首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Directly mapping impervious surface area (ISA) at national and global scales using nighttime light data is a challenge due to the complexity of land surface components and the impacts of unbalanced economic conditions. Previous research mainly used the coarse spatial resolution Defense Meteorological Satellite Program’s Operational Linescan System (DMSP OLS) and Moderate Resolution Imaging Spectroradiometer (MODIS), normalized difference vegetation index (NDVI) data for ISA mapping; the improved spatial resolution and data quality in the Suomi National Polar-orbiting Partnership, Visible Infrared Imaging Radiometer Suite’s Day/Night Band (VIIRS DNB) and in Proba-V data provide a new opportunity to accurately map ISA distribution at the national scale, which has not been explored yet. This research aimed to develop a new index – modified impervious surface index (MISI) – based on VIIRS DNB and Proba-V data to improve ISA estimation and to compare the results with those from the combination of VIIRS DNB and MODIS NDVI data. Landsat data were used to develop ISA data for the typical sites for use as reference data. Regression analysis was used to establish the ISA estimation model in which the dependent variable was from the Landsat data and the independent variable was from the MISI, as well as the previously used Large-scale Impervious Surface Index (LISI). The results indicate that the major error is from the very small or very large proportion of ISA in a unit; improvement of spatial resolution through use of higher spatial resolution nighttime light data (e.g., VIIRS DNB) or NDVI (e.g., Proba-V NDVI) data is an effective approach to improve ISA estimation. Although different indices for the combination of nighttime light and NDVI data have been used, the MISI is especially valuable for reducing the estimation errors for the regions with a small or large ISA proportion.  相似文献   

2.
Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.  相似文献   

3.
Satellite derived vegetation vigour has been successfully used for various environmental modeling since 1972. However, extraction of reliable annual growth information about natural vegetation (i.e., phenology) has been of recent interest due to their important role in many global models and free availability of time-series satellite data. In this study, usability of Moderate Resolution Imaging Spectro-radiometer (MODIS) and Global Inventory Modelling and Mapping Studies (GIMMS) based products in extracting phenology information about evergreen, semi-evergreen, moist deciduous and dry deciduous vegetation in India was explored. The MODIS NDVI and EVI time-series data (MOD13C1: 5.6 km spatial resolution with 16 day temporal resolution—2001 to 2010) and GIMMS NDVI time-series data(8 km spatial resolution with 15 day temporal resolution—2000 to 2006) were used. These three differently derived vegetation indices were analysed to extract and understand the vegetative growth rhythm over different regions of India. Algorithm was developed to derive onset of greenness and end of senescence automatically. The comparative analysis about differences in the results from these products was carried out. Due to dominant noise in the values of NDVI from GIMMS and MODIS during monsoon period the phenology rhythm were wrongly depicted, especially for evergreen and semi-evergreen vegetation in India. Hence, care is needed before using these data sets for understanding vegetative dynamics, biomass cestimation and carbon studies. MODIS EVI based results were truthful and comparable to ground reality. The study reveals spatio-temporal patterns of phenology, rate of greening, rate of senescence, and differences in results from these three products.  相似文献   

4.
Beijing has experienced rapid urbanization and associated urban heat island effects and air pollution. In this study, a contribution index was proposed to explore the effect of urbanization on land surface temperature (LST) using Moderate-Resolution Imaging Spectroradiometer (MODIS)-derived data with high temporal resolution. The analysis indicated that different zones and landscapes make diurnally and seasonally different contributions to the regional thermal environment. The differences in contributions by the three main functional zones resulted from differences in their landscape compositions. The roles of landscapes in this process varied diurnally and seasonally. Urban land was the most important contributor to increases in regional LSTs. The contributions of cropland and forest varied distinctly between daytime and nighttime owing to differences in their thermal inertias. Vegetation had a notable cooling effect as the normalized vegetation difference index (NDVI) increased during summer. However, when the NDVI reached a certain value, the nighttime LST shifted markedly in other seasons. The results suggest that urban design based on vegetation partitions would be effective for regulating the thermal environment.  相似文献   

5.
Urban areas are of paramount significance to both the individuals and communities at local and regional scales. However, the rapid growth of urban areas exerts effects on climate, biodiversity, hydrology, and natural ecosystems worldwide. Therefore, regular and up-to-date information related to urban extent is necessary to monitor the impacts of urban areas at local, regional, and potentially global scales. This study presents a new urban map of Eurasia at 500 m resolution using multi-source geospatial data, including Moderate Resolution Imaging Spectroradiometer (MODIS) data of 2013, population density of 2012, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) nighttime lights of 2012, and constructed Impervious Surface Area (ISA) data of 2010. The Eurasian urban map was created using the threshold method for these data, combined with references of fine resolution Landsat and Google Earth imagery. The resultant map was compared with nine global urban maps and was validated using random sampling method. Results of the accuracy assessment showed high overall accuracy of the new urban map of 94%. This urban map is one product of the 20 land cover classes of the next version of Global Land Cover by National Mapping Organizations.  相似文献   

