首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The spectral reflectance of most plant species is quite similar, and thus the feasibility of identifying most plant species based on single date multispectral data is very low. Seasonal phenological patterns of plant species may enable to face the challenge of using remote sensing for mapping plant species at the individual level. We used a consumer-grade digital camera with near infra-red capabilities in order to extract and quantify vegetation phenological information in four East Mediterranean sites. After illumination corrections and other noise reduction steps, the phenological patterns of 1839 individuals representing 12 common species were analyzed, including evergreen trees, winter deciduous trees, semi-deciduous summer shrubs and annual herbaceous patches. Five vegetation indices were used to describe the phenology: relative green and red (green\red chromatic coordinate), excess green (ExG), normalized difference vegetation index (NDVI) and green-red vegetation index (GRVI). We found significant differences between the phenology of the various species, and defined the main phenological groups using agglomerative hierarchical clustering. Differences between species and sites regarding the start of season (SOS), maximum of season (MOS) and end of season (EOS) were displayed in detail, using ExG values, as this index was found to have the lowest percentage of outliers. An additional visible band spectral index (relative red) was found as useful for characterizing seasonal phenology, and had the lowest correlation with the other four vegetation indices, which are more sensitive to greenness. We used a linear mixed model in order to evaluate the influences of various factors on the phenology, and found that unlike the significant effect of species and individuals on SOS, MOS and EOS, the sites' location did not have a direct significant effect on the timing of phenological events. In conclusion, the relative advantage of the proposed methodology is the exploitation of representative temporal information that is collected with accessible and simple devices, for the subsequent determination of optimal temporal acquisition of images by overhead sensors, for vegetation mapping over larger areas.  相似文献   

2.
黑河流域遥感物候产品验证与分析   总被引:2,自引:0,他引:2  
植被物候遥感产品对全球变化响应、农业生产管理、生态学的应用等多领域研究具有重要意义。但现有植被物候遥感产品还有较多问题,主要包括一方面使用不同参数的时间序列数据以及不同提取算法导致的产品结果差异较大,另一方面在地面验证中地面观测数据与遥感反演数据的物理含义不一致导致的验证方法的系统性误差。本文以黑河流域为研究区,对比验证基于EVI(Enhanced Vegetation Index)时间序列数据提取的MLCD(MODIS global land cover dynamics product)植被遥感物候产品和基于LAI(Leaf Area Index)时间序列数据提取的UMPM(product by universal multi-life-cycle phenology monitoring method)植被遥感物候产品的有效性及精度等。同时,通过验证分析进一步评估基于EVI和LAI时间序列提取的物候特征的差异及特点,探讨由于地面观测植被物候与遥感提取植被物候的物理意义的不一致问题导致的直接验证结果偏差。结果表明:UMPM产品有效性整体高于MLCD产品,但在以草地和灌木为主的稀疏植被区,由于LAI取值精度的原因,UMPM产品存在较多缺失数据,且时空稳定性较低;基于玉米地面观测数据表明,EVI对植被开始生长的信号比LAI更加敏感,更适合提取生长起点,但植被指数易饱和,峰值起点普遍提前,基于LAI提取的峰值起点更加合理。由于地面观测的物候期在后期更加关注果实生长,遥感观测仅关注叶片的生长,遥感定义的峰值终点和生长终点与玉米的乳熟期和成熟期差异较大。  相似文献   

