首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the last two decades, China has introduced a series of agricultural and forestland use reforms, aiming to feed the largest population in the world and maintain ecological services locally and nationally. This paper studies the impacts of local government-driven reforestation on land use and land cover change, as well as its further impacts on livelihoods of upland farmers in Xizhuang watershed. An analysis of aerial photographs and ASTER satellite imagery from 1987 to 2002, respectively, showed that the forest has significantly increased at the expense of decreasing farmland. However, the monoculture reforestation of pine has caused both biophysical and socio-economic consequences. This case study also shows forestry decentralization in China remains incomplete. Land use and land cover change is also a political economic issue. Some of the reforms designed to protect forest resources have had a negative impact on rural livelihoods.  相似文献   

2.
高分辨率卫星遥感影像在土地利用变化动态监测中的应用   总被引:44,自引:27,他引:17  
20世纪80年代初以来,随着经济的快速发展,我国土地利用结构发生了明显的变化,耕地资源数量减少,非农业用地大量增加。及时、精确掌握土地资源的数量、质量分布及其变化趋势,关系着土地资源的持续发展与规划。本文选择地貌类型多样、社会经济发达、土地利用变化较大的北京市昌平区,在RS、G IS支持下对土地利用变化进行动态监测、制图与动态变化分析典型试验。为了进行土地利用的动态变化分析,获取了昌平地区俄罗斯KOCMOC卫星1986年与1998年SPIN-2 2m分辨率的遥感影像数据,同时获取了法国SPOT-5卫星2004年2.5m分辨率遥感影像数据,以及相应的分辨率略低的多波段遥感影像数据。完成了1986年、1998年、2004三个年分的土地利用图的编制,并完成了1986-1998年、1998-2004年以及1986-2004年三个时期昌平区土地利用变化图及土地利用动态变化分析。  相似文献   

3.
Pest risk maps for agricultural use are usually constructed from data obtained from in-situ meteorological weather stations, which are relatively sparsely distributed and are often quite expensive to install and difficult to maintain. This leads to the creation of maps with relatively low spatial resolution, which are very much dependent on interpolation methodologies. Considering that agricultural applications typically require a more detailed scale analysis than has traditionally been available, remote sensing technology can offer better monitoring at increasing spatial and temporal resolutions, thereby, improving pest management results and reducing costs. This article uses ground temperature, or land surface temperature (LST), data distributed by EUMETSAT/LSASAF (with a spatial resolution of 3 × 3 km (nadir resolution) and a revisiting time of 15 min) to generate one of the most commonly used parameters in pest modeling and monitoring: “thermal integral over air temperature (accumulated degree-days)”. The results show a clear association between the accumulated LST values over a threshold and the accumulated values computed from meteorological stations over the same threshold (specific to a particular tomato pest). The results are very promising and enable the production of risk maps for agricultural pests with a degree of spatial and temporal detail that is difficult to achieve using in-situ meteorological stations.  相似文献   

4.
The need for quantitative and accurate information to characterize the state and evolution of vegetation types at a national scale is widely recognized. This type of information is crucial for the Democratic Republic of Congo, which contains the majority of the tropical forest cover of Central Africa and a large diversity of habitats. In spite of recent progress in earth observation capabilities, vegetation mapping and seasonality analysis in equatorial areas still represent an outstanding challenge owing to high cloud coverage and the extent and limited accessibility of the territory. On one hand, the use of coarse-resolution optical data is constrained by performance in the presence of cloud screening and by noise arising from the compositing process, which limits the spatial consistency of the composite and the temporal resolution. On the other hand, the use of high-resolution data suffers from heterogeneity of acquisition dates, images and interpretation from one scene to another. The objective of the present study was to propose and demonstrate a semi-automatic processing method for vegetation mapping and seasonality characterization based on temporal and spectral information from SPOT VEGETATION time series. A land cover map with 18 vegetation classes was produced using the proposed method that was fed by ecological knowledge gathered from botanists and reference documents. The floristic composition and physiognomy of each vegetation type are described using the Land Cover Classification System developed by the FAO. Moreover, the seasonality of each class is characterized on a monthly basis and the variation in different vegetation indicators is discussed from a phenological point of view. This mapping exercise delivers the first area estimates of seven different forest types, five different savannas characterized by specific seasonality behavior and two aquatic vegetation types. Finally, the result is compared to two recent land cover maps derived from coarse-resolution (GLC2000) and high-resolution imagery (Africover).  相似文献   

