首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Forest canopy cover (CC) and above-ground biomass (AGB) are important ecological indicators for forest monitoring and geoscience applications. This study aimed to estimate temperate forest CC and AGB by integrating airborne LiDAR data with wall-to-wall space-borne SPOT-6 data through geostatistical modeling. Our study involved the following approach: (1) reference maps of CC and AGB were derived from wall-to-wall LiDAR data and calibrated by field measurements; (2) twelve discrete LiDAR flights were simulated by assuming that LiDAR data were only available beneath these flights; (3) training/testing samples of CC and AGB were extracted from the reference maps inside and outside the simulated flights using stratified random sampling; (4) The simple linear regression, ordinary kriging and regression kriging model were used to extend the sparsely sampled CC/AGB data to the entire study area by incorporating a selection of SPOT-6 variables, including vegetation indices and texture variables. The regression kriging model was superior at estimating and mapping the spatial distribution of CC and AGB, as it featured the lowest mean absolute error (MAE; 11.295% and 18.929 t/ha for CC and AGB, respectively) and root mean squared error (RMSE; 17.361% and 21.351 t/ha for CC and AGB, respectively). The predicted and reference values of both CC and AGB were highly correlated for the entire study area based on the estimation histograms and error maps. Finally, we concluded that the regression kriging model was superior and more effective at estimating LiDAR-derived CC and AGB values using the spatially-reduced samples and the SPOT-6 variables. The presented modeling workflow will greatly facilitate future forest growth monitoring and carbon stock assessments for large areas of temperate forest in northeast China. It also provides guidance on how to take full advantage of future sparsely collected LiDAR data in cases where wall-to-wall LiDAR coverage is not available from the perspective of geostatistics.  相似文献   

2.
Abstract

A linear regression‐based model for mapping forest age using Landsat Thematic Mapper data is evaluated in the lodgepole pine forests of Yellowstone National Park. Regression models predicting age (R2=0.62) and a logarithmic transformation of age (R2 = 0.90) used a combination of visible, near‐infrared, and middle‐infrared TM bands. Forest age maps produced using the regression method match broad‐scale patterns of forest age within the Yellowstone Central Plateau study area. Per‐pixel estimates of forest age, however, may depart substantially from actual forest age, particularly for older stands, and the maps are most appropriate for depicting regional patterns of forest age.  相似文献   

3.
This paper suggested simulation approaches for quantifying and reducing the effects of National Forest Inventory (NFI) plot location error on aboveground forest biomass and carbon stock estimation using the k-Nearest Neighbor (kNN) algorithm. Additionally, the effects of plot location error in pre-GPS and GPS NFI plots were compared. Two South Korean cities, Sejong and Daejeon, were chosen to represent the study area, for which four Landsat TM images were collected together with two NFI datasets established in both the pre-GPS and GPS eras. The effects of plot location error were investigated in two ways: systematic error simulation, and random error simulation. Systematic error simulation was conducted to determine the effect of plot location error due to mis-registration. All of the NFI plots were successively moved against the satellite image in 360° directions, and the systematic error patterns were analyzed on the basis of the changes of the Root Mean Square Error (RMSE) of kNN estimation. In the random error simulation, the inherent random location errors in NFI plots were quantified by Monte Carlo simulation. After removal of both the estimated systematic and random location errors from the NFI plots, the RMSE% were reduced by 11.7% and 17.7% for the two pre-GPS-era datasets, and by 5.5% and 8.0% for the two GPS-era datasets. The experimental results showed that the pre-GPS NFI plots were more subject to plot location error than were the GPS NFI plots. This study’s findings demonstrate a potential remedy for reducing NFI plot location errors which may improve the accuracy of carbon stock estimation in a practical manner, particularly in the case of pre-GPS NFI data.  相似文献   

4.
The Biomass Expansion Factor (BEF) and the Root-to-Shoot Ratio (R) are variables used to quantify carbon stock in forests. They are often considered as constant or species/area specific values in most studies. This study aimed at showing tree size and age dependence upon BEF and R and proposed equations to improve forest biomass and carbon stock. Data from 70 sample Pinus spp. grown in southern Brazil trees in different diameter classes and ages were used to demonstrate the correlation between BEF and R, and forest inventory data, such as DBH, tree height and age. Total dry biomass, carbon stock and CO2 equivalent were simulated using the IPCC default values of BEF and R, corresponding average calculated from data used in this study, as well as the values estimated by regression equations. The mean values of BEF and R calculated in this study were 1.47 and 0.17, respectively. The relationship between BEF and R and the tree measurement variables were inversely related with negative exponential behavior. Simulations indicated that use of fixed values of BEF and R, either IPCC default or current average data, may lead to unreliable estimates of carbon stock inventories and CDM projects. It was concluded that accounting for the variations in BEF and R and using regression equations to relate them to DBH, tree height and age, is fundamental in obtaining reliable estimates of forest tree biomass, carbon sink and CO2 equivalent.  相似文献   

