首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
姜元军  韩勇 《测绘通报》2013,(9):45-46,65
介绍最新的加入GOCE数据解算的超高阶重力场模型EIGEN-6C,该模型最高阶次至1420。利用中国大陆地区GPS/水准数据对EIGEN-6C模型不同阶次进行外部检核,并在验证过程中引入EGM2008模型作为比较和参考。结果表明,两个模型精度在东部优于西部,EIGEN-6C与EGM2008模型在中国地区精度相当,甚至更优。  相似文献   

2.
分析国际公布的EGM2008、GECO和EIGEN-6C4等超高阶重力场模型及GOCO03S、GO_CONS_GCF_2_DIR_R5和GO_CONS_GCF_2_TIM_R5等低阶重力场模型的内符合精度。利用实测的GNSS/水准数据对各模型进行外符合精度的检核。分析6个模型在不同阶次组合的精度,进而选取可靠的截断阶次确定组合重力场模型。计算结果表明:EGM2008、GECO、EIGEN-6C4及DIR_R5四个重力场模型的阶方差均保持在mm级,而GOCO03S在191阶之后的精度达到dm级,TIM_R5模型在228阶之后的精度达到dm级; 6个重力场模型中,EIGEN-6C4模型的累计阶方差最小;EGM2008、GECO模型的互差阶方差在高频部分呈现差异,而在超高阶部分两种模型的互差阶方差符合性好;与EGM2008模型相比,其组合重力场模型高程异常精度最优可达0.063 m,精度提升幅度为15%,与GECO模型相比,其组合重力场模型高程异常精度最优可达0.060 m,精度提升幅度为23%,与EIGEN-6C4模型相比,其对应的组合重力场模型高程异常精度最优可达0.064 m,精度提升幅度为18%,因此,组合重力场模型能提高重力场模型高程异常的精度。  相似文献   

3.
利用搜集的某地区225个GPS水准点数据对最新的超高阶全球重力场模型EGM2008进行了外部检核,并将其结果同EIGEN-5C、EIGEN-4C及EGM96等全球重力场模型进行了比较。外部检核结果表明,EGM2008模型相对其他全球重力场模型的整体精度有所提高。该地区的相对检核结果表明,可将EGM2008模型和GPS大地高相结合应用于低等级的水准测量和长距离的跨障碍物高程传递。  相似文献   

4.
针对EGM2008、GECO及EIGEN-6C4重力场模型存在长波误差的情况,利用GNSS/水准数据在分析EGM2008、GECO及EIGEN-6C4模型高程异常精度基础上,分析GOCO03S、GO_CONS_GCF_2_DIR_R5、GO_CONS_GCF_2_SPW_R2、GO_CONS_GCF_2_TIM_R5 4个纯卫星重力场模型与EGM2008、GECO及EIGEN-6C4模型在不同阶次组合的精度,进而选取可靠的截断阶次确定组合重力场模型。计算结果表明:与EGM2008、GECO及EIGEN-6C4模型相比,各自对应的组合重力场模型高程异常精度最优分别可达0.061m、0.054m和0.059m,对应精度提升幅度分别为18%、31%和24%,因此,组合重力场模型能提高重力场模型高程异常的精度;利用EGM2008、GECO及EIGEN-6C4模型进行高程拟合的精度与利用组合重力场模型进行高程拟合的精度相当,这说明EGM2008、GECO及EIGEN-6C4模型存在的长波段误差也可通过一定的拟合模型进行削弱。  相似文献   

5.
全球重力场模型在卫星精密定位、大地水准面精化、重力法探矿、气候变化研究、地球物理学、地质学和海洋学等诸多领域都有非常重要的意义。据此,总结了全球重力场模型的研究进展,简要介绍了重力位模型计算扰动场元的方法与公式,对比了勒让德函数递推几种方法的效率。利用我国范围内实测的GPS/水准数据和垂线偏差数据对两个超高阶地球重力场模型EGM2008和EIGEN-6C2进行精度对比和分析,结果表明,EIGEN-6C2模型垂线偏差子午分量计算精度约为2.07″,卯酉分量计算精度约为2.13″,高程异常计算精度约为0.305m(含系统差),均优于EGM2008模型的计算精度。故在我国范围内,推荐使用EIGEN-6C2模型进行似大地水准面精化以及各类扰动重力场元计算。  相似文献   

