首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper evaluates the potential of a terrestrial laser scanner (TLS) to characterize forest canopy fuel characteristics at plot level. Several canopy properties, namely canopy height, canopy cover, canopy base height and fuel strata gap were estimated. Different approaches were tested to avoid the effect of canopy shadowing on canopy height estimation caused by deployment of the TLS below the canopy. Estimation of canopy height using a grid approach provided a coefficient of determination of R2 = 0.81 and an RMSE of 2.47 m. A similar RMSE was obtained using the 99th percentile of the height distribution of the highest points, representing the 1% of the data, although the coefficient of determination was lower (R2 = 0.70). Canopy cover (CC) was estimated as a function of the occupied cells of a grid superimposed upon the TLS point clouds. It was found that CC estimates were dependent on the cell size selected, with 3 cm being the optimum resolution for this study. The effect of the zenith view angle on CC estimates was also analyzed. A simple method was developed to estimate canopy base height from the vegetation vertical profiles derived from an occupied/non-occupied voxels approach. Canopy base height was estimated with an RMSE of 3.09 m and an R2 = 0.86. Terrestrial laser scanning also provides a unique opportunity to estimate the fuel strata gap (FSG), which has not been previously derived from remotely sensed data. The FSG was also derived from the vegetation vertical profile with an RMSE of 1.53 m and an R2 = 0.87.  相似文献   

2.
Research presented here explores the feasibility of leveraging vegetation data derived from airborne light detection and ranging (LiDAR) and terrestrial laser scanning (TLS) for visibility modeling. Using LiDAR and TLS datasets of a lodgepole pine (Pinus contorta) dominant ecosystem, tree canopy and trunk obstructions were isolated relevant to a discrete visibility beam in a short‐range line‐of‐sight model. Cumulative obstruction factors from vegetation were compared with reference visibility values from digital photographs along sightline paths. LiDAR‐derived tree factors were augmented with single‐scan TLS data for obstruction prediction. Good correlation between datasets was found up to 10 m from the terrestrial scanner, but fine scale visibility modeling was problematic at longer distances. Analysis of correlation and regression results reveal the influence of obstruction shadowing inherent to discrete LiDAR and TLS, potentially limiting the feasibility of modeling visibility over large areas with similar technology. However, the results support the potential for TLS‐derived subcanopy metrics for augmenting large amounts of aerial LiDAR data to significantly improve models of forest structure. Subtle LiDAR processing improvements, including more accurate tree delineation through higher point density aerial data, combined with better vegetation quantification processes for TLS data, will advance the feasibility and accuracy of data integration.  相似文献   

3.
Forest inventory parameters, primarily tree diameter and height, are required for several management and planning activities. Currently, Terrestrial Laser Scanning (TLS) is a promising technology in automated measurements of tree parameters using dense 3D point clouds. In comparison with conventional manual field inventory methods, TLS systems would supplement field data with detailed and relatively higher degree of accurate measurements and increased measurement frequency. Although, multiple scans from TLS captures more area, they are resource and time consuming to ensure proper co-registration between the scans. On the other hand, Single scans provide a fast and recording of the data but are often affected by occlusions between the trees. The current study evaluates potential of single scan TLS data to (1) develop an automatic method for tree stem identification and diameter estimation (diameter at breast height—DBH) using random sample consensus (RANSAC) based circle fitting algorithm, (2) validate using field based measurements to derive accuracy estimates and (3) assess the influence of distance to scanner on detection and measurement accuracies. Tree detection and diameter measurements were validated for 5 circular plots of 20 m radius using single scans in dry deciduous forests of Betul, Madhya Pradesh. An overall tree detection accuracy of 85 and 70% was observed in the scanner range of 15 and 20 m respectively. The tree detection accuracies decreased with increased distance to the scanner due to the decrease in visible area. Also, estimated stem diameter using TLS was found to be in agreement with the field measured diameter (R2 = 0.97). The RMSE of estimated DBH was found to be 3.5 cm (relative RMSE ~20%) over 202 trees detected over 5 plots. Results suggest that single scan approach suffices the cause of accuracy, reducing uncertainty and adds to increased sampling frequency in forest inventory and also implies that TLS has a seemingly high potential in forest management.  相似文献   