5.
Generation of fire danger maps play a vital role in forest fire management like forest fire research, locating lookout towers, risk assessment and for various other simulation studies. The present study addresses remote sensing and GIS applications in generating fire danger maps for tropical deciduous forests. Fire danger variables such as fuel type, topography, temperature, and relative humidity have been used in modeling fire danger. Information on local climate patterns and past fire records has been used to derive fire frequency map of the study area. Intermediate indices were derived using multiple regressions, where fire frequency data is taken as dependent variable. Results indicate that forests near human settlements are more vulnerable to forest fires.  相似文献   

6.
Remote sensing is being increasingly used for forest resource inventory as it saves time and the cost. Aerial photographs and satellite images have been effectively utilized for forest inventory all over the world. This study highlights the application of IRS LISS-III imagery for inventorying the stand volume in Lachchhiwala Forest Range of Siwaliks. The satellite image was visually interpreted for forest type and density stratification. Both random as well as stratified random sampling techniques were used to see their impact on the volume estimates. Field sampling was done in the plots of 0.1 ha size. The total growing stock in all types of forests in the study area was estimated to be 1.87 mill.m3, of which Sal Forest accounted for 1.32 mill.m3, Sal Mixed Forest for 0.09 mill.m3, Mixed Sal Forest for 0.08 mill.m3, Miscellaneous Forest for 0.06 mill.m3 and Forest Plantations for 0.02 mill.m3. The results were compared with an independent field-based inventory carried out by forest department. The two sampling methods were compared by ratioing of the mean of variance (gain in precision) and it was found that the timber volume estimates using stratified random sampling technique were 15 per cent more accurate than simple random sampling. The satellite image-based inventory using stratified random sampling was found to have about 90 per cent correspondence with the inventory done by the Forest Department.  相似文献   

7.
Remote sensing-assisted estimates of aboveground forest biomass are essential for modeling carbon budgets. It has been suggested that estimates can be improved by building species- or strata-specific biomass models. However, few studies have attempted a systematic analysis of the benefits of such stratification, especially in combination with other factors such as sensor type, statistical prediction method and sampling design of the reference inventory data. We addressed this topic by analyzing the impact of stratifying forest data into three classes (broadleaved, coniferous and mixed forest). We compare predictive accuracy (a) between the strata (b) to a case without stratification for a set of pre-selected predictors from airborne LiDAR and hyperspectral data obtained in a managed mixed forest site in southwestern Germany. We used 5 commonly applied algorithms for biomass predictions on bootstrapped subsamples of the data to obtain cross validated RMSE and r2 diagnostics. Those values were analyzed in a factorial design by an analysis of variance (ANOVA) to rank the relative importance of each factor. Selected models were used for wall-to-wall mapping of biomass estimates and their associated uncertainty. The results revealed marginal advantages for the strata-specific prediction models over the unstratified ones, which were more obvious on the wall-to-wall mapped area-based predictions. Yet further tests are necessary to establish the generality of these results. Input data type and statistical prediction method are concluded to remain the two most crucial factors for the quality of remote sensing-assisted biomass models.  相似文献   

8.
Information on carbon stock and flux resulting from land-use changes in subtropical, semi-arid ecosystems are important to understand global carbon flux, yet little data is available. In the Tamaulipan thornscrub forests of northeastern Mexico, biomass components of standing vegetation were estimated from 56 quadrats (200 m2 each). Regional land-use changes and present forest cover, as well as estimates of soil organic carbon from chronosequences, were used to predict carbon stocks and fluxes in this ecosystem.  相似文献   

