首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
针对现有Tm模型建模方法多为基于最小二乘线性回归方法以致于模型精度有待提高的问题,该文以中国西北地区2015—2017年的24个探空站的探空数据作为实验数据,在中国西北地区使用粒子群优化BP神经网络(PSO-BP)回归方法建立大气加权平均温度(Tm)模型:将地表温度、水气压、纬度、高程和时间变化等影响因素作为模型输入因子,将数值积分法所计算得到的Tm作为学习目标,利用神经网络模型进行迭代训练得到中国西北地区的Tm。以2018年探空站Tm数据为参考值,对PSO-BP模型精度进行验证,并与Bevis模型、GPT3模型和中国西部地区Tm模型进行比较。结果表明,PSO-BP模型的年均RMSE和年均bias分别为2.71 K和0.35 K,相比Bevis模型、GPT3模型和中国西部地区Tm模型年均RMSE分别降低了1.36 K(33.4%)、1.81 K(39.5%)和1.78 K(39.1%),年均bias分别下降了0.70 K(87.7%)...  相似文献   

2.
大气加权平均温度Tm是决定GPS水汽反演精度的关键参数,不同地区的Tm具有区域性差异。本文基于河南省Nanyang探空站2015-2018年的气象数据,建立了适用于河南亚热带季风气候地区的单因子和多因子的大气加权平均温度Tm模型,同时按照四季划分构建了季节模型,并对比经验模型分析其精度。结果表明,新建立的加权平均温度模型精度整体上优于Bevis模型。将其用于CORS站GPS可降水量反演中,相比经验模型,新建Tm模型与实际降水量的吻合性更好,可以满足地基GPS反演可降水量的要求。  相似文献   

3.
大气加权平均温度的准确获取对高精度的GPS水汽反演至关重要。文中基于线性回归理论,在分析加权平均温度与地面温度间相关性的基础上,采用一元线性拟合的方法,建立大气加权平均温度经验模型。最后,采用香港地区2006-2015年无线电探空资料对经验模型进行验证。实验结果表明,文中模型计算加权平均温度的整体均方根误差为2.356 K,较Bevis模型精度提高了41.94%,且季节变化对加权平均温度计算的影响并不明显;对于GPS水汽反演,采用本文经验模型反演水汽的均方根误差为1.807 mm,平均偏差为1.362 mm,能够满足GPS可降水量反演的精度,且优于Bevis模型。   相似文献   

4.
加权平均温度(Tm)是全球导航卫星系统技术中反演可降水量的关键参数。利用欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)的产品对Tm在垂直方向上的分布特性进行分析,并构建了一种新的全球Tm模型。利用ECMWF和无线电探空数据对该模型进行检验,并将其与现存的高精度Tm模型进行比较。实验结果显示,Tm在高程方向上存在非线性变化特征,而且该特征在高纬度地区特别是两极区域尤为明显。当利用ECMWF和探空数据检验构建的Tm模型时,其均方根误差分别为3.84 K和4.36 K,相比于现存的Tm模型精度分别提升了27%和20%。构建的模型可以显著提升Tm在垂直方向上的归算效果,由该模型计算出的Tm廓线与参考值更加接近。  相似文献   

5.
大气加权平均温度(Tm)是全球导航卫星系统(global navigation satellite system, GNSS)反演大气水汽(precipitation water vapor, PWV)的关键参数。当前已有Tm模型提供的Tm信息难以捕获其日周期变化,因此限制了其在高时间分辨率GNSS PWV估计中的精度。大气再分析资料可提供高时空分辨率的Tm格点产品,但是在使用时需要对其进行空间插值,且Tm在高程上的变化远大于其在水平方向上变化。同时,针对中国区域地形起伏大等特点,提出顾及垂直递减率的中国区域Tm格点产品空间插值方法,以分布于中国区域的2015年89个探空站资料为参考值,验证了提出的方法在全球大地测量观测系统大气中心Tm格点产品和美国国家航空和太空管理局提供的MERRA?2的Tm格点产品中的空间插值精度。结果表明:(1)在顾及垂直递减率的Tm格点产品空间插值中,反距离加权法的插值效果优于双线性插值法,其在中国区域全球大地测量观测系统大气中心和MERRA?2的Tm格点产品空间插值中的偏差分别为0.72 K和0.23 K,均方根误差分别为1.94 K和1.87 K。(2)顾及垂直递减率的空间插值效果明显优于未顾及垂直递减率的插值效果,尤其在地形起伏较大的中国西部地区。因此,顾及垂直递减率的空间插值法在中国区域的高精度、高分辨率GNSS水汽探测中具有重要的应用。  相似文献   