4.
Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r2 = 0.54, RMSE = 0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.52  r2  0.61; p < 0.05), with similar slopes and offsets found throughout the season, and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements (σ0) from SeaWinds/QuikSCAT presented an r2 of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon.  相似文献   

5.
Terrestrial laser scanning (TLS) has been used to estimate a number of biophysical and structural vegetation parameters. Of these stem diameter is a primary input to traditional forest inventory. While many experimental studies have confirmed the potential for TLS to successfully extract stem diameter, the estimation accuracies differ strongly for these studies – due to differences in experimental design, data processing and test plot characteristics. In order to provide consistency and maximize estimation accuracy, a systematic study into the impact of these variables is required. To contribute to such an approach, 12 scans were acquired with a FARO photon 120 at two test plots (Beech, Douglas fir) to assess the effects of scan mode and circle fitting on the extraction of stem diameter and volume. An automated tree stem detection algorithm based on the range images of single scans was developed and applied to the data. Extraction of stem diameter was achieved by slicing the point cloud and fitting circles to the slices using three different algorithms (Lemen, Pratt and Taubin), resulting in diameter profiles for each detected tree. Diameter at breast height (DBH) was determined using both the single value for the diameter fitted at the nominal breast height and by a linear fit of the stem diameter vertical profile. The latter is intended to reduce the influence of outliers and errors in the ground level determination. TLS-extracted DBH was compared to tape-measured DBH. Results show that tree stems with an unobstructed view to the scanner can be successfully extracted automatically from range images of the TLS data with detection rates of 94% for Beech and 96% for Douglas fir. If occlusion of trees is accounted for stem detection rates decrease to 85% (Beech) and 84% (Douglas fir). As far as the DBH estimation is concerned, both DBH extraction methods yield estimates which agree with reference measurements, however, the linear fit based approach proved to be more robust for the single scan DBH extraction (RMSE range 1.39–1.74 cm compared to 1.47–2.43 cm). With regard to the different circle fit algorithms applied, the algorithm by Lemen showed the best overall performance (RMSE range 1.39–1.65 cm compared to 1.49–2.43 cm). The Lemen algorithm was also found to be more robust in case of noisy data. Compared to the single scans, the DBH extraction from the merged scan data proved to be superior with significant lower RMSE’s (0.66–1.21 cm). The influence of scan mode and circle fitting is reflected in the stem volume estimates, too. Stem volumes extracted from the single scans exhibit a large variability with deviations from the reference volumes ranging from −34% to 44%. By contrast volumes extracted from the merged scans only vary weakly (−2% to 6%) and show a marginal influence of circle fitting.  相似文献   

6.
To support the adoption of precision agricultural practices in horticultural tree crops, prior research has investigated the relationship between crop vigour (height, canopy density, health) as measured by remote sensing technologies, to fruit quality, yield and pruning requirements. However, few studies have compared the accuracy of different remote sensing technologies for the estimation of tree height. In this study, we evaluated the accuracy, flexibility, aerial coverage and limitations of five techniques to measure the height of two types of horticultural tree crops, mango and avocado trees. Canopy height estimates from Terrestrial Laser Scanning (TLS) were used as a reference dataset against height estimates from Airborne Laser Scanning (ALS) data, WorldView-3 (WV-3) stereo imagery, Unmanned Aerial Vehicle (UAV) based RGB and multi-spectral imagery, and field measurements. Overall, imagery obtained from the UAV platform were found to provide tree height measurement comparable to that from the TLS (R2 = 0.89, RMSE = 0.19 m and rRMSE = 5.37 % for mango trees; R2 = 0.81, RMSE = 0.42 m and rRMSE = 4.75 % for avocado trees), although coverage area is limited to 1–10 km2 due to battery life and line-of-sight flight regulations. The ALS data also achieved reasonable accuracy for both mango and avocado trees (R2 = 0.67, RMSE = 0.24 m and rRMSE = 7.39 % for mango trees; R2 = 0.63, RMSE = 0.43 m and rRMSE = 5.04 % for avocado trees), providing both optimal point density and flight altitude, and therefore offers an effective platform for large areas (10 km2–100 km2). However, cost and availability of ALS data is a consideration. WV-3 stereo imagery produced the lowest accuracies for both tree crops (R2 = 0.50, RMSE = 0.84 m and rRMSE = 32.64 % for mango trees; R2 = 0.45, RMSE = 0.74 m and rRMSE = 8.51 % for avocado trees) when compared to other remote sensing platforms, but may still present a viable option due to cost and commercial availability when large area coverage is required. This research provides industries and growers with valuable information on how to select the most appropriate approach and the optimal parameters for each remote sensing platform to assess canopy height for mango and avocado trees.  相似文献   