5.
Until recently, land surveys and digital interpretation of remotely sensed imagery have been used to generate land use inventories. These techniques however, are often cumbersome and costly, allocating large amounts of technical and temporal costs. The technological advances of web 2.0 have brought a wide array of technological achievements, stimulating the participatory role in collaborative and crowd sourced mapping products. This has been fostered by GPS-enabled devices, and accessible tools that enable visual interpretation of high resolution satellite images/air photos provided in collaborative mapping projects. Such technologies offer an integrative approach to geography by means of promoting public participation and allowing accurate assessment and classification of land use as well as geographical features. OpenStreetMap (OSM) has supported the evolution of such techniques, contributing to the existence of a large inventory of spatial land use information. This paper explores the introduction of this novel participatory phenomenon for land use classification in Europe's metropolitan regions. We adopt a positivistic approach to assess comparatively the accuracy of these contributions of OSM for land use classifications in seven large European metropolitan regions. Thematic accuracy and degree of completeness of OSM data was compared to available Global Monitoring for Environment and Security Urban Atlas (GMESUA) datasets for the chosen metropolises. We further extend our findings of land use within a novel framework for geography, justifying that volunteered geographic information (VGI) sources are of great benefit for land use mapping depending on location and degree of VGI dynamism and offer a great alternative to traditional mapping techniques for metropolitan regions throughout Europe. Evaluation of several land use types at the local level suggests that a number of OSM classes (such as anthropogenic land use, agricultural and some natural environment classes) are viable alternatives for land use classification. These classes are highly accurate and can be integrated into planning decisions for stakeholders and policymakers.  相似文献   

6.
Land cover dynamics at the African continental scale is of great importance for global change studies. Actually, four satellite-derived land cover maps of Africa now available, e.g. ECOCLIMAP, GLC2000, MODIS and GLOBCOVER, are based on images acquired in the 2000s. This study aims at stressing the compliances and the discrepancies between these four land cover classifications systems. Each of them used different mapping initiatives and relies on different mapping standards, which supports the present investigation. In order to do a relative comparison of the four maps, a preamble was to reconcile their thematic legends into more aggregated categories after a projection into the same spatial resolution. Results show that the agreement between the four land cover products is between 56 and 69%. While all these land cover datasets show a reasonable agreement in terms of surface types and spatial distribution patterns, mapping of heterogeneous landscapes in the four products is not very successful. Land cover products based on remote sensing imagery can indeed significantly be improved by using smarter algorithms, better timing of image acquisition, improved class definitions. Either will help to improve the accuracy of future land cover maps at the African continental scale. Data producers may use the areas of spatial agreement for training area selection while users might need to verify the information in the areas of disagreement using additional data sources.  相似文献   

7.
多时相TM影像相对辐射校正研究   总被引:19,自引:0,他引:19  
多时相影像对应波段中地物波谱“准”不变特征点(Pseudo-Invariant Features,PIFs)的选取是相对辐射校正的前提,采用目视解译选取主观性较强,在一定程度上影响了校正精度。利用绍兴试验区两时相TM影像,通过样本点间差异阈值,主成份分析和回归分析方法控制选取影像对应波段间的PIFs,使得校正样本点的选取具有客观性。在此基础上获取增益和偏移量并对两时相影像进行相对辐射校正,取得了较好的校正效果,从而有利于土地利用/覆盖变化监测。  相似文献   