9.
Field surveys are often a primary source of aboveground biomass (AGB) data, but plot-based estimates of parameters related to AGB are often not sufficiently precise, particularly not in tropical countries. Remotely sensed data may complement field data and thus help to increase the precision of estimates and circumvent some of the problems with missing sample observations in inaccessible areas. Here, we report the results of a study conducted in a 15,867 km² area in the dry miombo woodlands of Tanzania, to quantify the contribution of existing canopy height and biomass maps to improving the precision of canopy height and AGB estimates locally. A local and a global height map and three global biomass maps, and a probability sample of 513 inventory plots were subject to analysis. Model-assisted sampling estimators were used to estimate mean height and AGB across the study area using the original maps and then with the maps calibrated with local inventory plots. Large systematic map errors – positive or negative – were found for all the maps, with systematic errors as great as 60–70 %. After being calibrated locally, the maps contributed substantially to increasing the precision of both mean height and mean AGB estimates, with relative efficiencies (variance of the field-based estimates relative to the variance of the map-assisted estimates) of 1.3–2.7 for the overall estimates. The study, although focused on a relatively small area of dry tropical forests, illustrates the potential strengths and weaknesses of existing global forest height and biomass maps based on remotely sensed data and universal prediction models. Our results suggest that the use of regional or local inventory data for calibration can substantially increase the precision of map-based estimates and their applications in assessing forest carbon stocks for emission reduction programs and policy and financial decisions.  相似文献   

10.

Background  

Developing countries that are willing to participate in the recently adopted (16th Session of the Conference of Parties (COP) in Cancun) mitigation mechanism of Reducing emissions from Deforestation and Forest Degradation - and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks (REDD+) - will have to establish a national forest monitoring system in order to assess anthropogenic forest-related greenhouse gas emissions by sources and removals by sinks. Such a system should support the Measurement, Reporting and Verification (MRV) requirement of the United Nations Framework Convention on Climate Change (UNFCCC) as the REDD+ mechanism is results-based. A national forest inventory (NFI) is one potential key component of such an MRV system. Following the Decision adopted during the 15th Session of the COP in Copenhagen, the most recent Intergovernmental Panel on Climate Change (IPCC) Guidance and Guidelines should be used as a basis for estimating anthropogenic forest-related greenhouse gas emissions by sources and removals by sinks and changes in forest carbon stocks and area.  相似文献   

11.
Forest monitoring tools are needed to promote effective and data driven forest management and forest policies. Remote sensing techniques can increase the speed and the cost-efficiency of the forest monitoring as well as large scale mapping of forest attribute (wall-to-wall approach). Digital Aerial Photogrammetry (DAP) is a common cost-effective alternative to airborne laser scanning (ALS) which can be based on aerial photos routinely acquired for general base maps. DAP based on such pre-existing dataset can be a cost effective source of large scale 3D data. In the context of forest characterization, when a quality Digital Terrain Model (DTM) is available, DAP can produce photogrammetric Canopy Height Model (pCHM) which describes the tree canopy height. While this potential seems pretty obvious, few studies have investigated the quality of regional pCHM based on aerial stereo images acquired by standard official aerial surveys. Our study proposes to evaluate the quality of pCHM individual tree height estimates based on raw images acquired following such protocol using a reference filed-measured tree height database. To further ensure the replicability of the approach, the pCHM tree height estimates benchmarking only relied on public forest inventory (FI) information and the photogrammetric protocol was based on low-cost and widely used photogrammetric software. Moreover, our study investigates the relationship between the pCHM tree height estimates based on the neighboring forest parameter provided by the FI program.Our results highlight the good agreement of tree height estimates provided by pCHM using DAP with both field measured and ALS tree height data. In terms of tree height modeling, our pCHM approach reached similar results than the same modeling strategy applied to ALS tree height estimates. Our study also identified some of the drivers of the pCHM tree height estimate error and found forest parameters like tree size (diameter at breast height) and tree type (evergreenness/deciduousness) as well as the terrain topography (slope) to be of higher importance than image survey parameters like the variation of the overlap or the sunlight condition in our dataset. In combination with the pCHM tree height estimate, the terrain slope, the Diameter at Breast Height (DBH) and the evergreenness factor were used to fit a multivariate model predicting the field measured tree height. This model presented better performance than the model linking the pCHM estimates to the field tree height estimates in terms of r² (0.90 VS 0.87) and root mean square error (RMSE, 1.78 VS 2.01 m). Such aspects are poorly addressed in literature and further research should focus on how pCHM approaches could integrate them to improve forest characterization using DAP and pCHM. Our promising results can be used to encourage the use of regional aerial orthophoto surveys archive to produce large scale quality tree height data at very low additional costs, notably in the context of updating national forest inventory programs.  相似文献   