6.
《地理空间信息》2015,(5):138-140
简要介绍了EGM2008和EIGEN-6C2两种超高阶重力场模型,给出了高程异常模型计算的详细过程,并基于两种重力场模型建立内蒙古地区似大地水准面模型,用空点法和外符合法进行精度分析比较。结果表明,可以用空点法取代外符合法进行精度评定。在内蒙古地区,EIGEN-6C2模型比EGM2008模型的精度提高了3 cm。  相似文献   

7.
徐新禹  赵永奇  魏辉  吴汤婷 《测绘学报》2015,44(11):1196-1201
GOCE卫星任务搭载了高灵敏度的重力梯度仪,其观测值用于恢复高精度高分辨率的地球重力场。本文利用EIGEN-5C、EGM2008、GOTIM3、GGM03S高精度全球重力场模型,确定了GOCE引力梯度张量的对角分量观测值(Vxx、Vyy、Vzz)的校准参数,分析了比例因子的稳定性,并讨论了相同模型不同阶次、同阶次不同模型以及是否估计漂移参数对比例因子、偏差参数及校准观测值的影响。研究表明比例因子的稳定性在10-4的量级,利用250阶的EIGEN-5C模型和EGM2008模型校准得到观测值的差异小于10-4 E,远远小于观测误差,以1d为周期估计校准参数时,是否估计漂移对校准结果的影响达到0.4E。同时,校准前后观测值差异的频谱说明校准过程主要影响Vxx、Vyy、Vzz观测值的低频部分,即来自先验重力场模型的中低(150)阶次,考虑到GOCE引力梯度的观测频带,校准后的观测值可用于恢复中高频的重力场信号。  相似文献   

8.
不同于当前广泛使用的空域法、时域法、直接解法,本文尝试采用Torus方法处理GOCE实测数据,利用71 d的GOCE卫星引力梯度数据反演了200阶次GOCE地球重力场模型,实现了对参考模型的精化。首先,采用Butterworth零相移滤波方法加移去—恢复技术,处理引力梯度观测值中的有色噪声,并利用泰勒级数展开和Kriging方法对GOCE卫星引力梯度数据进行归算和格网化,计算得到了名义轨道上格网点处的引力梯度数据。然后,利用2D-FFT技术和块对角最小二乘方法处理名义轨道上数据,获得了200阶次的GOCE地球重力场模型GOCE_Torus。利用中国和美国的GPS/水准数据进行外部检核结果说明,GOCE_Torus与ESA发布的同期模型的精度相当;GOCE_Torus模型与200阶次的EGM2008模型相比,在美国区域精度相当,但在中国区域精度提高了4.6 cm,这充分体现了GOCE卫星观测数据对地面重力稀疏区的贡献。Torus方法拥有快速高精度反演卫星重力场模型的优势,可以在重力梯度卫星的设计、误差分析及在轨快速评估等方面得到充分应用。  相似文献   

9.
利用简化动力学定轨的方法,联合Swarm星载GPS观测数据和简化的动力学模型,在确定性运动方程中引入优选的伪随机脉冲参数,实现了Swarm卫星的精密定轨;并详细分析了JGM3、EGM96、EGM2008以及EIGEN-6C4地球重力场模型对Swarm卫星简化动力学定轨精度的影响。实验结果表明,高于40阶次的JGM3、EGM96、EGM2008以及EIGEN-6C4重力场模型均可使Swarm卫星单天解定轨精度优于8 cm,EGM2008与EIGEN-6C4解算的定轨精度优于JGM3和EGM96。  相似文献   

10.
超高阶重力场模型EIGEN-6C2适应性分析   总被引:3,自引:1,他引:2  
为了证明EIGEN-6C2是目前较优的超高阶重力场模型,该文将我国全部的共计13个沿海省市的陆地和岛礁上2 917个GNSS水准点的实测高程异常,分别与近几年国际上公布的比较优秀的EGM2008、EIGEN-6C、EIGEN-6C2、GO_CONS_GCF_2_DIR_R4和GOCO03S5个重力场模型的不同截断阶次模型高程异常之差进行外部精度检验,最后得出了到目前为止EIGEN-6C2重力场模型与我国沿海省市实测高程异常符合性最好的结论。  相似文献   