8.
地表覆盖的高效变化检测在地理国情监测中具有重要意义。本文针对当前地表覆盖检测人工目视解译方法效率低,以及软件自动解译错检率、漏检率较高的特点和现状,提出了一种基于联合特征的地表覆盖类型自动变化检测方法。该方法通过对比7种不同的特征联合方案,确立了联合灰度共生矩阵、灰度直方图、光谱统计特征、对象特征的最优组合形式,并设计支持向量机高维度分类器进行分类。试验结果表明,在浙江省复杂地表覆盖分布情况下,基于分辨率优于1 m的国产高分卫星影像,该方法对房屋建筑区、建筑工地等人工构筑物类型变化检测的正确率达到85%以上,对耕地、草地等植被类型也能取得较好的检测效果。  相似文献   

9.
The mountainous areas of the northwestern Iberian Peninsula have undergone intense land abandonment. In this work, we wanted to determine if the abandonment of the rural areas was the main driver of landscape dynamics in Gerês–Xurés Transboundary Biosphere Reserve (NW Iberian Peninsula), or if other factors, such as wildfires and the land management were also directly affecting these spatio-temporal dynamics. For this purpose, we used earth observation data acquired from Landsat TM and ETM + satellite sensors, complemented by ancillary data and prior field knowledge, to evaluate the land use/land cover changes in our study region over a 10-year period (2000–2010). The images were radiometrically calibrated using a digital elevation model to avoid cast- and self-shadows and different illumination effects caused by the intense topographic variations in the study area. We applied a maximum likelihood classifier, as well as other five approaches that provided insights into the comparison of thematic maps. To describe the land cover changes we addressed the analysis from a multilevel approach in three areas with different regimes of environmental protection. The possible impact of wildfires was assessed from statistical and spatially explicit fire data. Our findings suggest that land abandonment and forestry activities are the main factors causing the changes in landscape patterns. Specifically, we found a strong decrease of the ‘meadows and crops’ and ‘sparse vegetation areas’ in favor of woodlands and scrublands. In addition, the huge impact of wildfires on the Portuguese side have generated new ‘rocky areas’, while on the Spanish side its impact does not seem to have been a decisive factor on the landscape dynamics in recent years. We conclude rural exodus of the last century, differences in land management and fire suppression policies between the two countries and the different protection schemes could partly explain the different patterns of changes recorded in these covers.  相似文献   

10.
Currently, methods of extracting spatial information from satellite images are mainly based on visual interpretations and drawing the consequences by human factor, which is both costly and time consuming. A large volume of data collected by satellite sensors, and significant improvement in spatial and spectral resolution of these images require the development of new methods for optimal use of these data in order to produce rapid economic and updating road maps. In this study, a new automatic method is proposed for road extraction by integrating the SVM and Level Set methods. The estimated probability of classification by SVM is used as input in Level Set Method. The average of completeness, correctness, and quality was 84.19, 88.69 and 76.06% respectively indicate high performance of proposed method for road extraction from Google Earth images.  相似文献   

11.
黎夏  叶嘉安 《遥感学报》1997,1(4):282-289
近年来,珠江三角洲由于经济的快速发展,城市用地急剧增加,利用多时相的遥感图,可以定量地监测这种城市化的现象。但理,由一般的遥感动态监测方法所得的结果往往夸大变化的程度,以及获得一些不合理的结论.该文提出主成分分析的方法来改善遥感动态监测的精度。将该方法应用应用于珠江三角洲发展最快的东莞市,获得了较满意的结果。  相似文献   