7.
The accurate estimation of leaf water content (LWC) and knowledge about its spatial variation are important for forest and agricultural management since LWC provides key information for evaluating plant physiology. Hyperspectral data have been widely used to estimate LWC. However, the canopy reflectance can be affected by canopy structure, thereby introducing error to the retrieval of LWC from hyperspectral data alone. Radiative transfer models (RTM) provide a robust approach to combine LiDAR and hyperspectral data in order to address the confounding effects caused by the variation of canopy structure. In this study, the INFORM model was adjusted to retrieve LWC from airborne hyperspectral and LiDAR data. Two structural parameters (i.e. stem density and crown diameter) in the input of the INFORM model that affect canopy reflectance most were replaced by canopy cover which could be directly obtained from LiDAR data. The LiDAR-derived canopy cover was used to constrain in the inversion procedure to alleviate the ill-posed problem. The models were validated against field measurements obtained from 26 forest plots and then used to map LWC in the southern part of the Bavarian Forest National Park in Germany. The results show that with the introduction of prior information of canopy cover obtained from LiDAR data, LWC could be retrieved with a good accuracy (R2 = 0.87, RMSE = 0.0022 g/cm2, nRMSE = 0.13). The adjustment of the INFORM model facilitated the introduction of prior information over a large extent, as the estimation of canopy cover can be achieved from airborne LiDAR data.  相似文献   

8.
The creation of a quality Digital Terrain Model (DTM) is essential for representing and analyzing the Earth in a digital form. The continuous improvements in the acquisition and the potential of airborne Light Detection and Ranging (LiDAR) data are increasing the range of applications of this technique to the study of the Earth surface. The aim of this study was to determine the optimal parameters for calculating a DTM by using an iterative algorithm to select minimum elevations from LiDAR data in a steep mountain area with shrub vegetation. The parameters were: input data type, analysis window size, and height thresholds. The effects of slope, point density, and vegetation on DTM accuracy were also analyzed. The results showed that the lowest root mean square error (RMSE) was obtained with an analysis window size of 10 m, 5 m, and 2.5 m, rasterized data as input data, and height thresholds equal to or greater than 1.5 m. These parameters showed a RMSE of 0.19 m. When terrain slope varied from 0–10% to 50–60%, the RMSE increased by 0.11 m. The RMSE decreased by 0.06 m when point density was increased from 4 to 8 points/m2, and increased by 0.05 m in dense vegetation areas.  相似文献   

9.
Obtaining reliable measures of tree canopy height across large areas is a central element of forest inventory and carbon accounting. Recent years have seen an increased emphasis on the use of active sensors like Radar and airborne LiDAR (light detection and scanning) systems to estimate various 3D characteristics of canopy and crown structure that can be used as predictors of biomass. However, airborne LiDAR data are expensive to acquire, and not often readily available across large remote landscapes. In this study, we evaluated the potential of stereo imagery from commercially available Very High Resolution (VHR) satellites as an alternative for estimating canopy height variables in Australian tropical savannas, using a semi-global dense matching (SGM) image-based technique. We assessed and compared the completeness and vertical accuracy of extracted canopy height models (CHMs) from GeoEye 1 and WorldView 1 VHR satellite stereo pairs and summarised the factors influencing image matching effectiveness and quality.Our results showed that stereo dense matching using the SGM technique severely underestimates tree presence and canopy height. The highest tree detection rates were achieved by using the near-infrared (NIR) band of GE1 (8–9%). WV1-GE1 cross-satellite (mixed) models did not improve the quality of extracted canopy heights. We consider these poor detection rates and height retrievals to result from: i) the clumping crown structure of the dominant Eucalyptus spp.; ii) their vertically oriented leaves (affecting the bidirectional reflectance distribution function); iii) image band radiometry and iv) wind induced crown movement affecting stereo-pair point matching. Our detailed analyses suggest that current commercially available VHR satellite data (0.5 m resolution) are not well suited to estimating canopy height variables, and therefore above ground biomass (AGB), in Eucalyptus dominated north Australian tropical savanna woodlands.  相似文献   