3.
Iraq contains the Great Mesopotamian alluvial plain of the Euphrates and Tigris rivers. Its regional vegetation phenological patterns are worthy of investigation because relatively little is known about the phenology of semi-arid environments, and because their inter-annual variation is expected to be driven by uncertain rainfall and varied topography. The aim of this research was to assess and map the spatial variation in key land surface phenology (LSP) parameters over the last decade and their relation with elevation. It is the first study mapping land surface phenology during last decade over the whole of Iraq, and one of only a few studies on vegetation phenology in a semi-arid environment. Time-series of Moderate Resolution Imaging Spectroradiometer (MODIS) normalised difference vegetation index (NDVI) data at 250 m spatial resolution and 8 day temporal resolution, were employed to map the spatial variation in three LSP parameters for the major vegetation types in Iraq during 2001–2012. LSP parameters were defined by inflection points after smoothing the vegetation phenological signals using the Fourier technique. The estimated key LSP parameters indicated that the relatively shorter length of season (LOS) in the north of Iraq resulted from a delayed start of season (SOS). Greater spatial variation occurred in the SOS than end of season (EOS), which may be due to the spatial distribution of rainfall and temperature as a function of elevation. A positive correlation was observed for SOS and EOS with elevation for all major land cover types with EOS producing the largest positive correlation (R2 = 0.685, R2 = 0.638 and R2 = 0.588, p < 0.05 in shrubland, cropland and grassland, respectively). The magnitude of delay in SOS and EOS increased in all land cover types along a rising elevation gradient where for each 500 m increase, SOS was delayed by around 25 or more days and EOS delayed by around 22 or more days, except for grassland. The SOS and EOS also varied temporally during the last decade, particularly the SOS in the lowland, north of the country where the standard deviation was around 80 to 120 days, due mainly to the practice of crop rotation and the traditional biennial cropping system. Thus, the results of this research emphasize the effect of elevation on key LSP parameters over Iraq, for all major vegetation types.  相似文献   

4.
准确量测高海拔山区的植物物候对理解全球变化下的敏感生态系统的响应具有重要意义。利用物候相机和遥感技术开展物候信息的提取和对比,既能准确评估物候相机在山区植物物候提取的性能,又可为山区遥感物候数据反演提供重要参考。利用中国新疆维吾尔自治区天山山区人工观测、物候相机和遥感数据,测试了5种曲线拟合方式与4种物候参数提取方法的20种组合的物候参数提取结果,对比了3种数据在物候信息提取结果的异同。结果表明:(1)植物物候相机能在天山山区草地物候观测中提供高时间分辨率的绿度变化信息,是山区开展物候观测并验证遥感物候数据的有效手段。(2)山区雨雪天气等对相对绿度指数产生较强噪声影响,需要选择合适的滤波器进行去噪。(3)曲线拟合方式和物候提取方法均对物候参数数值产生影响。而提取方法可产生更明显的差异性,其中,阈值法和导数法提取的物候数值相近,开始期与人工观测的返青期一致性较好,停止期与枯黄期一致性较好;而Klosterman方法和Gu方法提取物候数值相近,提取的开始期与人工观测的返青末期一致性较好,停止期与人工观测的枯黄末期一致性较好。(4)20种不同滤波+提取方法的组合形式在山区遥感数据物候信息提取的有效性仅为48%,中分辨率成像光谱仪数据的最有效提取方法为Beck+Derivatives组合,可见光红外成像辐射套件数据的最优提取方法为Beck+Threshold组合和Elmore+Derivatives组合。  相似文献   

5.
植被物候遥感监测研究进展   总被引:11,自引:0,他引:11  
植被物候是研究植被与气候、环境变化间关系的重要参量。本文针对目前常用的阈值法、拟合法和延迟滑动平均法等植被物候遥感监测方法进行比较分析;介绍了传感器网络法、物候模型法等物候遥感监测验证方法;从遥感监测方法和数据源两方面分析物候遥感监测的误差来源;针对目前研究中存在的问题,讨论了遥感物候的主要研究方向:从机理层面,应创新植被物候遥感监测方法;建立标准化地面验证数据源;利用多源遥感数据,组成高时间分辨率的原始遥感数据源,提高植被物候遥感监测的时间分辨率和测算精度。  相似文献   