6.
一种高时空分辨率NDVI数据集构建方法-STAVFM   总被引:1,自引:1,他引:0  
ETM NDVI可以用来在30m的尺度上开展植被的监测,然而在Landsat卫星16天的重访周期和云污染等因素的影响下,常常会在相当长的一段时间内无法获取有效的ETM NDVI数据,给这一尺度下的植被动态监测带来了一定困难。相比之下,MODIS虽然在空间上只有250m分辨率的NDVI产品,却可以每天进行相同区域的监测。针对ETM空间分辨率高和MODIS时间分辨率高的特点,本研究选择实验区,基于对STARFM方法的改进,构建不同时空分辨率NDVI的时空融合模型-STAVFM,使用该模型对ETM NDVI与MODIS NDVI融合,构建了高时空分辨率NDVI数据集。研究结果表明,通过MODIS NDVI时间变化信息与ETM NDVI空间差异信息的有机结合,实现缺失高空间分辨率NDVI的有效预测(3景预测NDVI与实际NDVI的相关系数分别达到了0.82、0.90和0.91),从而构建高时空分辨率NDVI数据集。所构建的高时空分辨率NDVI数据集在时间上保留了高时间分辨率数据的时间变化趋势,空间上又反映了高空间分辨率数据的空间细节差异。  相似文献   

7.
Landscape patterns in a region have different sizes, shapes and spatial arrangements, which contribute to the spatial heterogeneity of the landscape and are linked to the distinct behavior of thermal environments. There is a lack of research generating landscape metrics from discretized percent impervious surface area data (ISA), which can be used as an indicator of urban spatial structure and level of development, and quantitatively characterizing the spatial patterns of landscapes and land surface temperatures (LST). In this study, linear spectral mixture analysis (LSMA) is used to derive sub-pixel ISA. Continuous fractional cover thresholds are used to discretize percent ISA into different categories related to urban land cover patterns. Landscape metrics are calculated based on different ISA categories and used to quantify urban landscape patterns and LST configurations. The characteristics of LST and percent ISA are quantified by landscape metrics such as indices of patch density, aggregation, connectedness, shape and shape complexity. The urban thermal intensity is also analyzed based on percent ISA. The results indicate that landscape metrics are sensitive to the variation of pixel values of fractional ISA, and the integration of LST, LSMA. Landscape metrics provide a quantitative method for describing the spatial distribution and seasonal variation in urban thermal patterns in response to associated urban land cover patterns.  相似文献   

8.
多尺度城市地表温度降尺度方法   总被引:1,自引:0,他引:1  
针对目前星载热红外传感器的空间分辨率低,无法满足城市尺度的生态环境研究需求的现状,该文选择地表覆盖类型复杂的区域,根据研究区土地覆盖类型,选取归一化植被指数(NDVI)、城市不透水面指数(ISA)、改进的归一化差异水体指数(MNDWI)等因子加入DisTrad模型,采用移动窗口逐步回归统计地表温度和因子的线性关系,利用半方差曲线函数和均方根误差综合确定最优移动窗口的大小,以提高地表温度降尺度精度。研究结果表明:改进的DisTrad模型在地表覆盖类型复杂区域,具有良好的降尺度目视效果,且具有较高的降尺度精度,尤其在低植被覆盖的建筑区、水体区域具有更高的精度。  相似文献   

9.
融合多源遥感数据的高分辨率城市植被覆盖度估算   总被引:2,自引:0,他引:2  
皮新宇  曾永年  贺城墙 《遥感学报》2021,25(6):1216-1226
准确获取城市植被覆盖定量信息对城市生态环境评价,城市规划及可持续城市发展具有重要意义。遥感技术的发展为获取区域及全球植被覆盖信息提供了有效手段,目前基于单传感器、单时相遥感数据的城市植被覆盖度估算方法得到较为广泛的应用。然而,由于城市地表覆盖的复杂性、植被类型的多样性,在一定程度上影响了城市植被覆盖信息提取的精度。为此,本文提出一种基于多源遥感数据与时间混合分析的城市植被覆盖度估算方法。首先,通过时空融合、植被物候特征分析获得最佳时序的GF-1 NDVI数据;其次,基于时间序列的GF-1 NDVI及Landsat 8 SWIR1、SWIR2数据,采用时间混合分析方法以长沙市为例估算城市植被覆盖度。实验研究表明,基于多源遥感数据与时间混合分析方法获得了较高精度的城市植被覆盖度估算(RMSE为0.2485,SE为0.1377,MAE为0.1889),相对于单时相光谱混合分析、传统的像元二分法,本文提出的方法更为稳定,在低、中、高不同植被覆盖区均能获得较高的估算精度,为城市植被覆盖度定量估算提供了有效方法。  相似文献   