11.
Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model’s spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components \(V_{xy}\) and \(V_{yz}\) of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE’s inclination of \(96.7^{\circ }\). With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of \(V_{xy}\) and \(V_{yz}\) are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a combined gravity field model which contains GOCE GGs signals and long wavelength signals from the a-priori model EIGEN-5C. Finally, IGGT_R1’s accuracy is evaluated by comparison with other gravity field models in terms of difference degree amplitudes, the geostrophic velocity in the Agulhas current area, gravity anomaly differences as well as by comparison to GNSS/leveling data.  相似文献   

12.
联合地球重力场和海洋环流探测器(Gravity Field and Steady-State Ocean Circulation Explorer,GOCE)和重力恢复与气候实验(Gravity Recovery and Climate Experiment,GRACE)卫星观测数据确定全球静态重力场模型是当前大地测量学的研究热点之一。联合近3 a的GOCE卫星梯度数据和7 a左右的GRACE星间距离变率数据计算的ITG-GRACE2010S模型的法方程恢复了210阶次的重力场模型SWJTU-GOGR01S。采用带通数字滤波方法处理GOCE卫星的4个高精度梯度观测分量,利用梯度数据恢复重力场模型的观测方程直接建立在梯度仪坐标系中,可以避免坐标转换过程中高精度的梯度观测分量受低精度分量的影响;联合法方程解的最优权采用方差分量估计迭代计算,GOCE数据的两极空白引起的病态问题采用Kaula正则化方法进行约束。基于EIGEN-6C2模型和北美地区的GPS水准网观测数据,对SWJTU-GOGR01S模型进行内外符合精度分析,结果表明,SWJTU-GOGR01S模型在210阶次的大地水准面误差和累计误差分别为1.3 cm和5.7 cm,精度与欧洲空间局公布的第四代时域法模型相当,略优于GOCO02S和GOCO03S模型的精度。  相似文献   

13.
We present a global static model of the Earth’s gravity field entitled DGM-1S based on GRACE and GOCE data. The collection of used data sets includes nearly 7 years of GRACE KBR data and 10 months of GOCE gravity gradient data. The KBR data are transformed with a 3-point differentiation into quantities that are approximately inter-satellite accelerations. Gravity gradients are processed in the instrumental frame. Noise is handled with a frequency-dependent data weighting. DGM-1S is complete to spherical harmonic degree 250 with a Kaula regularization being applied above degree 179. Its performance is compared with a number of other satellite-only GRACE/GOCE models by confronting them with (i) an independent model of the oceanic mean dynamic topography, and (ii) independent KBR and gravity gradient data. The tests reveal a competitive quality for DGM-1S. Importantly, we study added value of GOCE data by comparing the performance of satellite-only GRACE/GOCE models with models produced without GOCE data: either ITG-Grace2010s or EGM2008 depending on which of the two performs better in a given region. The test executed based on independent gravity gradients quantifies this added value as 25–38 % in the continental areas poorly covered with terrestrial gravimetry data (Equatorial Africa, Himalayas, and South America), 7–17 % in those with a good coverage with these data (Australia, North America, and North Eurasia), and 14 % in the oceans. This added value is shown to be almost entirely related to coefficients below degree 200. It is shown that this gain must be entirely attributed to gravity gradients acquired by the mission. The test executed based on an independent model of the mean dynamic topography suggests that problems still seem to exist in satellite-only GRACE/GOCE models over the Pacific ocean, where noticeable deviations between these models and EGM2008 are detected, too.  相似文献   

14.
利用现势性很强的EGM2008,EIGEN-6C,EIGEN-6C2,GO_CONS_GCF_2_DIR_R4共四个地球重力场模型,对中国沿海近岸陆地和岛礁上16个区域的1 053个GNSS水准点进行了沉降分析,最后发现中国沿海浙江省、辽宁省、上海市、天津市、广西、琼州北(琼州海峡北)、琼州南(琼州海峡南)7个区域存在沉降。  相似文献   