6.
Phenology is a sensitive and critical feature of vegetation and is a good indicator for climate change studies. The global inventory modelling and mapping studies (GIMMS) normalized difference vegetation index (NDVI) has been the most widely used data source for monitoring of the vegetation dynamics over large geographical areas in the past two decades. With the release of the third version of the NDVI (GIMMS NDVI3g) recently, it is important to compare the NDVI3g data with those of the previous version (NDVIg) to link existing studies with future applications of the NDVI3g in monitoring vegetation phenology. In this study, the three most popular satellite start of vegetation growing season (SOS) extraction methods were used, and the differences between SOSg and SOS3g arising from the methods were explored. The amplitude and the peak values of the NDVI3g are higher than those of the NDVIg curve, which indicated that the SOS derived from the NDVIg (SOSg) was significantly later than that derived from the NDVI3g (SOS3g) based on all the methods, for the whole northern hemisphere. In addition, SOSg and SOS3g both showed an advancing trend during 1982–2006, but that trend was more significant with SOSg than with SOS3g in the results from all three methods. In summary, the difference between SOSg and SOS3g (in the multi-year mean SOS, SOS change slope and the turning point in the time series) varied among the methods and was partly related to latitude. For the multi-year mean SOS, the difference increased with latitude intervals in the low latitudes (0–30°N) and decreased in the mid- and high-latitude intervals. The GIMMS NDVI3g data-sets seemed more sensitive than the GIMMS NDVIg in detecting information about the ground, and the SOS3g data were better correlated both with the in situ observations and the SOS derived from the Moderate Resolution Imaging Spectroradiometer NDVI. For the northern hemisphere, previous satellite measures (SOS derived from GIMMS NDVIg) may have overestimated the advancing trend of the SOS by an average of 0.032 d yr–1.  相似文献   

7.
The accurate and timely estimates of crop physiological growth stages are essential for efficient crop management and precise modeling of agricultural systems. Satellite remote sensing has been widely used to retrieve vegetation phenology metrics at local to global scales. However, most of these phenology metrics (e.g., green-up) are different from crop growth stages (e.g., emergence) used in crop management and modeling. As such, an integrated framework referred to as PhenoCrop was developed to: 1) establish a connection between remote sensing-derived phenology metrics and key crop growth stages based on Wang and Engle plant phenology model and 2) use fused MODIS-Landsat 30 m 8-day reflectance data generated using Kalman Filter-based data fusion technique to produce onset dates of key growth stages of corn (Zea mays L.) and soybeans (Glycine max L.) at 30 m spatial resolution. In this paper, we described the PhenoCrop framework, and tested its performance for the State of Nebraska for 2012–2016 by comparison to observations of estimated key growth stages at four experimental sites, and state-level statistical data from Crop Progress Reports (CPRs) published by the United States Department of Agriculture’s (USDA) National Agricultural Statistical Services (NASS). In addition, to evaluate the suitability of using coarse or high spatial resolution satellite imagery, fused MODIS-Landsat-based estimates were compared with those produced using EOS MODIS 250 m (MOD9Q1) reflectance data.The PhenoCrop estimates captured the typical spatial trends of gradual delay in the progression of the growing season from southeast to northwest Nebraska. Also inter-annual differences due to factors such as weather fluctuations and change in management strategies (e.g., early season in 2012) were evident in the estimates. Validation results revealed that average root mean square error (RMSE) of the state-level estimates of corn and soybean growth stages ranged from 1.10 to 4.20 days and from 3.81 to 7.89 days, respectively, while pixel level estimates had a RMSE ranging from 3.72 to 8.51 days for corn and 4.76–9.51 days for soybean growth stages. Although MODIS 250 m based estimates showed similar general spatial patterns observed in the fused MODIS-Landsat based estimates, the accuracy and ability to capture field scale variations was improved with fused MODIS-Landsat data. Overall, results showed the ability of PhenoCrop framework to provide reliable estimates of crop growth stages that can be highly useful in crop modeling and crop management during the growing season.  相似文献   

8.
Monitoring phenological change in agricultural land improves our understanding of the adaptation of crops to a warmer climate. Winter wheat–maize and winter wheat–cotton double-cropping are practised in most agricultural areas in the North China Plain. A curve-fitting method is presented to derive winter wheat phenology from SPOT-VEGETATION S10 normalized difference vegetation index (NDVI) data products. The method uses a double-Gaussian model to extract two phenological metrics, the start of season (SOS) and the time of maximum NDVI (MAXT). The results are compared with phenological records at local agrometeorological stations. The SOS and MAXT have close agreement with in situ observations of the jointing date and milk-in-kernel date respectively. The phenological metrics detected show spatial variations that are consistent with known phenological characteristics. This study indicates that time-series analysis with satellite data could be an effective tool for monitoring the phenology of crops and its spatial distribution in a large agricultural region.  相似文献   