12.
The U.S. has been providing national-scale estimates of forest carbon (C) stocks and stock change to meet United Nations Framework Convention on Climate Change (UNFCCC) reporting requirements for years. Although these currently are provided as national estimates by pool and year to meet greenhouse gas monitoring requirements, there is growing need to disaggregate these estimates to finer scales to enable strategic forest management and monitoring activities focused on various ecosystem services such as C storage enhancement. Through application of a nearest-neighbor imputation approach, spatially extant estimates of forest C density were developed for the conterminous U.S. using the U.S.’s annual forest inventory. Results suggest that an existing forest inventory plot imputation approach can be readily modified to provide raster maps of C density across a range of pools (e.g., live tree to soil organic carbon) and spatial scales (e.g., sub-county to biome). Comparisons among imputed maps indicate strong regional differences across C pools. The C density of pools closely related to detrital input (e.g., dead wood) is often highest in forests suffering from recent mortality events such as those in the northern Rocky Mountains (e.g., beetle infestations). In contrast, live tree carbon density is often highest on the highest quality forest sites such as those found in the Pacific Northwest. Validation results suggest strong agreement between the estimates produced from the forest inventory plots and those from the imputed maps, particularly when the C pool is closely associated with the imputation model (e.g., aboveground live biomass and live tree basal area), with weaker agreement for detrital pools (e.g., standing dead trees). Forest inventory imputed plot maps provide an efficient and flexible approach to monitoring diverse C pools at national (e.g., UNFCCC) and regional scales (e.g., Reducing Emissions from Deforestation and Forest Degradation projects) while allowing timely incorporation of empirical data (e.g., annual forest inventory).  相似文献   

13.
ABSTRACT

Forests of the Sierra Nevada (SN) mountain range are valuable natural heritages for the region and the country, and tree height is an important forest structure parameter for understanding the SN forest ecosystem. There is still a need in the accurate estimation of wall-to-wall SN tree height distribution at fine spatial resolution. In this study, we presented a method to map wall-to-wall forest tree height (defined as Lorey’s height) across the SN at 70-m resolution by fusing multi-source datasets, including over 1600 in situ tree height measurements and over 1600?km2 airborne light detection and ranging (LiDAR) data. Accurate tree height estimates within these airborne LiDAR boundaries were first computed based on in situ measurements, and then these airborne LiDAR-derived tree heights were used as reference data to estimate tree heights at Geoscience Laser Altimeter System (GLAS) footprints. Finally, the random forest algorithm was used to model the SN tree height from these GLAS tree heights, optical imagery, topographic data, and climate data. The results show that our fine-resolution SN tree height product has a good correspondence with field measurements. The coefficient of determination between them is 0.60, and the root-mean-squared error is 5.45?m.  相似文献   

14.
Field surveys are often a primary source of aboveground biomass (AGB) data, but plot-based estimates of parameters related to AGB are often not sufficiently precise, particularly not in tropical countries. Remotely sensed data may complement field data and thus help to increase the precision of estimates and circumvent some of the problems with missing sample observations in inaccessible areas. Here, we report the results of a study conducted in a 15,867 km² area in the dry miombo woodlands of Tanzania, to quantify the contribution of existing canopy height and biomass maps to improving the precision of canopy height and AGB estimates locally. A local and a global height map and three global biomass maps, and a probability sample of 513 inventory plots were subject to analysis. Model-assisted sampling estimators were used to estimate mean height and AGB across the study area using the original maps and then with the maps calibrated with local inventory plots. Large systematic map errors – positive or negative – were found for all the maps, with systematic errors as great as 60–70 %. The maps contributed nothing or even negatively to the precision of mean height and mean AGB estimates. However, after being calibrated locally, the maps contributed substantially to increasing the precision of both mean height and mean AGB estimates, with relative efficiencies (variance of the field-based estimates relative to the variance of the map-assisted estimates) of 1.3–2.7 for the overall estimates. The study, although focused on a relatively small area of dry tropical forests, illustrates the potential strengths and weaknesses of existing global forest height and biomass maps based on remotely sensed data and universal prediction models. Our results suggest that the use of regional or local inventory data for calibration can substantially increase the precision of map-based estimates and their applications in assessing forest carbon stocks for emission reduction programs and policy and financial decisions.  相似文献   

15.
针对林业的基本数据:面积和蓄积,本文提出了直接用卫星资料方便、快捷进行估测的方法 特别是在蓄积估测中第一次使用了非线性比值项,并在估测的试验中充分地证明了其有效性。  相似文献   