10.
The Geoscience Laser Altimeter System (GLAS) aboard Ice, Cloud and land Elevation Satellite (ICESat) is a spaceborne LiDAR sensor. It is the first LiDAR instrument which can digitize the backscattered waveform and offer near global coverage. Among others, scientific objectives of the mission include precise measurement of vegetation canopy heights. Existing approaches of waveform processing for canopy height estimation suggest Gaussian decomposition of the waveform which has the limitation to properly characterize significant peaks and results in discrepant information. Moreover, in most cases, Digital Terrain Models (DTMs) are required for canopy height estimation. This paper presents a new automated method of GLAS waveform processing for extracting vegetation canopy height in the absence of a DTM. Canopy heights retrieved from GLAS waveforms were validated with field measured heights. The newly proposed method was able to explain 79% of variation in canopy heights with an RMSE of 3.18 m, in the study area. The unexplained variation in canopy heights retrieved from GLAS data can be due to errors introduced by footprint eccentricity, decay of energy between emitted and received signals, uncertainty in the field measurements and limited number of sampled footprints.Results achieved with the newly proposed method were encouraging and demonstrated its potential of processing full-waveform LiDAR data for estimating forest canopy height. The study also had implications on future full-waveform spaceborne missions and their utility in vegetation studies.  相似文献   

11.
小叶锦鸡儿是内蒙古灌丛化草原中最具代表性的景观植物,准确估算小叶锦鸡儿灌丛的地上生物量对研究灌丛化草原生态系统、监测草原灌丛化程度具有重要意义。地基激光雷达TLS(Terrestrial Laser Scanning)可通过获取高密度点云数据准确估算灌木体积,被广泛应用于反演灌木生物量,但在灌丛化草原中尚未得到有效应用。本研究首先在中国科学院灌丛化草地植被恢复试验区获取了5个样方(10 m×10 m)共42株灌丛的TLS点云数据及实测生物量信息;然后分别使用整体凸包法、切片凸包法、切片分割法、体积表面差分法、体素法5种方法计算灌丛体积并与实测生物量进行回归分析;最后,通过留一交叉验证对5种方法建立的生物量估算模型精度进行对比分析。结果表明:TLS可在不破坏植被的情况下实现快速、准确地小叶锦鸡儿灌丛生物量反演,是传统野外调查方法的可靠替代技术。研究中采用的5种方法均能较好地估算灌丛生物量,其中:(1)相比于整体凸包法(R 2=0.87, p<0.001, RMSE=30.50 g),切片凸包法(R 2=0.89, p<0.001, RMSE=28.01 g)与切片分割法(R 2=0.88, p<0.001, RMSE=29.03 g)可有效减弱离群点造成的体积高估,生物量估算精度有所提升;(2)格网大小为3 cm、高度统计变量选取标准差时,体积表面差分法计算的体积与实测生物量拟合度最好(R 2=0.89, p<0.001, RMSE=28.89 g),表明高度标准差是估算小叶锦鸡儿灌丛生物量的强预测因子;(3)体素法解释了生物量估计值90%的变化(R 2=0.90, p<0.001, RMSE=26.28 g),是适合小叶锦鸡儿灌丛生物量反演的最优模型。  相似文献   

