalised Stokes scheme. Comparisons of AUSGeoid98 with GPS and Australian Height Datum (AHD) heights across the continent give an RMS agreement of ±0.364 m, although this apparently large value is attributed partly to distortions in the AHD. Received: 10 March 2000 / Accepted: 21 February 2001  相似文献   

2.
 It is suggested that a spherical harmonic representation of the geoidal heights using global Earth gravity models (EGM) might be accurate enough for many applications, although we know that some short-wavelength signals are missing in a potential coefficient model. A `direct' method of geoidal height determination from a global Earth gravity model coefficient alone and an `indirect' approach of geoidal height determination through height anomaly computed from a global gravity model are investigated. In both methods, suitable correction terms are applied. The results of computations in two test areas show that the direct and indirect approaches of geoid height determination yield good agreement with the classical gravimetric geoidal heights which are determined from Stokes' formula. Surprisingly, the results of the indirect method of geoidal height determination yield better agreement with the global positioning system (GPS)-levelling derived geoid heights, which are used to demonstrate such improvements, than the results of gravimetric geoid heights at to the same GPS stations. It has been demonstrated that the application of correction terms in both methods improves the agreement of geoidal heights at GPS-levelling stations. It is also found that the correction terms in the direct method of geoidal height determination are mostly similar to the correction terms used for the indirect determination of geoidal heights from height anomalies. Received: 26 July 2001 / Accepted: 21 February 2002  相似文献   

3.
 The latest gravimetric geoid model for Japan, JGEOID2000, was successfully combined with the nationwide net of GPS at benchmarks, yielding a new hybrid geoid model for Japan, GSIGEO2000. The least-squares collocation (LSC) method was applied as an interpolation for fitting JGEOID2000 to the GPS/leveling geoid undulations. The GPS/leveling geoid undulation data were reanalyzed in advance, in terms of three-dimensional positions from GPS and orthometric heights from leveling. The new hybrid geoid model is, therefore, compatible with the new Japanese geodetic reference frame. GSIGEO2000 was evaluated internally and independently and the precision was estimated at 4 cm throughout nearly the whole region. Received: 15 October 2001 / Accepted: 27 March 2002 Acknowledgments. Messrs. Toshio Kunimi and Tadashi Saito at the Third Geodetic Division of the Geographical Survey Institute (GSI) mainly carried out the computations of most of the updated leveled heights. With regard to the reanalysis of GPS data, the discussions with Messrs. Yuki Hatanaka and Shoichi Matsumura of GSI were of great help in building the analysis strategy. Messrs. Kazuyuki Tanaka and Hiromi Shigematsu collaborated in the preparatory stages of GPS data computation. The authors' thanks are extended to these colleagues. Some plots were made by GMT software (Wessel and Smith 1991). Correspondence to: Y. Kuroishi  相似文献   

4.
How to handle topography in practical geoid determination: three examples   总被引:3,自引:1,他引:2  
 Three different methods of handling topography in geoid determination were investigated. The first two methods employ the residual terrain model (RTM) remove–restore technique, yielding the quasigeoid, whereas the third method uses the classical Helmert condensation method, yielding the geoid. All three methods were used with the geopotential model Earth Gravity Model (1996) (EGM96) as a reference, and the results were compared to precise global positioning system (GPS) levelling networks in Scandinavia. An investigation of the Helmert method, focusing on the different types of indirect effects and their effects on the geoid, was also carried out. The three different methods used produce almost identical results at the 5-cm level, when compared to the GPS levelling networks. However, small systematic differences existed. Received: 18 March 1999 / Accepted: 21 March 2000  相似文献   