16.
The airborne lidar system (ALS) provides a means to efficiently monitor the status of remote tropical forests and continues to be the subject of intense evaluation. However, the cost of ALS acquisition can vary significantly depending on the acquisition parameters, particularly the return density (i.e., spatial resolution) of the lidar point cloud. This study assessed the effect of lidar return density on the accuracy of lidar metrics and regression models for estimating aboveground biomass (AGB) and basal area (BA) in tropical peat swamp forests (PSF) in Kalimantan, Indonesia. A large dataset of ALS covering an area of 123,000 ha was used in this study. This study found that cumulative return proportion (CRP) variables represent a better accumulation of AGB over tree heights than height-related variables. The CRP variables in power models explained 80.9% and 90.9% of the BA and AGB variations, respectively. Further, it was found that low-density (and low-cost) lidar should be considered as a feasible option for assessing AGB and BA in vast areas of flat, lowland PSF. The performance of the models generated using reduced return densities as low as 1/9 returns per m2 also yielded strong agreement with the original high-density data. The use model-based statistical inferences enabled relatively precise estimates of the mean AGB at the landscape scale to be obtained with a fairly low-density of 1/4 returns per m2, with less than 10% standard error (SE). Further, even when very low-density lidar data was used (i.e., 1/49 returns per m2) the bias of the mean AGB estimates were still less than 10% with a SE of approximately 15%. This study also investigated the influence of different DTM resolutions for normalizing the elevation during the generation of forest-related lidar metrics using various return densities point cloud. We found that the high-resolution digital terrain model (DTM) had little effect on the accuracy of lidar metrics calculation in PSF. The accuracy of low-density lidar metrics in PSF was more influenced by the density of aboveground returns, rather than the last return. This is due to the flat topography of the study area. The results of this study will be valuable for future economical and feasible assessments of forest metrics over large areas of tropical peat swamp ecosystems.  相似文献   

17.
Timber production is the purpose for managing plantation forests, and its spatial and quantitative information is critical for advising management strategies. Previous studies have focused on growing stock volume (GSV), which represents the current potential of timber production, yet few studies have investigated historical process-harvested timber. This resulted in a gap in a synthetical ecosystem service assessment of timber production. In this paper, we established a Management Process–based Timber production (MPT) framework to integrate the current GSV and the harvested timber derived from historical logging regimes, trying to synthetically assess timber production for a historical period. In the MPT framework, age-class and current GSV determine the times of historical thinning and the corresponding harvested timber, by using a “space-for-time” substitution. The total timber production can be estimated by the historical harvested timber in each thinning and the current GSV. To test this MPT framework, an empirical study on a larch plantation (LP) with area of 43,946 ha was conducted in North China for a period from 1962 to 2010. Field-based inventory data was integrated with ALOS PALSAR (Advanced Land-Observing Satellite Phased Array L-band Synthetic Aperture Radar) and Landsat-8 OLI (Operational Land Imager) data for estimating the age-class and current GSV of LP. The random forest model with PALSAR backscatter intensity channels and OLI bands as input predictive variables yielded an accuracy of 67.9% with a Kappa coefficient of 0.59 for age-class classification. The regression model using PALSAR data produced a root mean square error (RMSE) of 36.5 m3 ha−1. The total timber production of LP was estimated to be 7.27 × 106 m3, with 4.87 × 106 m3 in current GSV and 2.40 × 106 m3 in harvested timber through historical thinning. The historical process-harvested timber accounts to 33.0% of the total timber production, which component has been neglected in the assessments for current status of plantation forests. Synthetically considering the RMSE for predictive GSV and misclassification of age-class, the error in timber production were supposed to range from −55.2 to 56.3 m3 ha−1. The MPT framework can be used to assess timber production of other tree species at a larger spatial scale, providing crucial information for a better understanding of forest ecosystem service.  相似文献   

18.
Reliable and accurate estimates of tropical forest above ground biomass (AGB) are important to reduce uncertainties in carbon budgeting. In the present study we estimated AGB of central Indian deciduous forests of Madhya Pradesh (M.P.) state, India, using Advanced Land Observing Satellite – Phased Array type L-band Synthetic Aperture Radar (ALOS-PALSAR) L-band data of year 2010 in conjunction with field based AGB estimates using empirical models. Digital numbers of gridded 1?×?1° dual polarization (HH & HV) PALSAR mosaics for the study area were converted to normalized radar cross section (sigma naught - σ0). A total of 415 sampling plots (0.1 ha) data collected over the study area during 2009–10 was used in the present study. Plot-level AGB estimates using volume equations representative to the study area were computed using field inventory data. The plot-level AGB estimates were empirically modeled with the PALSAR backscatter information in HH, HV and their ratios from different forest types of the study area. The HV backscatter information showed better relation with field based AGB estimates with a coefficient of determination (R2) of 0.509 which was used to estimate spatial AGB of the study area. Results suggested a total AGB of 367.4 Mt for forests of M.P. state. Further, validation of the model was carried out using observed vs. predicted AGB estimates, which suggested a root mean square error (RMSE) of ±19.32 t/ha. The model reported robust and defensible relation for observed vs. predicted AGB values of the study area.  相似文献   