12.
结合机载LiDAR数据,提出了一种改进的GLAS光斑点冠层高度地形校正模型,以校正后的GLAS光斑点作为输入样本,结合MODIS遥感影像,利用支持向量回归(SVR)的方法对研究区森林冠层高度进行分生态区估测,并利用野外调查数据和机载LiDAR冠层高度结果对估测结果进行验证。结果显示:研究区的坡度等级直接影响GLAS光斑点森林冠层高度估测精度,改进的地形校正模型可以较好的减小坡度对GLAS光斑点森林冠层高度估测的影响,模型精度RMSE稳定在3.25~3.48 m;不同生态分区的SVR模型估测精度较为稳定,其RMSE=6.41~7.56 m;与算数平均高相比,样地的Lorey's高与制图结果拟合最好,不同生态分区平均估测精度为80.3%。机载LiDAR冠层高度结果的验证平均精度为79.5%,和Lorey's高验证结果呈现较好的一致性。  相似文献   

13.
This article's goal is to explore the benefits of using Digital Surface Model (DSM) and Digital Terrain Model (DTM) derived from LiDAR acquisitions for characterizing the horizontal structure of different facies in forested areas (primary forests vs. secondary forests) within the framework of an object-oriented classification. The area under study is the island of Mayotte in the western Indian Ocean. The LiDAR data were the data originally acquired by an airborne small-footprint discrete-return LiDAR for the “Litto3D” coastline mapping project. They were used to create a Digital Elevation Model (DEM) at a spatial resolution of 1 m and a Digital Canopy Model (DCM) using median filtering. The use of two successive segmentations at different scales allowed us to adjust the segmentation parameters to the local structure of the landscape and of the cover. Working in object-oriented mode with LiDAR allowed us to discriminate six vegetation classes based on canopy height and horizontal heterogeneity. This heterogeneity was assessed using a texture index calculated from the height-transition co-occurrence matrix. Overall accuracy exceeds 90%. The resulting product is the first vegetation map of Mayotte which emphasizes the structure over the composition.  相似文献   

14.
This study scrutinises the use of terrestrial laser scanning (TLS) to measure diameter at breast height (DBH) and tree height at individual tree species level. LiDAR point cloud scans are collected from uniformly defined control points. The result of processed TLS data demonstrates the precise measurements of tree height and DBH by comparing it with field data (DBH, tree height, tree species and location). The average tree height and DBH obtained through TLS measurements were 9.44?m and 43.30?cm, respectively. A linear equation between TLS derived parameters and field measured values were established, which gave the coefficient of determination (r2) of 0.79 and 0.96 for tree height and DBH, respectively. Further, these parameters were used to calculate above ground biomass (AGB) for individual tree species by considering a non-destructive approach. The total AGB and carbon stock from 80 different trees are computed to be 49.601 and 22.320?tonnes, respectively.  相似文献   

15.
Non-destructive and accurate estimation of crop biomass is crucial for the quantitative diagnosis of growth status and timely prediction of grain yield. As an active remote sensing technique, terrestrial laser scanning (TLS) has become increasingly available in crop monitoring for its advantages in recording structural properties. Some researchers have attempted to use TLS data in the estimation of crop aboveground biomass, but only for part of the growing season. Previous studies rarely investigated the estimation of biomass for individual organs, such as the panicles in rice canopies, which led to the poor understanding of TLS technology in monitoring biomass partitioning among organs. The objective of this study was to investigate the potential of TLS in estimating the biomass for individual organs and aboveground biomass of rice and to examine the feasibility of developing universal models for the entire growing season. The field plots experiments were conducted in 2017 and 2018 and involved different nitrogen (N) rates, planting techniques and rice varieties. Three regression approaches, stepwise multiple linear regression (SMLR), random forest regression (RF) and linear mixed-effects (LME) modeling, were evaluated in estimating biomass with extensive TLS and biomass data collected at multiple phenological stages of rice growth across the entire season. The models were calibrated with the 2017 dataset and validated independently with the 2018 dataset.The results demonstrated that growth stage in LME modeling was selected as the most significant random effect on rice growth among the three candidates, which were rice variety, growth stage and planting technique. The LME models grouped by growth stage exhibited higher validation accuracies for all biomass variables over the entire season to varying degrees than SMLR models and RF models. The most pronounced improvement with a LME model was obtained for panicle biomass, with an increase of 0.74 in R2 (LME: R2 = 0.90, SMLR: R2 = 0.16) and a decrease of 1.15 t/ha in RMSE (LME: RMSE =0.79 t/ha, SMLR: RMSE =2.94 t/ha). Compared to SMLR and RF, LME modeling yielded similar estimation accuracies of aboveground biomass for pre-heading stages, but significantly higher accuracies for post-heading stages (LME: R2 = 0.63, RMSE =2.27 t/ha; SMLR: R2 = 0.42, RMSE =2.42 t/ha; RF: R2 = 0.57, RMSE =2.80 t/ha). These findings implied that SMLR was only suitable for the estimation of biomass at pre-heading stages and LME modeling performed remarkably well across all growth stages, especially for post-heading. The results suggest coupling TLS with LME modeling is a promising approach to monitoring rice biomass at post-heading stages at high accuracy and to overcoming the saturation of canopy reflectance signals encountered in optical remote sensing. It also has great potential in the monitoring of other crops in cloud-cover conditions and the instantaneous prediction of grain yield any time before harvest.  相似文献   