10.
Abstract

While data like HJ-1 CCD images have advantageous spatial characteristics for describing crop properties, the temporal resolution of the data is rather low, which can be easily made worse by cloud contamination. In contrast, although Moderate Resolution Imaging Spectroradiometer (MODIS) can only achieve a spatial resolution of 250 m in its normalised difference vegetation index (NDVI) product, it has a high temporal resolution, covering the Earth up to multiple times per day. To combine the high spatial resolution and high temporal resolution of different data sources, a new method (Spatial and Temporal Adaptive Vegetation index Fusion Model [STAVFM]) for blending NDVI of different spatial and temporal resolutions to produce high spatial–temporal resolution NDVI datasets was developed based on Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). STAVFM defines a time window according to the temporal variation of crops, takes crop phenophase into consideration and improves the temporal weighting algorithm. The result showed that the new method can combine the temporal information of MODIS NDVI and spatial difference information of HJ-1 CCD NDVI to generate an NDVI dataset with both high spatial and high temporal resolution. An application of the generated NDVI dataset in crop biomass estimation was provided. An average absolute error of 17.2% was achieved. The estimated winter wheat biomass correlated well with observed biomass (R 2 of 0.876). We conclude that the new dataset will improve the application of crop biomass estimation by describing the crop biomass accumulation in detail. There is potential to apply the approach in many other studies, including crop production estimation, crop growth monitoring and agricultural ecosystem carbon cycle research, which will contribute to the implementation of Digital Earth by describing land surface processes in detail.  相似文献   

11.
利用MERIS数据植被指数分析福建省植被长势季节变化   总被引:1,自引:0,他引:1  
监测植被长势动态变化可以提供生态系统状况有价值的信息,可以检测到人类或气候作用引起的变化。本研究利用2004—2005年间10期MERIS影像数据,以福建省为例,探讨MERIS数据在区域植被长势季节变化监测中的应用效果;分析了MERIS数据用于区域植被季节变化监测时的数据处理方法;比较了MERIS数据几种植被指数,提出了利用10和8波段组合改进MERISNDVI的建议;利用多时相合成的NDVI简单分析了2004年夏季—2005年夏季三个季节的植被长势状况。结果表明,MERIS植被指数的时空变化有效反映了气候变化对植被长势的影响。  相似文献   

12.
张猛  曾永年 《遥感学报》2018,22(1):143-152
植被净初级生产力NPP(Net Primary Production)遥感估算与分析,有赖于高时空分辨率的遥感数据,但目前中高分辨率的遥感数据受卫星回访周期及天气的影响,在中国南方地区难以获取连续时间序列的数据,从而影响了高精度的区域植被净初级生产力的遥感估算。为此,提出一种基于多源遥感数据时空融合技术与CASA模型估算高时空分辨率NPP的方法。首先,利用多源遥感数据,即Landsat8 OLI数据与MODIS13Q1数据,采用遥感数据时空融合方法,获得了时间序列的Landsat8 OLI融合数据;然后,基于Landsat8 OLI时空融合数据,并采用CASA模型,以长株潭城市群核心区为例,进行区域植被NPP的遥感估算。研究结果表明,基于时间序列Landsat融合数据估算的30m分辨率的NPP具有良好的空间细节信息,且估算值与实测值的相关系数达0.825,与实测NPP数据保持了较好的一致性。  相似文献   