15.
吴富梅  魏子卿  刘光明 《测绘学报》2018,47(10):1295-1300
确定局部高程基准相对大地水准面的垂直偏差是统一全球高程基准的重要途径。本文的目的是通过大港验潮站坐标直接确定我国高程基准的垂直偏差。首先给出通过大港验潮站坐标确定我国高程基准垂直偏差的基本原理,然后介绍测定大港验潮站平均海面坐标的方法及过程,接下来通过EGM2008和EIGEN-6C4重力场模型计算出的我国高程基准面的重力位,进而推算获得垂直偏差,并与我国东部地区GPS/水准数据的计算结果进行了比较。经分析发现,EGM2008模型计算结果的可靠性要好于EIGEN-6C4模型;利用大港验潮站坐标计算得到的我国高程基准相对大地水准面的垂直偏差为0.344 m,比利用我国东部261个GPS/水准点数据计算获得的偏差值小0.006 m。  相似文献   

16.
提出了一种基于大地水准面等位面特性的地球重力场模型优劣评价方法。通过取任一重力大地水准面为参考面,计算不同地球重力场模型在该面上的重力位标准差,以此作为不同模型相对优劣的评价指标。利用该方法对不同地球重力场模型以及同一重力场模型在不同区域的精度进行了评价。结果表明:EGM96、OSU91A模型的大地水准面高精度分别为±11.1 cm、±14.3 cm,说明EGM96要优于OSU91A,EGM2008、EIGEN-6C4模型的大地水准面高精度分别为±8.8 cm、±8.9 cm,说明该两个模型的精度相当,与已有研究结果一致,表明本文方法的有效性与适用性。进一步研究结果显示,对于全球大地水准面,EGM2008和EIGEN-6C4模型的大地水准面高精度分别为±11.3 cm和±14.1 cm,即在厘米级精度上EGM2008略优。  相似文献   

17.
采用星载GPS观测数据与简化动力学定轨方法,在方程中引入伪随机脉冲参数,从而实现对Swarm卫星的精密定轨. 详细分析了不同阶次的GOCO06s地球重力场模型对Swarm卫星简化动力学定轨精度的影响,对比了PGM2000a、EIGEN-2、EGM2008以及GECO重力场模型展开到100阶次时Swarm卫星解算的轨道精度. 结果表明:当GOCO06s地球重力场模型阶次处于30~100阶次时,Swarm-A、Swarm-B和Swarm-C卫星在径向、切向、法向上的定轨精度随着GOCO06s阶次的不断增加而越来越高,而在高于100阶次时,定轨精度基本稳定,且在各方向定轨精度优于3 cm. 此外,采用100阶次GECO、EGM2008和GOCO06s模型对三颗Swarm卫星进行定轨,解算的轨道精度相当,且要高于同阶次其他重力场模型的定轨结果.   相似文献   

18.
Recently, four global geopotential models (GGMs) were computed and released based on the first 2 months of data collected by the Gravity field and steady-state Ocean Circulation Explorer (GOCE) dedicated satellite gravity field mission. Given that GOCE is a technologically complex mission and different processing strategies were applied to real space-collected GOCE data for the first time, evaluation of the new models is an important aspect. As a first assessment strategy, we use terrestrial gravity data over Switzerland and Australia and astrogeodetic vertical deflections over Europe and Australia as ground-truth data sets for GOCE model evaluation. We apply a spectral enhancement method (SEM) to the truncated GOCE GGMs to make their spectral content more comparable with the terrestrial data. The SEM utilises the high-degree bands of EGM2008 and residual terrain model data as a data source to widely bridge the spectral gap between the satellite and terrestrial data. Analysis of root mean square (RMS) errors is carried out as a function of (i) the GOCE GGM expansion degree and (ii) the four different GOCE GGMs. The RMS curves are also compared against those from EGM2008 and GRACE-based GGMs. As a second assessment strategy, we compare global grids of GOCE GGM and EGM2008 quasigeoid heights. In connection with EGM2008 error estimates, this allows location of regions where GOCE is likely to deliver improved knowledge on the Earth’s gravity field. Our ground truth data sets, together with the EGM2008 quasigeoid comparisons, signal clear improvements in the spectral band ~160–165 to ~180–185 in terms of spherical harmonic degrees for the GOCE-based GGMs, fairly independently of the individual GOCE model used. The results from both assessments together provide strong evidence that the first 2 months of GOCE observations improve the knowledge of the Earth’s static gravity field at spatial scales between ~125 and ~110 km, particularly over parts of Asia, Africa, South America and Antarctica, in comparison with the pre-GOCE-era.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号