16.
机载激光雷达及高光谱的森林乔木物种多样性遥感监测   总被引:1,自引:0,他引:1  
利用机载LiDAR和高光谱数据并结合37个地面调查样本数据,基于结构差异与光谱变异理论,通过相关分析法分别筛选了3个最优林冠结构参数和6个最优光谱指数,在单木尺度上利用自适应C均值模糊聚类算法,在神农架国家自然保护区开展森林乔木物种多样性监测,实现了森林乔木物种多样性的区域成图。研究结果表明,(1)基于结合形态学冠层控制的分水岭算法可以获得较高精度的单木分割结果(R~2=0.88,RMSE=13.17,P0.001);(2)基于LiDAR数据提取的9个结构参数中,95%百分位高度、冠层盖度和植被穿透率为最优结构参数,与Shannon-Wiener指数的相关性达到R~2=0.39—0.42(P0.01);(3)基于机载高光谱数据筛选的16个常用的植被指数中,CRI、OSAVI、Narrow band NDVI、SR、Vogelmann index1、PRI与Shannon-Wiener指数的相关性最高(R~2=0.37—0.45,P0.01);(4)在研究区,利用以30 m×30 m为窗口的自适应模糊C均值聚类算法可预测的最大森林乔木物种数为20,物种丰富度的预测精度为R~2=0.69,RMSE=3.11,Shannon-Wiener指数的预测精度为R~2=0.70,RMSE=0.32。该研究在亚热带森林开展乔木物种多样性监测,是在区域尺度上进行物种多样性成图的重要实践,可有效补充森林生物多样性本底数据的调查手段,有助于实现生物多样性的长期动态监测及科学分析森林物种多样性的现状和变化趋势。  相似文献   

17.
In this study, we explored the capacity of vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance products to characterize global savannas in Australia, Africa and South America. The savannas were spatially defined and subdivided using the World Wildlife Fund (WWF) global ecoregions and MODIS land cover classes. Average annual profiles of Normalized Difference Vegetation Index, shortwave infrared ratio (SWIR32), White Sky Albedo (WSA) and the Structural Scattering Index (SSI) were created. Metrics derived from average annual profiles of vegetation indices were used to classify savanna ecoregions. The response spaces between vegetation indices were used to examine the potential to derive structural and fractional cover measures. The ecoregions showed distinct temporal profiles and formed groups with similar structural properties, including higher levels of woody vegetation, similar forest–savanna mixtures and similar grassland predominance. The potential benefits from the use of combinations of indices to characterize savannas are discussed.  相似文献   