13.
Detailed spatial information on the presence and properties of woody vegetation serves many purposes, including carbon accounting, environmental reporting and land management. Here, we investigated whether machine learning can be used to combine multiple spatial observations and training data to estimate woody vegetation canopy cover fraction (‘cover’), vegetation height (‘height’) and woody above-ground biomass dry matter (‘biomass’) at 25-m resolution across the Australian continent, where possible on an annual basis. We trained a Random Forest algorithm on cover and height estimates derived from airborne LiDAR over 11 regions and inventory-based biomass estimates for many thousands of plots across Australia. As predictors, we used annual geomedian Landsat surface reflectance, ALOS/PALSAR L-band radar backscatter mosaics, spatial vegetation structure data derived primarily from ICESat/GLAS satellite altimetry, and spatial climate data. Cross-validation experiments were undertaken to optimize the selection of predictors and the configuration of the algorithm. The resulting estimation errors were 0.07 for cover, 3.4 m for height, and 80 t dry matter ha-1 for biomass. A large fraction (89–94 %) of the observed variance was explained in each case. Priorities for future research include validation of the LiDAR-derived cover training data and the use of new satellite vegetation height data from the GEDI mission. Annual cover mapping for 2000–2018 provided detailed insight in woody vegetation dynamics. Continentally, woody vegetation change was primarily driven by water availability and its effect on bushfire and mortality, particularly in the drier interior. Changes in woody vegetation made a substantial contribution to Australia’s total carbon emissions since 2000. Whether these ecosystems will recover biomass in future remains to be seen, given the persistent pressures of climate change and land use.  相似文献   

14.
长白山作为中、朝两国界山其特殊的地理位置,以及罕见的植被垂直分布景观格局,向来是国际上高度关注的生态敏感地区(如图1所示)。本文针对长白山空间数据的多源性特征,多源空间数据的来源及长白山多源空间数据集成要实现的功能,对常用的几种多源空间数据集成模式进行比较,提出了采用ESRI公司的Geoda-tabase数据模型进行长白山多源空间数据集成的可行性,并对多源空间数据集成的前景进行了展望。  相似文献   

15.
Satellite data holds considerable potential as a source of information on rice crop growth which can be used to inform agronomy. However, given the typical field sizes in many rice-growing countries such as China, data from coarse spatial resolution satellite systems such as the Moderate Resolution Imaging Spectroradiometer (MODIS) are inadequate for resolving crop growth variability at the field scale. Nevertheless, systems such as MODIS do provide images with sufficient frequency to be able to capture the detail of rice crop growth trajectories throughout a growing season. In order to generate high spatial and temporal resolution data suitable for mapping rice crop phenology, this study fused MODIS data with lower frequency, higher spatial resolution Landsat data. An overall workflow was developed which began with image preprocessing, calculation of multi-temporal normalized difference vegetation index (NDVI) images, and spatiotemporal fusion of data from the two sensors. The Spatial and Temporal Adaptive Reflectance Fusion Model was used to effectively downscale the MODIS data to deliver a time-series of 30 m spatial resolution NDVI data at 8-day intervals throughout the rice-growing season. Zonal statistical analysis was used to extract NDVI time-series for individual fields and signal filtering was applied to the time-series to generate rice phenology curves. The downscaled MODIS NDVI products were able to characterize the development of paddy rice at fine spatial and temporal resolutions, across wide spatial extents over multiple growing seasons. These data permitted the extraction of key crop seasonality parameters that quantified inter-annual growth variability for a whole agricultural region and enabled mapping of the variability in crop performance between and within fields. Hence, this approach can provide rice crop growth data that is suitable for informing agronomic policy and practice across a wide range of scales.  相似文献   

16.
王祎婷  谢东辉  李亚惠 《遥感学报》2014,18(6):1169-1181
针对城市及周边区域建造区和自然地表交织分布的特点,探讨了利用归一化植被指数(NDVI)和归一化建造指数(NDBI)构造趋势面的地表温度(LST)降尺度方法,以北京市市区及周边较平坦区域为例实现了LST自960 m向120 m的降尺度转换。分析了LST空间分布特征及NDVI、NDBI对地物的指示性特征;以北京市四至六环为界分析NDVI、NDBI趋势面对地表温度的拟合程度及各自的适用区域;在120 m、240 m、480 m和960 m 4个尺度上评价了NDVI、NDBI和NDVI+NDBI趋势面对LST的拟合程度和趋势面转换函数的尺度效应;对NDVI、NDBI和NDVI NDBI等3种方法的降尺度结果分覆盖类型、分区域对比评价。实验结果表明结合两种光谱指数的NDVI NDBI方法降尺度转换精度有所改善,改善程度取决于地表覆盖类型组合。  相似文献   