5.
 Four different implementations of Stokes' formula are employed for the estimation of geoid heights over Sweden: the Vincent and Marsh (1974) model with the high-degree reference gravity field but no kernel modifications; modified Wong and Gore (1969) and Molodenskii et al. (1962) models, which use a high-degree reference gravity field and modification of Stokes' kernel; and a least-squares (LS) spectral weighting proposed by Sj?berg (1991). Classical topographic correction formulae are improved to consider long-wavelength contributions. The effect of a Bouguer shell is also included in the formulae, which is neglected in classical formulae due to planar approximation. The gravimetric geoid is compared with global positioning system (GPS)-levelling-derived geoid heights at 23 Swedish Permanent GPS Network SWEPOS stations distributed over Sweden. The LS method is in best agreement, with a 10.1-cm mean and ±5.5-cm standard deviation in the differences between gravimetric and GPS geoid heights. The gravimetric geoid was also fitted to the GPS-levelling-derived geoid using a four-parameter transformation model. The results after fitting also show the best consistency for the LS method, with the standard deviation of differences reduced to ±1.1 cm. For comparison, the NKG96 geoid yields a 17-cm mean and ±8-cm standard deviation of agreement with the same SWEPOS stations. After four-parameter fitting to the GPS stations, the standard deviation reduces to ±6.1 cm for the NKG96 geoid. It is concluded that the new corrections in this study improve the accuracy of the geoid. The final geoid heights range from 17.22 to 43.62 m with a mean value of 29.01 m. The standard errors of the computed geoid heights, through a simple error propagation of standard errors of mean anomalies, are also computed. They range from ±7.02 to ±13.05 cm. The global root-mean-square error of the LS model is the other estimation of the accuracy of the final geoid, and is computed to be ±28.6 cm. Received: 15 September 1999 / Accepted: 6 November 2000  相似文献   

6.
The northern European geoid: a case study on long-wavelength geoid errors   总被引:1,自引:1,他引:1  
 The long-wavelength geoid errors on large-scale geoid solutions, and the use of modified kernels to mitigate these effects, are studied. The geoid around the Nordic area, from Greenland to the Ural mountains, is considered. The effect of including additional gravity data around the Nordic/Baltic land area, originating from both marine, satellite and ground-based measurements, is studied. It is found that additional data appear to increase the noise level in computations, indicating the presence of systematic errors. Therefore, the Wong–Gore modification to the Stokes kernel is applied. This method of removing lower-order terms in the Stokes kernel appears to improve the geoid. The best fit to the global positioning system (GPS) leveling points is obtained with a degree of modification of approximately 30. In addition to the study of modification errors, the results of different methods of combining satellite altimetry gravity and other gravimetry are presented. They all gave comparable results, at the 6-cm level, when evaluated for the Nordic GPS networks. One dimensional (1-D) and 2-D fast Fourier transform (FFT) methods are also compared. It is shown that even though methods differ by up to 6 cm, the fit to the GPS is essentially the same. A surprising conclusion is that the addition of more data does not always produce a better geoid, illustrating the danger of systematic errors in data. Received: 4 July 2001 / Accepted: 21 February 2002  相似文献   

7.
Fast and accurate relative positioning for baselines less than 20 km in length is possible using dual-frequency Global Positioning System (GPS) receivers. By measuring orthometric heights of a few GPS stations by differential levelling techniques, the geoid undulation can be modelled, which enables GPS to be used for orthometric height determination in a much faster and more economical way than terrestrial methods. The geoid undulation anomaly can be very useful for studying tectonic structure. GPS, levelling and gravity measurements were carried out along a 200-km-long highly undulating profile, at an average elevation of 4000 m, in the Ladak region of NW Himalaya, India. The geoid undulation and gravity anomaly were measured at 28 common GPS-levelling and 67 GPS-gravity stations. A regional geoid low of nearly −4 m coincident with a steep negative gravity gradient is compatible with very recent findings from other geophysical studies of a low-velocity layer 20–30 km thick to the north of the India–Tibet plate boundary, within the Tibetan plate. Topographic, gravity and geoid data possibly indicate that the actual plate boundary is situated further north of what is geologically known as the Indus Tsangpo Suture Zone, the traditionally supposed location of the plate boundary. Comparison of the measured geoid with that computed from OSU91 and EGM96 gravity models indicates that GPS alone can be used for orthometric height determination over the Higher Himalaya with 1–2 m accuracy. Received: 10 April 1997 / Accepted: 9 October 1998  相似文献   

8.
The use of GPS for establishing height control in an area where levelling data are available can involve the so-called GPS/levelling technique. Modelling of the GPS/levelling geoid undulations has usually been carried out using polynomial surface fitting, least-squares collocation (LSC) and finite-element methods. Artificial neural networks (ANNs) have recently been used for many investigations, and proven to be effective in solving complex problems represented by noisy and missing data. In this study, a feed-forward ANN structure, learning the characteristics of the training data through the back-propagation algorithm, is employed to model the local GPS/levelling geoid surface. The GPS/levelling geoid undulations for Istanbul, Turkey, were estimated from GPS and precise levelling measurements obtained during a field study in the period 1998–99. The results are compared to those produced by two well-known conventional methods, namely polynomial fitting and LSC, in terms of root mean square error (RMSE) that ranged from 3.97 to 5.73 cm. The results show that ANNs can produce results that are comparable to polynomial fitting and LSC. The main advantage of the ANN-based surfaces seems to be the low deviations from the GPS/levelling data surface, which is particularly important for distorted levelling networks.  相似文献   