12.
The mixed pixel problem affects the extraction of land cover information from remotely sensed images. Super-resolution mapping (SRM) can produce land cover maps with a finer spatial resolution than the remotely sensed images, and reduce the mixed pixel problem to some extent. Traditional SRMs solely adopt a single coarse-resolution image as input. Uncertainty always exists in resultant fine-resolution land cover maps, due to the lack of information about detailed land cover spatial patterns. The development of remote sensing technology has enabled the storage of a great amount of fine spatial resolution remotely sensed images. These data can provide fine-resolution land cover spatial information and are promising in reducing the SRM uncertainty. This paper presents a spatial–temporal Hopfield neural network (STHNN) based SRM, by employing both a current coarse-resolution image and a previous fine-resolution land cover map as input. STHNN considers the spatial information, as well as the temporal information of sub-pixel pairs by distinguishing the unchanged, decreased and increased land cover fractions in each coarse-resolution pixel, and uses different rules in labeling these sub-pixels. The proposed STHNN method was tested using synthetic images with different class fraction errors and real Landsat images, by comparing with pixel-based classification method and several popular SRM methods including pixel-swapping algorithm, Hopfield neural network based method and sub-pixel land cover change mapping method. Results show that STHNN outperforms pixel-based classification method, pixel-swapping algorithm and Hopfield neural network based model in most cases. The weight parameters of different STHNN spatial constraints, temporal constraints and fraction constraint have important functions in the STHNN performance. The heterogeneity degree of the previous map and the fraction images errors affect the STHNN accuracy, and can be served as guidances of selecting the optimal STHNN weight parameters.  相似文献   

13.
Pasture land occupies extensive areas and is increasingly of interest for sustainable intensification, land use diversification, greenhouse gas emission mitigation, and bioenergy expansion. Accurate maps of pasture and other managed land covers are needed for monitoring, intercomparison, assessing potential uses, and planning. Yet, land maps can be generated from different types of classification datasets – i.e. as a land use or land cover type – as well as different sources. In this study our aim was to assess and compare land use and land cover definitions for pasture, and examine variability in the resulting pasture land classification maps. First, we conducted a review of pasture definitions in commonly used mapping databases. We then performed a case study involving Brazil, a dominant global producer of pasture-based livestock. Six geospatial databases were harmonized and compared to each other and to MODIS land cover for Brazil including the Cerrado and Amazon biomes, which are internationally recognized for their ecological value. Total pasture area estimates for Brazil ranged by a factor greater than four, from about 430,000 km2 to over 1.7 million km2. Our analysis showed high variability in pasture land maps depending on the definitions, methods and underlying datasets used to generate them. The results are illustrative of a symptomatic problem for all manage land datasets, demonstrating the need for land categories studies and geospatial data resources that fully define land terms and describe measurable management attributes. Additionally, the suitability of individual geospatial datasets for different types of land mapping must be better described and reported. These recommendations would help bring more consistency in the consideration of managed lands in research, reporting, and policy development, as demonstrated here for pasture land using six case study datasets from multiple sources.  相似文献   

14.
Monitoring agricultural land cover is highly relevant for global early warning systems such as ASAP (Anomaly hot Spots of Agricultural Production), because it represents the basis for detecting production deficits in food security assessment. Given the significant inconsistencies among existing land cover datasets, there is a need to obtain a more accurate representation of the spatial distribution and extent of agricultural area in Africa. In this research, we explore a fusion approach that combines the strength of individual datasets and minimises their limitations. Specifically, a semi-automatic method is developed, relying on multi-criteria analysis (MCA) complemented with manual fine-tuning using the best-rated datasets, to generate two hybrid and static agricultural masks – one for cropland and another for grassland. Following a comprehensive selection of land cover maps, each dataset is evaluated at country level according to five criteria: timeliness, spatial resolution, comparison with FAO statistics, accuracy assessment and expert evaluation. A sensitivity analysis is performed, based on an evaluation of the impact of weight settings on the resulting land cover. The proposed methodology is capable of improving agricultural characterisation in Africa. As a result, two static masks at 250 m spatial resolution for the nominal year 2016 are provided.  相似文献   

15.
基于多波段统计检验的土地利用变化检测   总被引:2,自引:1,他引:1  
在将历史土地利用矢量图与新时期遥感影像结合研究的基础上,提出多波段统计检验差异法进行土地利用变化检测,有效避免了传统方法中阈值的不确定性.在黑龙江省佳木斯市开展的试验及精度分析表明,本方法可以在无人工干预的情况下较好地检测出土地利用变化,总体检测精度达到86.2%.  相似文献   