6.
由于日本区域易受自然灾害频发、水汽特征变化复杂、探空站点分布稀疏的问题,进而制约了高精度水汽的获取,因此缺少此区域的高精度加权平均温度(Tm)模型. 鉴于此,采用2009—2016年全球大地测量观测系统(GGOS) Atmosphere Tm和ERA-Interim 2 m Ts格网数据新建立一种考虑Tm残差季节性变化和周日变化的适合日本区域的Tm模型 (JQTm模型). 同时,利用2017年日本区域13个探空站和110个GGOS Atmosphere Tm格网数据,对新建立的JQTm模型在日本区域的精度进行评估. 研究发现:与GGOS Atmosphere Tm格网数据对比,JQTm模型的偏差(bias)和均方根误差(RMSE)分别为0.15 K和1.92 K,RMSE分别比GPT2w-1模型、GPT2w-5模型提升41.16% (1.33 K)、44.41% (1.53 K);与探空资料对比,JQTm模型的bias和RMSE分别为–0.66 K和2.14 K,RMSE分别比GPT2w-1模型、GPT2w-5模型提升28.43% (0.85 K)、29.61% (0.90 K). JQTm模型能够为日本区域提供高精度的Tm值,为研究此区域大气水汽和极端天气提供重要依据.   相似文献   

7.
朱海  黄观文  张菊清 《测绘学报》2021,50(3):356-367
加权平均温度Tm是全球导航卫星系统(GNSS)反演可降水量的关键参数.本文以中国陕西为例,结合欧洲天气预报中心(ECMWF)的再分析数据与3个探空站数据,基于最小二乘原理建立了一种顾及周期性的Tm区域化回归模型.利用陕西省内3个探空站数据进行验证.结果表明,本文所建立的顾及周期的Tm区域模型比传统Bevis模型精度平均提升率为16.1%.另外,针对不同气候类型地区的差异问题,建立了随纬度变化分段线性形式的顾及气候差异的Tm模型,解决了回归模型在不同气候区的适应性问题.与探空数据比较,顾及气候差异的Tm模型其外符合精度(RMS)范围在1.47~2.06 K之间,与Bevis模型比较,精度平均提高率为44.9%,提升效果显著;利用ECMWF数据选取19个格网点对模型进行精度评估.结果表明:平均RMS为3.26 K,最大RMS为3.67 K;平均STD为2.69 K,最大STD为3.19 K.  相似文献   

8.
加权平均温度作为GNSS水汽反演的重要参数,直接影响大气可降水量的反演精度,而建立区域化加权平均温度模型有助于提高水汽反演精度。利用香港探空站2012-2015年数据资料,在分析加权平均温度与地面气象要素关系的基础上,运用最小二乘原理探究最优回归方程系数,回归建立了区域加权平均温度的单因素模型和多因素模型。结果表明:多因素模型精度高于单因素模型,但并不显著,Bevis经验公式应用于香港区域时不满足精度要求;对模型精度和适用性进行了分析比较,表明文中建立的模型精度较高,能更好满足水汽遥感高精度的要求。   相似文献   

9.
主要研究了中国区域加权平均温度(T_m)与地表温度(T_s)的函数关系模型。为提高中国区域T_m的计算精度,收集了中国区域内2013-2015年76个测站的无线电探空数据,采用传统线性回归建模方法建立T_m与地表温度(Ts)的线性回归模型A;然后,顾及T_m的年周期变化,提出了一种改进回归模型B。利用2016年69个测站的探空数据对模型A和模型B进行检验,模型A与模型B的年均方根误差分别为±3.147K和±3.025K,而常用的Bevis模型年均方根误差为±3.385K。模型A与模型B的精度较之常用的Bevis模型分别提高了7%和11%。本研究成果可以提高GNSS技术探测大气可降水量的精度,对GNSS气象学的发展和完善具有积极意义。  相似文献   

10.
大气加权平均温度Tm是计算水汽转换因子和大气可降水量的重要参数。利用2007—2017年全球大地观测系统(global geodetic observing system, GGOS) Atmosphere Tm格网数据和欧洲中尺度天气预报中心(European centre for medium-range weather forecasts, ECMWF) 2 m温度数据,建立一种适合澳大利亚区域、顾及Tm残差季节性和日周期变化的Tm模型——qTm。此外,采用2018年的GGOS Atmosphere Tm格网数据和探空资料对该模型进行评估。结果表明,qTm模型在澳大利亚区域具有较高的精度和适用性,与GGOS Atmosphere Tm相比,qTm模型的年均偏差(Bias)和均方根误差(root mean square error, RMSE)分别为-0.31 K和1.97 K,相对于GPT2w-1和GPT2w-5模型,RMSE分别提高21.8%和25.9%;qTm模型值与探空积分值更符合,模型的年均Bias和RMSE分别为-0.44 K和2.45 K,相比GPT2w-1和GPT2w-5模型分别提高10.2% 和11.8%。qTm模型可为澳大利亚区域提供精确的Tm值,为该区域大气水汽分析和厄尔尼诺现象研究提供基础。  相似文献   