9.
 The traditional remove-restore technique for geoid computation suffers from two main drawbacks. The first is the assumption of an isostatic hypothesis to compute the compensation masses. The second is the double consideration of the effect of the topographic–isostatic masses within the data window through removing the reference field and the terrain reduction process. To overcome the first disadvantage, the seismic Moho depths, representing, more or less, the actual compensating masses, have been used with variable density anomalies computed by employing the topographic–isostatic mass balance principle. In order to avoid the double consideration of the effect of the topographic–isostatic masses within the data window, the effect of these masses for the used fixed data window, in terms of potential coefficients, has been subtracted from the reference field, yielding an adapted reference field. This adapted reference field has been used for the remove–restore technique. The necessary harmonic analysis of the topographic–isostatic potential using seismic Moho depths with variable density anomalies is given. A wide comparison among geoids computed by the adapted reference field with both the Airy–Heiskanen isostatic model and seismic Moho depths with variable density anomaly and a geoid computed by the traditional remove–restore technique is made. The results show that using seismic Moho depths with variable density anomaly along with the adapted reference field gives the best relative geoid accuracy compared to the GPS/levelling geoid. Received: 3 October 2001 / Accepted: 20 September 2002 Correspondence to: H.A. Abd-Elmotaal  相似文献   

10.
 The downward continuation of the harmonic disturbing gravity potential, derived at flight level from discrete observations of airborne gravity by the spherical Hotine integral, to the geoid is discussed. The initial-boundary-value approach, based on both the direct and inverse solution to Dirichlet's problem of potential theory, is used. Evaluation of the discretized Fredholm integral equation of the first kind and its inverse is numerically tested using synthetic airborne gravity data. Characteristics of the synthetic gravity data correspond to typical airborne data used for geoid determination today and in the foreseeable future: discrete gravity observations at a mean flight height of 2 to 6 km above mean sea level with minimum spatial resolution of 2.5 arcmin and a noise level of 1.5 mGal. Numerical results for both approaches are presented and discussed. The direct approach can successfully be used for the downward continuation of airborne potential without any numerical instabilities associated with the inverse approach. In addition to these two-step approaches, a one-step procedure is also discussed. This procedure is based on a direct relationship between gravity disturbances at flight level and the disturbing gravity potential at sea level. This procedure provided the best results in terms of accuracy, stability and numerical efficiency. As a general result, numerically stable downward continuation of airborne gravity data can be seen as another advantage of airborne gravimetry in the field of geoid determination. Received: 6 June 2001 / Accepted: 3 January 2002  相似文献   

11.
 A methodology for precise determination of the fundamental geodetic parameter w 0, the potential value of the Gauss–Listing geoid, as well as its time derivative 0, is presented. The method is based on: (1) ellipsoidal harmonic expansion of the external gravitational field of the Earth to degree/order 360/360 (130 321 coefficients; http://www.uni-stuttgard.de/gi/research/ index.html projects) with respect to the International Reference Ellipsoid WGD2000, at the GPS positioned stations; and (2) ellipsoidal free-air gravity reduction of degree/order 360/360, based on orthometric heights of the GPS-positioned stations. The method has been numerically tested for the data of three GPS campaigns of the Baltic Sea Level project (epochs 1990.8,1993.4 and 1997.4). New w 0 and 0 values (w 0=62 636 855.75 ± 0.21 m2/s2, 0=−0.0099±0.00079 m2/s2 per year, w 0/&γmacr;=6 379 781.502 m,0/&γmacr;=1.0 mm/year, and &γmacr;= −9.81802523 m2/s2) for the test region (Baltic Sea) were obtained. As by-products of the main study, the following were also determined: (1) the high-resolution sea surface topography map for the Baltic Sea; (2) the most accurate regional geoid amongst four different regional Gauss–Listing geoids currently proposed for the Baltic Sea; and (3) the difference between the national height datums of countries around the Baltic Sea. Received: 14 August 2000 / Accepted: 19 June 2001  相似文献   