9.
浅水湖泊水生植被遥感监测研究进展   总被引:1,自引:0,他引:1  
在浅水湖泊中,水生植物具有净化水质、抑制藻类、提供鱼类食物和栖息环境等生态功能,同时,其过度扩张也会加速湖泊淤浅和沼泽化、引起湖泊二次污染等环境负效应.实时动态地掌握湖泊水生植被类群和种群的空间分布及其面积、生物量等指标信息,对湖泊生态修复和评估、水生植被恢复和管理等具有重要现实意义.遥感技术的大面积、实时、动态等特点...  相似文献   

10.
采用GF-1号、ZY-3号以及Landsat-8卫星数据,利用回归模型和像元二分模型,通过对建立的四类植被指数NDVI、MSAVI、MVI和RVI,结合野外调查数据,提出NSD的概念来评价模型及方法的精度。实测数据与各类遥感影像的4种植被指数间均存在着显著的相关关系;通过NSD精度验证,说明空间分辨率较低的遥感数据,在一定程度上提高了反演精度;在4类植被指数中,RVI与MSAVI对于三类数据反演精度较高,且MSAVI对于较低分辨率遥感数据可能具有更好的消除土壤背景影响的作用。  相似文献   

11.
数据驱动的定量遥感研究进展与挑战   总被引:1,自引:0,他引:1  
定量遥感是从原始遥感观测信息中定量推算或反演出地学参量的理论与方法.传统定量遥感主要基于模型驱动,强调通过数学或物理模型完成推算和反演.随着人工智能技术的发展和普及,数据驱动的方式也逐渐受到广泛关注,其强调的是通过机器学习等方式挖掘遥感观测数据中所包含的信息,完成地学参量的定量反演.在强大计算能力的支持下,数据驱动的方...  相似文献   

12.
Land surface phenology has been widely retrieved although no consensus exists on the optimal satellite dataset and the method to extract phenology metrics. This study is the first comprehensive comparison of vegetation variables and methods to retrieve land surface phenology for 1999–2017 time series of Copernicus Global Land products derived from SPOT-VEGETATION and PROBA-V data. We investigated the sensitivity of phenology to (I) the input vegetation variable: normalized difference vegetation index (NDVI), leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and fraction of vegetation cover (FCOVER); (II) the smoothing and gap filling method for deriving seasonal trajectories; and (III) the method to extract phenological metrics: thresholds based on a percentile of the annual amplitude of the vegetation variable, autoregressive moving averages, logistic function fitting, and first derivative methods. We validated the derived satellite phenological metrics (start of the season (SoS) and end of the season (EoS)) using available ground observations of Betula pendula, B. alleghaniensis, Acer rubrum, Fagus grandifolia, and Quercus rubra in Europe (Pan-European PEP725 network) and the USA (National Phenology Network, USA-NPN). The threshold-based method applied to the smoothed and gap-filled LAI V2 time series agreed best with the ground phenology, with root mean square errors of ˜10 d and ˜25 d for the timing of SoS and EoS respectively. This research is expected to contribute for the operational retrieval of land surface phenology within the Copernicus Global Land Service.  相似文献   

13.
Real time, accurate and reliable estimation of maize yield is valuable to policy makers in decision making. The current study was planned for yield estimation of spring maize using remote sensing and crop modeling. In crop modeling, the CERES-Maize model was calibrated and evaluated with the field experiment data and after calibration and evaluation, this model was used to forecast maize yield. A Field survey of 64 farm was also conducted in Faisalabad to collect data on initial field conditions and crop management data. These data were used to forecast maize yield using crop model at farmers’ field. While in remote sensing, peak season Landsat 8 images were classified for landcover classification using machine learning algorithm. After classification, time series normalized difference vegetation index (NDVI) and land surface temperature (LST) of the surveyed 64 farms were calculated. Principle component analysis were run to correlate the indicators with maize yield. The selected LSTs and NDVIs were used to develop yield forecasting equations using least absolute shrinkage and selection operator (LASSO) regression. Calibrated and evaluated results of CERES-Maize showed the mean absolute % error (MAPE) of 0.35–6.71% for all recorded variables. In remote sensing all machine learning algorithms showed the accuracy greater the 90%, however support vector machine (SVM-radial basis) showed the higher accuracy of 97%, that was used for classification of maize area. The accuracy of area estimated through SVM-radial basis was 91%, when validated with crop reporting service. Yield forecasting results of crop model were precise with RMSE of 255 kg ha?1, while remote sensing showed the RMSE of 397 kg ha?1. Overall strength of relationship between estimated and actual grain yields were good with R2 of 0.94 in both techniques. For regional yield forecasting remote sensing could be used due greater advantages of less input dataset and if focus is to assess specific stress, and interaction of plant genetics to soil and environmental conditions than crop model is very useful tool.  相似文献   