16.
Governments compile their agricultural statistics in tabular form by administrative area, which gives no clue to the exact locations where specific crops are actually grown. Such data are poorly suited for early warning and assessment of crop production. 10-Daily satellite image time series of Andalucia, Spain, acquired since 1998 by the SPOT Vegetation Instrument in combination with reported crop area statistics were used to produce the required crop maps. Firstly, the 10-daily (1998–2006) 1-km resolution SPOT-Vegetation NDVI-images were used to stratify the study area in 45 map units through an iterative unsupervised classification process. Each unit represents an NDVI-profile showing changes in vegetation greenness over time which is assumed to relate to the types of land cover and land use present. Secondly, the areas of NDVI-units and the reported cropped areas by municipality were used to disaggregate the crop statistics. Adjusted R-squares were 98.8% for rainfed wheat, 97.5% for rainfed sunflower, and 76.5% for barley. Relating statistical data on areas cropped by municipality with the NDVI-based unit map showed that the selected crops were significantly related to specific NDVI-based map units. Other NDVI-profiles did not relate to the studied crops and represented other types of land use or land cover. The results were validated by using primary field data. These data were collected by the Spanish government from 2001 to 2005 through grid sampling within agricultural areas; each grid (block) contains three 700 m × 700 m segments. The validation showed 68%, 31% and 23% variability explained (adjusted R-squares) between the three produced maps and the thousands of segment data. Mainly variability within the delineated NDVI-units caused relatively low values; the units are internally heterogeneous. Variability between units is properly captured. The maps must accordingly be considered “small scale maps”. These maps can be used to monitor crop performance of specific cropped areas because of using hypertemporal images. Early warning thus becomes more location and crop specific because of using hypertemporal remote sensing.  相似文献   

17.
根据南京市1998年的出让地价资料,在Access中建立地价样点数据库,并同MapInfo间建立链接,在Map Info中得出住宅地价和商业地价等值线图,分析南京市区地价变化同主要区位因子的关系,在统计学软件SPSS中得出相关模型,并对结果进行解释。  相似文献   

18.
This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.  相似文献   

19.
Reliable land cover land use (LCLU) information, and change over time, is important for Green House Gas (GHG) reporting for climate change documentation. Four different organizations have independently created LCLU maps from 2010 satellite imagery for Malawi for GHG reporting. This analysis compares the procedures and results for those four activities. Four different classification methods were employed; traditional visual interpretation, segmentation and visual labelling, digital clustering with visual identification and supervised signature extraction with application of a decision rule followed by analyst editing. One effort did not report classification accuracy and the other three had very similar and excellent overall thematic accuracies ranging from 85 to 89%. However, despite these high thematic accuracies there were very significant differences in results. National percentages for forest ranged from 18.2 to 28.7% and cropland from 40.5 to 53.7%. These significant differences are concerns for both remote-sensing scientists and decision-makers in Malawi.  相似文献   

20.
In 1999, the Ministry of Land and Resources (MLR) of China launched the National Land Use Change Program especially to monitor the scale and distribution of urban expansion and the decrease in cultivated land through remote sensing technology. This Program has been carried out annually and continuously for seven years since then and played an important role in the policy-making of MLR about land management and planning. This paper gives an overview about this Program and discusses several research issues. First, the remote sensing data sources and other ancillary data used in this Program are presented. The approaches for image preprocessing, i.e. radiometric normalization, image geometric rectification and image fusion are then introduced with an emphasis on the algorithm development for image registration. Second, land use change detection technique is the most critical and complex aspect of the Program. The methodologies for change detection using either bi-temporal image pair or one existing land use map and one remotely sensed image are detailed. Third, since the data of land use changes derived from remote sensing will be operationally used for local and central government, field validation and accuracy assessment are crucial to ensure the reliability of change detection results. The strategy of field work and the resulting accuracy evaluations is presented. The land use and change information derived from remotely sensed data has wide applications for land management, including land use database updating, verification of land use planning and monitoring of national high-tech parks. Last, suggestions on how to make full use of the images and change detection result, to improve the consistency of land use classification and to develop change detection algorithms for diverse and complex remote sensing data are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号