12.
A new, high-resolution and high-precision geoid has been computed for the whole of Canada and part of the U.S., ranging from 35°N to about 90°N in latitude and 210°E to 320°E in longitude. The OSU91A geopotential model complete to degree and order 360 was combined with a 5 × 5 mean gravity anomaly grid and 1km × 1km topographical information to generate the geoid file. The remove-restore technique was adopted for the computation of terrain effects by Helmert's condensation reduction. The contribution of the local gravity data to the geoid was computed strictly by the 1D-FFT technique, which allows for the evaluation of the discrete spherical Stokes integral without any approximation, parallel by parallel. The indirect effects of up to second order were considered. The internal precision of the geoid, i.e. the contribution of the gravity data and the model coefficients noise, was also evaluated through error propagation by FFT. In a relative sense, these errors seem to agree quite well with the external errors and show clearly the weak areas of the geoid which are mostly due to insufficient gravity data coverage. Comparison of the gravimetric geoid with the GPS/levelling-derived geoidal heights of eight local GPS networks with a total of about 900 stations shows that the absolute agreement with respect to the GPS/levelling datum is generally better than 10 cm RMS and the relative agreement ranges, in most cases, from 4 to 1 ppm over short distances of about 20 to 100km, 1 to 0.5 ppm over distances of about 100 to 200 km, and 0.5 to 0.1 ppm for baselines of 200 to over 1000 km. Other existing geoids, such as UNB90, GEOID90 and GSD91, were also included in the comparison, showing that the new geoid achieves the best agreement with the GPS/levelling data.Presented at theIAG General Meeting, Beijing, P.R. China, Aug. 6–13, 1993  相似文献   

13.
1 IntroductionDifferentgeoidsolutionswerecarriedoutforE gyptusingheterogeneousdataanddifferentmethodologies (El_Tokhey ,1 993) .ThemaingoalofthispaperistodetermineamostaccuratenewgeoidforEgypttakingadvantageofanewupdatedgravitydatabase,theinformationgivenby…  相似文献   

14.
On the adjustment of combined GPS/levelling/geoid networks   总被引:12,自引:7,他引:5  
A detailed treatment of adjustment problems in combined global positioning system (GPS)/levelling/geoid networks is given. The two main types of `unknowns' in this kind of multi-data 1D networks are usually the gravimetric geoid accuracy and a 2D spatial field that describes all the datum/systematic distortions among the available height data sets. An accurate knowledge of the latter becomes especially important when we consider employing GPS techniques for levelling purposes with respect to a local vertical datum. Two modelling alternatives for the correction field are presented, namely a pure deterministic parametric model, and a hybrid deterministic and stochastic model. The concept of variance component estimation is also proposed as an important statistical tool for assessing the actual gravimetric geoid noise level and/or testing a priori determined geoid error models. Finally, conclusions are drawn and recommendations for further study are suggested. Received: 9 September 1998 / Accepted: 8 June 1999  相似文献   

15.
J. Li 《Journal of Geodesy》2002,76(4):226-231
 A formula for computing the gravity disturbance and gravity anomaly from the second radial derivative of the disturbing potential is derived in detail using the basic differential equation with spherical approximation in physical geodesy and the modified Poisson integral formula. The derived integral in the space domain, expressed by a spherical geometric quantity, is then converted to a convolution form in the local planar rectangular coordinate system tangent to the geoid at the computing point, and the corresponding spectral formulae of 1-D FFT and 2-D FFT are presented for numerical computation. Received: 27 December 2000 / Accepted: 3 September 2001  相似文献   

16.
利用重力场模型和局部重力资料计算GPS水准高的精度探讨   总被引:2,自引:0,他引:2  
黄建业  谢军 《测绘工程》2001,10(4):27-29
利用大地水准面高,结合GPS测量的高程信息,直接计算GPS水准高,是一种全新诱人的解决方案。本文就这种方案,根据其核心技术-大地水面高的性质:长波长-全球重力场;中波长-局部重力资料,短波长-数据地形,对它的具体实现,适用范围以及精度分析作了详尽的探讨,在此基础上,提出一些GPS水准应用规范和要求,并利用实验数据对其进行验证。  相似文献   

17.
最小二乘配置法中局部协方差函数的计算   总被引:3,自引:1,他引:2  
文汉江 《测绘科学》2000,25(3):37-39
随着 GPS日益广泛的应用及精度的不断提高 ,在有些实际应用中利用 GPS来代替传统的水准测量进行高程控制已成为可能 ,这也进一步提出了对高精度大地水准面的需求。快速傅立叶变换 (FFT)是目前计算大地水准面比较常用的方法之一 ,但需要将重力观测量进行内插得到规则格网上的平均重力异常。利用最小二乘配置法计算大地水准面可直接利用已有的观测值进行计算 ,同时可综合利用不同类型的数据 ,如重力异常和垂线偏差等计算大地水准面 ,因此最小二乘配置法仍有广泛的应用 ,但制约最小二乘配置应用的关键问题是局部协方差函数的计算。将主要讨论最小二乘配置法中局部协方差函数的计算 ,使所用的协方差函数能更好地反映已知的数据 ,从而获得更精确的结果。  相似文献   