18.
Discriminating laser scanner data points belonging to ground from points above-ground (vegetation or buildings) is a key issue in research. Methods for filtering points into ground and non-ground classes have been widely studied mostly on datasets derived from airborne laser scanners, less so for terrestrial laser scanners. Recent developments in terrestrial laser sensors (longer ranges, faster acquisition and multiple return echoes) has aroused greater interest for surface modelling applications. The downside of TLS is that a typical dataset has high variability in point density, with evident side-effects on processing methods and CPU-time. In this work we use a scan dataset from a sensor which returns multiple target echoes, in this case providing more than 70 million points on our study site. The area presents low, medium and high vegetation, undergrowth with varying density, as well as bare ground with varying morphology (i.e. very steep slopes as well as flat areas). We test an integrated work-flow for defining a terrain and surface model (DTM and DSM) and successively for extracting information on vegetation density and height distribution on such a complex environment. Attention was given to efficiency and speed of processing. The method consists on a first step which subsets the original points to define ground candidates by taking into account the ordinal return number and the amplitude. A custom progressive morphological filter (opening operation) is applied next, on ground candidate points using a multidimensional grid to account for the fallout in point density as a function of distance from scanner. Vegetation density mapping over the area is then estimated using a weighted ratio of point counts in the tri-dimensional space over each cell. The overall result is a pipeline for processing TLS points clouds with minimal user interaction, producing a Digital Terrain Model (DTM), a Digital Surface Model (DSM), a vegetation density map and a derived Canopy Height Model (CHM). These products are of high importance for many applications ranging from forestry to hydrology and geomorphology.  相似文献   

19.
Accurate representation of leaf area index (LAI) from high resolution satellite observations is obligatory for various modelling exercises and predicting the precise farm productivity. Present study compared the two retrieval approach based on canopy radiative transfer (CRT) method and empirical method using four vegetation indices (VI) (e.g. NDVI, NDWI, RVI and GNDVI) to estimate the wheat LAI. Reflectance observations available at very high (56 m) spatial resolution from Advanced Wide-Field Sensor (AWiFS) sensor onboard Indian Remote Sensing (IRS) P6, Resourcesat-1 satellite was used in this study. This study was performed over two different wheat growing regions, situated in different agro-climatic settings/environments: Trans-Gangetic Plain Region (TGPR) and Central Plateau and Hill Region (CPHR). Forward simulation of canopy reflectances in four AWiFS bands viz. green (0.52–0.59 μm), red (0.62–0.68 μm), NIR (0.77–0.86 μm) and SWIR (1.55–1.70 μm) were carried out to generate the look up table (LUT) using CRT model PROSAIL from all combinations of canopy intrinsic variables. An inversion technique based on minimization of cost function was used to retrieve LAI from LUT and observed AWiFS surface reflectances. Two consecutive wheat growing seasons (November 2005–March 2006 and November 2006–March 2007) datasets were used in this study. The empirical models were developed from first season data and second growing season data used for validation. Among all the models, LAI-NDVI empirical model showed the least RMSE (root mean square error) of 0.54 and 0.51 in both agro-climatic regions respectively. The comparison of PROSAIL retrieved LAI with in situ measurements of 2006–2007 over the two agro-climatic regions produced substantially less RMSE of 0.34 and 0.41 having more R2 of 0.91 and 0.95 for TGPR and CPHR respectively in comparison to empirical models. Moreover, CRT retrieved LAI had less value of errors in all the LAI classes contrary to empirical estimates. The PROSAIL based retrieval has potential for operational implementation to determine the regional crop LAI and can be extendible to other regions after rigorous validation exercise.  相似文献   

20.
陆地总初级生产力遥感估算精度分析   总被引:1,自引:0,他引:1  
林尚荣  李静  柳钦火 《遥感学报》2018,22(2):234-252
准确估算陆地总初级生产力GPP(Gross Primary Productivity)数值对碳循环过程模拟有重要影响。本文介绍了多种基于植被指数以及基于光能利用率的遥感GPP算法,综述了不同算法在其研究区域的估算精度;并分析了MODIS/GPP以及BESS/GPP两种遥感GPP产品在不同植被类型的估算精度。通过对比全球碳通量站网络GPP数据表明,MODIS/GPP产品在全球估算结果具显著相关性(R2=0.59)及中等标准误差(RMSE=2.86 g C/m2/day),估算精度较高的植被类型有落叶阔叶林,草地等;估算精度较低类型包括常绿阔叶林,稀树草原等。本文对GPP产品中存在的不确定性进行分析,通过综述前人研究中发现的遥感估算GPP方法中存在的问题,指出可能的提高卫星遥感GPP产品估算精度的方法及发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号