14.
应用GA-SVM的渭河水质参数多光谱遥感反演   总被引:3,自引:1,他引:2       下载免费PDF全文
建立了基于支持向量机的遥感水质参数反演模型, 构建了基于浮点数编码的遗传算法优选模型参数。以渭河为研究对象, 基于高分辨率多光谱遥感SPOT-5数据和水质实地监测数据, 分别建立了一元和多元经验模型进行渭河水质参数的反演。在样本数目有限的情况下, 提出的GA-SVM方法的反演结果比神经网络和传统的统计回归方法好, 且各方法的多元回归结果均好于一元回归的结果。SVM具有强的非线性映射能力, 适合小样本情况, 由GA实现了模型参数的自动优选, 使GA-SVM用于解决回归问题表现出优势。将机器学习和全局优化智能  相似文献   

15.
高分辨率遥感影像解译是遥感信息处理领域的研究热点之一,在遥感大数据知识挖掘与智能化分析中起着至关重要的作用,具有重要的民用和军事应用价值。传统的高分辨率遥感影像解译通常采用人工目视解译方式,费时费力且精度低。所以,如何自动、高效地实现高分辨率遥感影像解译是亟待解决的问题。近年来,随着人工智能技术的飞速发展,采用机器学习方法实现高分辨率遥感影像解译已成为主流的研究方向。本文结合高分辨率遥感影像解译的典型任务,如目标检测、场景分类、语义分割、高光谱图像分类等,系统综述了5种代表性的机器学习范式。具体来说,本文分别介绍了不同机器学习范式的定义、常用方法以及代表性应用,包括全监督学习(如支持向量机、K-最近邻、决策树、随机森林、概率图模型)、半监督学习(如纯半监督学习、直推学习、主动学习)、弱监督学习(如多示例学习)、无监督学习(如聚类、主成分分析、稀疏表达)和深度学习(如堆栈自编码机、深度信念网络、卷积神经网络、生成对抗网络)。其次,深入分析五种机器学习范式的优缺点,并总结了它们在遥感影像解译中的典型应用。最后,展望了高分辨率遥感影像解译的机器学习发展方向,如小样本学习、无监督深度学习、强化学习等。  相似文献   

16.
With the availability of high frequent satellite data, crop phenology could be accurately mapped using time-series remote sensing data. Vegetation index time-series data derived from AVHRR, MODIS, and SPOT-VEGETATION images usually have coarse spatial resolution. Mapping crop phenology parameters using higher spatial resolution images (e.g., Landsat TM-like) is unprecedented. Recently launched HJ-1 A/B CCD sensors boarded on China Environment Satellite provided a feasible and ideal data source for the construction of high spatio-temporal resolution vegetation index time-series. This paper presented a comprehensive method to construct NDVI time-series dataset derived from HJ-1 A/B CCD and demonstrated its application in cropland areas. The procedures of time-series data construction included image preprocessing, signal filtering, and interpolation for daily NDVI images then the NDVI time-series could present a smooth and complete phenological cycle. To demonstrate its application, TIMESAT program was employed to extract phenology parameters of crop lands located in Guanzhong Plain, China. The small-scale test showed that the crop season start/end derived from HJ-1 A/B NDVI time-series was comparable with local agro-metrological observation. The methodology for reconstructing time-series remote sensing data had been proved feasible, though forgoing researches will improve this a lot in mapping crop phenology. Last but not least, further studies should be focused on field-data collection, smoothing method and phenology definitions using time-series remote sensing data.  相似文献   