18.
Any errors in digital elevation models (DEMs) will introduce errors directly in gravity anomalies and geoid models when used in interpolating Bouguer gravity anomalies. Errors are also propagated into the geoid model by the topographic and downward continuation (DWC) corrections in the application of Stokes’s formula. The effects of these errors are assessed by the evaluation of the absolute accuracy of nine independent DEMs for the Iran region. It is shown that the improvement in using the high-resolution Shuttle Radar Topography Mission (SRTM) data versus previously available DEMs in gridding of gravity anomalies, terrain corrections and DWC effects for the geoid model are significant. Based on the Iranian GPS/levelling network data, we estimate the absolute vertical accuracy of the SRTM in Iran to be 6.5 m, which is much better than the estimated global accuracy of the SRTM (say 16 m). Hence, this DEM has a comparable accuracy to a current photogrammetric high-resolution DEM of Iran under development. We also found very large differences between the GLOBE and SRTM models on the range of −750 to 550 m. This difference causes an error in the range of −160 to 140 mGal in interpolating surface gravity anomalies and −60 to 60 mGal in simple Bouguer anomaly correction terms. In the view of geoid heights, we found large differences between the use of GLOBE and SRTM DEMs, in the range of −1.1 to 1 m for the study area. The terrain correction of the geoid model at selected GPS/levelling points only differs by 3 cm for these two DEMs.  相似文献   

19.
The geoid gradient over the Darling Fault in Western Australia is extremely high, rising by as much as 38 cm over only 2 km. This poses problems for gravimetric-only geoid models of the area, whose frequency content is limited by the spatial distribution of the gravity data. The gravimetric-only version of AUSGeoid98, for instance, is only able to resolve 46% of the gradient across the fault. Hence, the ability of GPS surveys to obtain accurate orthometric heights is reduced. It is described how further gravity data were collected over the Darling Fault, augmenting the existing gravity observations at key locations so as to obtain a more representative geoid gradient. As many of the gravity observations were collected at stations with a well-known GRS80 ellipsoidal height, the opportunity arose to compute a geoid model via both the Stokes and the Hotine approaches. A scheme was devised to convert free-air anomaly data to gravity disturbances using existing geoid models, followed by a Hotine integration to geoid heights. Interestingly, these results depended very weakly upon the choice of input geoid model. The extra gravity data did indeed improve the fit of the computed geoid to local GPS/Australian Height Datum (AHD) observations by 58% over the gravimetric-only AUSGeoid98. While the conventional Stokesian approach to geoid determination proved to be slightly better than the Hotine method, the latter still improved upon the gravimetric-only AUSGeoid98 solution, supporting the viability of conducting gravity surveys with GPS control for the purposes of geoid determination. AcknowledgementsThe author would like to thank Will Featherstone, Ron Gower, Ron Hackney, Linda Morgan, Geoscience Australia, Scripps Oceanographic Institute and the three anonymous reviewers of this paper. This research was funded by the Australian Research Council.  相似文献   

20.
Improvements in height datum transfer expected from the GOCE mission   总被引:1,自引:1,他引:1  
 One of the aims of the Earth Explorer Gravity Field and Steady-State Ocean Circulation (GOCE) mission is to provide global and regional models of the Earth's gravity field and of the geoid with high spatial resolution and accuracy. Using the GOCE error model, simulation studies were performed in order to estimate the accuracy of datum transfer in different areas of the Earth. The results showed that with the GOCE error model, the standard deviation of the height anomaly differences is about one order of magnitude better than the corresponding value with the EGM96 error model. As an example, the accuracy of the vertical datum transfer from the tide gauge of Amsterdam to New York was estimated equal to 57 cm when the EGM96 error model was used, while in the case of GOCE error model this accuracy was increased to 6 cm. The geoid undulation difference between the two places is about 76.5 m. Scaling the GOCE errors to the local gravity variance, the estimated accuracy varied between 3 and 7 cm, depending on the scaling model. Received: 1 March 2000 / Accepted: 21 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号