17.
太湖水生植被NDVI的时空变化特征分析   总被引:2,自引:0,他引:2  
为了明确太湖不同生态区水生植被长势的变化规律及其影响因子,利用MODIS传感器提供的NDVI数据,分析了太湖2000年—2015年NDVI的时间及空间变化特征。结果表明:太湖水生植被NDVI存在明显的季节变化和年际变化,NDVI每年最小值出现在冬季,最大值出现在植被生长旺盛的8月或9月,其值可达0.35;太湖全湖NDVI多年平均值为0.1,最大值为0.14,出现在2007年。太湖NDVI的空间差异可将太湖划分为不同的植被类型区,太湖西北部(竺山湾和梅梁湾)NDVI最大值可达0.2,植被类型主要以浮游藻类为主,东太湖区域最大值超过0.6,主要以沉水植被为主;太湖不同区域植被动态特征对气象因子的响应也不尽相同,沉水植物生长与平均气温有显著的正相关关系,而浮游植物区的生长状况受平均风速影响较大。  相似文献   

18.
Soil, as one of the three basic biophysical components, has been understudied using remote sensing techniques compared to vegetation and impervious surface areas (ISA). This study characterized land surfaces based on the brightness–darkness–greenness model. These three dimensions, brightness, darkness, and greenness, were represented by the first Tasseled Cap Transformation (TC1), Normalize Difference Snow Index (NDSI), and Normalized Difference Vegetation Index (NDVI), respectively. The Ratio Index for Bright Soil (RIBS) was developed based on TC1 and NDSI, and the Product Index for Dark Soil (PIDS) was established by TC1 and NDVI. Their applications to the Landsat 8 Operational Land Imager images and 500 m 8-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) in China revealed the efficiency. The two soil indices proficiently highlighted soil covers with consistently the smallest values, due to larger TC1 and smaller NDSI values in bright soil, and smaller NDVI and TC1 values in dark soil. The RIBS is capable of distinguishing bright soil from ISA without masking vegetation and water body. The spectral separability bright soil and ISA were perfect, with a Jeffries–Matusita distance of 1.916. And the PIDS was the only soil index that could discriminate dark soil from other land covers including ISA. The soil areas in China were classified using a simple threshold method based on MODIS images. An overall accuracy of 94.00% was obtained, with the kappa index of 0.8789. This study provided valuable insights into developing indices for characterizing land surfaces from different perspectives.  相似文献   

19.
A time series of leaf area index (LAI) has been developed based on 16-day normalized difference vegetation index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 250 m resolution (MOD250_LAI). The MOD250_LAI product uses a physical radiative transfer model which establishes a relationship between LAI, fraction of vegetation cover (FVC) and given patterns of surface reflectance, view-illumination conditions and optical properties of vegetation. In situ measurements of LAI and FVC made at 166 plots using hemispherical photography served for calibration of model parameters and validation of modelling results. Optical properties of vegetation cover, summarized by the light extinction coefficient, were computed at the local (pixel) level based on empirical models between ground-measured tree crown architecture at 85 sampling plots and spectral values in Landsat ETM+ bands. Influence of view-illumination conditions on optical properties of canopy was simulated by a view angle geometry model incorporating the solar zenith angle and the sensor viewing angle. The results revealed high compatibility of the produced MOD250_LAI data set with ground truth information and the 30 m resolution Landsat ETM+ LAI estimated using the similar algorithm. The produced MOD250_LAI was also compared with the global MODIS 1000-m LAI product (MOD15A2 LAI). Results show good consistency of the spatial distribution and temporal dynamics between the two LAI products. However, the results also showed that the annual LAI amplitude by the MOD15A2 product is significantly higher than by the MOD250_LAI. This higher amplitude is caused by a considerable underestimation of the tropical rainforest LAI by the MOD15A2 during the seasonal phases of low leaf production.  相似文献   

20.
ABSTRACT

Forests of the Sierra Nevada (SN) mountain range are valuable natural heritages for the region and the country, and tree height is an important forest structure parameter for understanding the SN forest ecosystem. There is still a need in the accurate estimation of wall-to-wall SN tree height distribution at fine spatial resolution. In this study, we presented a method to map wall-to-wall forest tree height (defined as Lorey’s height) across the SN at 70-m resolution by fusing multi-source datasets, including over 1600 in situ tree height measurements and over 1600?km2 airborne light detection and ranging (LiDAR) data. Accurate tree height estimates within these airborne LiDAR boundaries were first computed based on in situ measurements, and then these airborne LiDAR-derived tree heights were used as reference data to estimate tree heights at Geoscience Laser Altimeter System (GLAS) footprints. Finally, the random forest algorithm was used to model the SN tree height from these GLAS tree heights, optical imagery, topographic data, and climate data. The results show that our fine-resolution SN tree height product has a good correspondence with field measurements. The coefficient of determination between them is 0.60, and the root-mean-squared error is 5.45?m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号