19.
Mapping forest aboveground biomass (AGB) has become an important task, particularly for the reporting of carbon stocks and changes. AGB can be mapped using synthetic aperture radar data (SAR) or passive optical data. However, these data are insensitive to high AGB levels (>150 Mg/ha, and >300 Mg/ha for P-band), which are commonly found in tropical forests. Studies have mapped the rough variations in AGB by combining optical and environmental data at regional and global scales. Nevertheless, these maps cannot represent local variations in AGB in tropical forests. In this paper, we hypothesize that the problem of misrepresenting local variations in AGB and AGB estimation with good precision occurs because of both methodological limits (signal saturation or dilution bias) and a lack of adequate calibration data in this range of AGB values. We test this hypothesis by developing a calibrated regression model to predict variations in high AGB values (mean >300 Mg/ha) in French Guiana by a methodological approach for spatial extrapolation with data from the optical geoscience laser altimeter system (GLAS), forest inventories, radar, optics, and environmental variables for spatial inter- and extrapolation. Given their higher point count, GLAS data allow a wider coverage of AGB values. We find that the metrics from GLAS footprints are correlated with field AGB estimations (R2 = 0.54, RMSE = 48.3 Mg/ha) with no bias for high values. First, predictive models, including remote-sensing, environmental variables and spatial correlation functions, allow us to obtain “wall-to-wall” AGB maps over French Guiana with an RMSE for the in situ AGB estimates of ∼50 Mg/ha and R2 = 0.66 at a 1-km grid size. We conclude that a calibrated regression model based on GLAS with dependent environmental data can produce good AGB predictions even for high AGB values if the calibration data fit the AGB range. We also demonstrate that small temporal and spatial mismatches between field data and GLAS footprints are not a problem for regional and global calibrated regression models because field data aim to predict large and deep tendencies in AGB variations from environmental gradients and do not aim to represent high but stochastic and temporally limited variations from forest dynamics. Thus, we advocate including a greater variety of data, even if less precise and shifted, to better represent high AGB values in global models and to improve the fitting of these models for high values.  相似文献   

20.
This research evaluates the performance of areal interpolation coupled with dasymetric refinement to estimate different demographic attributes, namely population sub-groups based on race, age structure and urban residence, within consistent census tract boundaries from 1990 to 2010 in Massachusetts. The creation of such consistent estimates facilitates the study of the nuanced micro-scale evolution of different aspects of population, which is impossible using temporally incompatible small-area census geographies from different points in time. Various unexplored ancillary variables, including the Global Human Settlement Layer (GHSL), the National Land-Cover Database (NLCD), parcels, building footprints and the proprietary ZTRAX® dataset are utilized for dasymetric refinement prior to areal interpolation to examine their effectiveness in improving the accuracy of multi-temporal population estimates. Different areal interpolation methods including Areal Weighting (AW), Target Density Weighting (TDW), Expectation Maximization (EM) and its data-extended approach are coupled with different dasymetric refinement scenarios based on these ancillary variables. The resulting consistent small area estimates of white and black subpopulations, people of age 18–65 and urban population show that dasymetrically refined areal interpolation is particularly effective when the analysis spans a longer time period (1990–2010 instead of 2000–2010) and the enumerated population is sufficiently large (e.g., counts of white vs. black). The results also demonstrate that current census-defined urban areas overestimate the spatial distribution of urban population and dasymetrically refined areal interpolation improves estimates of urban population. Refined TDW using building footprints or the ZTRAX® dataset outperforms all other methods. The implementation of areal interpolation enriched by dasymetric refinement represents a promising strategy to create more reliable multi-temporal and consistent estimates of different population subgroups and thus demographic compositions. This methodological foundation has the potential to advance micro-scale modeling of various subpopulations, particularly urban population to inform studies of urbanization and population change over time as well as future population projections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号