17.
18.
基于GIS的中国东北植被综合分类研究   总被引:53,自引:3,他引:50  
NOAA/AVHRR由于运行周期短、覆盖范围大、成本低、波段宽等特点,目前正越来越广泛地受到人们的普遍关注。在大尺度、中尺度植被遥感上,NOAA/AVHRR具有陆地卫星无法比拟的优势,但在另一方面,NOAAAVHRR也存在分辨率低、数据变形较大和几何畸变较严重等问题。这样,在应用NOAAAVHRR数据进行大区域植被制图时,植被分类的精度仍待提高。本文从理论上探讨了将地理信息系统提供的地理数据与遥感数据复合的可行性;尝试在GIS环境下,将气温、降水、高程3个影响区域植被覆盖的主要指标,按一定的地面网格系统和数学模式进行量化,生成数字地学影像,并使之与经过优化、压缩处理的NOAAAVHRR数据进行复合,对复合后的综合影像进行监督分类。分类结果显示,与传统的应用最大似然分类方法对单一遥感图像分类相比,该综合分类方法分类精度提高了18.3%,该研究方法改变了遥感影像的单一信息结构;丰富了图像的信息含量;完成了地理数据的数字传输、处理、存储及影像化显示。  相似文献   

19.
陆表定量遥感反演方法的发展新动态   总被引:2,自引:0,他引:2  
随着获取的遥感数据越来越多,定量遥感正处于一个飞速发展的时期。本文从反演方法和遥感数据产品生成两个主要方面对近期陆表定量遥感的发展进行评述。由于大气—陆表系统的环境变量数远远超过遥感观测数,定量遥感反演的本质是个病态反演问题。在评述机器学习方法(包括人工神经网络、支持向量回归、多元自适应回归样条函数等)的应用基础上,重点关注克服病态反演的7种正则化方法:多源数据、先验知识、最优化反演的求解约束、时空约束、多反演算法集成、数据同化和尺度转换。定量遥感发展的另外一个显著特征是由数据提供者(比如数据中心)将观测的遥感数据转换成不同的地球生物物理化学参数产品,即遥感高级产品,并服务于数据使用者。概括介绍了北京师范大学牵头研发的GLASS(Global LAnd Surface Satellite)产品的新进展与全球气候数据集的研发情况。  相似文献   

20.
Vegetation phenology has a great impact on land-atmosphere interactions like carbon cycling, albedo, and water and energy exchanges. To understand and predict these critical land-atmosphere feedbacks, it is crucial to measure and quantify phenological responses to climate variability, and ultimately climate change. Coarse-resolution sensors such as MODIS and AVHRR have been useful to study vegetation phenology from regional to global scales. These sensors are, however, not capable of discerning phenological variation at moderate spatial scales. By offering increased observation density and higher spatial resolution, the combination of Landsat and Sentinel-2 time series might provide the opportunity to overcome this limitation.In this study, we analyzed the potential of combined Sentinel-2 and Landsat time series for estimating start of season (SOS) of broadleaf forests across Germany for the year 2018. We tested two common statistical modeling approaches (logistic and generalized additive models using thin plate splines) and the two most commonly used vegetation indices, the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI).We found strong agreement between SOS estimates from logistic and spline models (rEVI = 0.86; rNDVI = 0.65), whereas agreement was higher for EVI than for NDVI (RMSDEVI = 3.07, RMSDNDVI = 5.26 days). The choice of vegetation index thus had a higher impact on the results than the fitting method. The EVI-based SOS also showed higher correlation with ground observations compared to NDVI (rEVI = 0.51, rNDVI = 0.42). Data density played an important role in estimating land surface phenology. Models combining Sentinel-2A/B, with an average cloud-free observation frequency of 12 days, were largely consistent with the combined Landsat and Sentinel-2 models, suggesting that Sentinel-2A/B may be sufficient to capture SOS for most areas in Germany in 2018. However, in non-overlapping swath areas and mountain areas, observation frequency was significantly lower, underlining the need to combine Landsat and Sentinel-2 for consistent SOS estimates over large areas. Our study demonstrates that estimating SOS of temperate broadleaf forests at medium spatial resolution has become feasible with combined Landsat and Sentinel-2 time series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号