11.
加权平均温度(T_m)是全球卫星导航系统(GNSS)反演可降水量(PWV)过程中的关键参量。利用Bevis公式和地表温度可以方便地得到地表附近的高精度T_m估计值。然而,不少研究指出,Bevis公式在高海拔地区存在较大误差。本文对Bevis公式在不同高度面的适用性进行研究后发现,Bevis公式在海拔较低时精度较高,随着海拔升高,精度逐渐降低。为了解决Bevis公式在高海拔地区适用性较低的问题,本文对近地空间范围内(本文指0~10 km的高程范围)的T_m与大气温度的关系展开了研究,发现两者在全球范围内都拥有很高的相关性,由此本文构建了基于近地大气温度的全球加权平均温度模型。对模型的检验结果表明,该模型在近地空间范围内的任意高度面上都可以提供高精度的T_m估计值。  相似文献   

12.
地基全球卫星导航系统(GNSS)水汽反演过程中需要大气加权平均温度Tm的参与,而饱和水汽压Es作为Tm计算过程中的一个重要变量影响着Tm,因此Es将会间接地影响大气可降水量(PWV)的反演精度.针对目前地基GNSS水汽反演研究中普遍采用的三种不同的饱和水汽压模型(Magnus-Tetens模型、BUCK模型、Goff-Gratch模型),本文就不同的饱和水汽压模型参与反演是否会引起水汽反演结果的差异进行了研究.以香港为研究区域,利用GAMIT解算了2016年旱雨两季(2、7月)的天顶湿延迟(ZWD),同时利用king's park探空站的探空数据通过数值积分计算得到旱雨两季(2、7月)的Tm,然后严格参照反演步骤编程模拟计算旱雨两季(2、7月)每天的PWV.最后对比并分析了不同饱和水汽压模型参与计算对Tm和PWV的影响及原因,结果表明:三种饱和水汽压模型参与计算得到的PWV与真值(探空站计算得到的PWV)之间不存在具有统计意义的显著性差异,因此均可被用来提供计算Tm时所用到的饱和水汽压Es,但是通过对比分析发现部分研究人员将BUCK模型中的变量T当作露点温度而非大气温度进行计算会使Tm产生较大的误差,进而对该误差进行了不合理性分析.本文的分析将会对后续地基GNSS水汽反演研究中的处理提供一定的参考.   相似文献   

13.
王群  上官明  张志伟  胡伍生  于先文 《测绘科学》2021,46(3):110-116,175
针对建立区域加权平均温度线性模型的问题,该文提出了将ERA5再分析数据和无线探空数据结合的方法,利用线性回归方法建立单因子和多因子模型,实现对江苏及周边地区的加权平均温度建模。对于有探空站点分布的ERA5格网区域,利用探空数据对ERA5建立的线性Tm模型进行修正,对于无探空站分布的ERA5格网区域使用江苏及周边区域整体修正系数对Tm进行修正。根据2018年数据进行验证,结果表明,本文所建立的单因子模型精度与之相当甚至略优,建立双因子模型的精度提高最大可达10.52%,证明了利用ERA5再分析资料和无线电探空建立江苏区域Tm模型的适用性。  相似文献   

14.
为提高GNSS反演可降水量的精度,文中采集江苏附近5个气象探空站2005—2015年共11年的数据,分析加权平均温度(Tm)年周期的变化规律,同时分析Tm与地表气温(Ts)的线性关系。结论表明,两者的线性关系会随着季节的变化发生相应的变化。文章试验几种线性回归的方案,并利用该区域2016年的数据进行检验,其中将数据每8d一组进行分段拟合得到的模型精度最高,其R_(ms)为2.49k高于传统Bevis模型的3.08k,提高近19%。  相似文献   

15.
全球温度气压湿度(global pressure and temperature 2 wet,GPT2w)模型常被用于计算某一位置的气温、加权平均温度、气压以及水汽压等各种气象参数,是目前公开的标称精度最高的对流层延迟经验模型。利用中国区域参与全球气象交换的86个测站2013-2015年的气象探空数据,对GPT2w得到的各种气象参数进行精度检验及分析。实验结果表明,气温平均偏差为1.31℃,均方根误差为3.62℃;加权平均温度的平均偏差为-1.58 K,均方根误差为4.07 K;气压和水汽压平均偏差的绝对值在1 hPa以内,其均方根误差分别为6.98 hPa与3.04 hPa。利用2006-2015年的数据分析了不同纬度模型精度的周期性特征,结果表明,气温、加权平均温度、气压和水汽压的均方根误差均具有一定的年周期特性,且在不同的纬度区域其周期特性不同。总体而言,GPT2w模型在中国地区范围内具有较高的精度和稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号