首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
Earth orientation parameters (EOPs) provide a link between the International Celestial Reference Frame (ICRF) and the International Terrestrial Reference Frame (ITRF). Natural geodynamic processes, such as earthquakes, can cause the motion of stations to become discontinuous and/or non-linear, thereby corrupting the EOP estimates if the sites are assumed to move linearly. The VLBI antenna at the Gilcreek Geophysical Observatory has undergone non-linear, post-seismic motion as a result of the Mw=7.9 Denali earthquake in November 2002, yet some VLBI analysts have adopted co-seismic offsets and a linear velocity model to represent the motion of the site after the earthquake. Ignoring the effects of the Denali earthquake leads to error on the order of 300–600 μas for the EOP, while modelling the post-seismic motion of Gilcreek with a linear velocity generates errors of 20–50 μas. Only by modelling the site motion with a non-linear function is the same level of accuracy of EOP estimates maintained. The effect of post-seismic motion on EOP estimates derived from the International VLBI Service IVS-R1 and IVS-R4 networks are not the same, although changes in network geometries and equipment improvements have probably affected the estimates more significantly than the earthquake-induced deformation at Gilcreek.  相似文献   

2.
Universal time from VLBI single-baseline observations during CONT08   总被引:2,自引:2,他引:0  
The IVS Intensive sessions are single-baseline, 1-h VLBI sessions carried out everyday in order to determine Universal Time (UT1). We investigate different possibilities to improve the results of such sessions. We do this investigation by extracting 2-h single-baseline sessions from the CONT08 data set. These are analysed like normal Intensives, and the results are compared to the results of the analysis of the full CONT08 data set. We find that tropospheric asymmetry is the major error source for the single-baseline sessions. It is possible to improve the accuracy of the estimated UT1 either by using accurate a priori tropospheric gradients or by estimating gradients in the data analysis.  相似文献   

3.
CONT08 was a 15 days campaign of continuous Very Long Baseline Interferometry (VLBI) sessions during the second half of August 2008 carried out by the International VLBI Service for Geodesy and Astrometry (IVS). In this study, VLBI estimates of troposphere zenith total delays (ZTD) and gradients during CONT08 were compared with those derived from observations with the Global Positioning System (GPS), Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), and water vapor radiometers (WVR) co-located with the VLBI radio telescopes. Similar geophysical models were used for the analysis of the space geodetic data, whereas the parameterization for the least-squares adjustment of the space geodetic techniques was optimized for each technique. In addition to space geodetic techniques and WVR, ZTD and gradients from numerical weather models (NWM) were used from the European Centre for Medium-Range Weather Forecasts (ECMWF) (all sites), the Japan Meteorological Agency (JMA) and Cloud Resolving Storm Simulator (CReSS) (Tsukuba), and the High Resolution Limited Area Model (HIRLAM) (European sites). Biases, standard deviations, and correlation coefficients were computed between the troposphere estimates of the various techniques for all eleven CONT08 co-located sites. ZTD from space geodetic techniques generally agree at the sub-centimetre level during CONT08, and??as expected??the best agreement is found for intra-technique comparisons: between the Vienna VLBI Software and the combined IVS solutions as well as between the Center for Orbit Determination (CODE) solution and an IGS PPP time series; both intra-technique comparisons are with standard deviations of about 3?C6?mm. The best inter space geodetic technique agreement of ZTD during CONT08 is found between the combined IVS and the IGS solutions with a mean standard deviation of about 6?mm over all sites, whereas the agreement with numerical weather models is between 6 and 20?mm. The standard deviations are generally larger at low latitude sites because of higher humidity, and the latter is also the reason why the standard deviations are larger at northern hemisphere stations during CONT08 in comparison to CONT02 which was observed in October 2002. The assessment of the troposphere gradients from the different techniques is not as clear because of different time intervals, different estimation properties, or different observables. However, the best inter-technique agreement is found between the IVS combined gradients and the GPS solutions with standard deviations between 0.2 and 0.7?mm.  相似文献   

4.
This paper studies the connection between the subdaily model for polar motion used in the processing of very long baseline interferometry (VLBI) observations and the estimated nutation offsets. By convention accepted by the International Earth Rotation Service, the subdaily model for polar motion recommended for routine processing of geodetic observations does not contain any daily retrograde terms due to their one-to-one correlation with the nutation. Nevertheless, for a 24-h VLBI solution a part of the signal contained in the polar motion given by the used subdaily model is numerically mistaken for a retrograde daily sidereal signal. This fictitious retrograde daily signal contributes to the estimated nutation, leading to systematic differences between the nutation offsets from VLBI solutions computed with different subdaily polar motion models. We demonstrate this effect using solutions for all suitable 24-h VLBI sessions over a time span of 11 years (2000–2011). By changing the amplitudes of one tidal term in the underlying subdaily model for polar motion and comparing the estimated parameters to the solutions computed with the unchanged subdaily model, the paper shows and explains theoretically the effects produced by the individual subdaily terms on the VLBI nutation estimates.  相似文献   

5.
Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1)   总被引:6,自引:5,他引:1  
J. Kouba 《Journal of Geodesy》2008,82(4-5):193-205
The new gridded Vienna Mapping Function (VMF1) was implemented and compared to the well-established site-dependent VMF1, directly and by using precise point positioning (PPP) with International GNSS Service (IGS) Final orbits/clocks for a 1.5-year GPS data set of 11 globally distributed IGS stations. The gridded VMF1 data can be interpolated for any location and for any time after 1994, whereas the site-dependent VMF1 data are only available at selected IGS stations and only after 2004. Both gridded and site-dependent VMF1 PPP solutions agree within 1 and 2 mm for the horizontal and vertical position components, respectively, provided that respective VMF1 hydrostatic zenith path delays (ZPD) are used for hydrostatic ZPD mapping to slant delays. The total ZPD of the gridded and site-dependent VMF1 data agree with PPP ZPD solutions with RMS of 1.5 and 1.8 cm, respectively. Such precise total ZPDs could provide useful initial a priori ZPD estimates for kinematic PPP and regional static GPS solutions. The hydrostatic ZPDs of the gridded VMF1 compare with the site-dependent VMF1 ZPDs with RMS of 0.3 cm, subject to some biases and discontinuities of up to 4 cm, which are likely due to different strategies used in the generation of the site-dependent VMF1 data. The precision of gridded hydrostatic ZPD should be sufficient for accurate a priori hydrostatic ZPD mapping in all precise GPS and very long baseline interferometry (VLBI) solutions. Conversely, precise and globally distributed geodetic solutions of total ZPDs, which need to be linked to VLBI to control biases and stability, should also provide a consistent and stable reference frame for long-term and state-of-the-art numerical weather modeling.  相似文献   

6.
Continuous, very long baseline interferometry (VLBI) campaigns over 2 weeks have been carried out repeatedly, i.e., CONT02 in October 2002, CONT05 in September 2005, CONT08 in August 2008, and CONT11 in September 2011, to demonstrate the highest accuracy the current VLBI was capable at that time. In this study, we have compared zenith total delays (ZTD) and troposphere gradients as consistently estimated from the observations of VLBI, Global Navigation Satellite Systems (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) at VLBI sites participating in the CONT campaigns. We analyzed the CONT campaigns using the state-of-the-art software following common processing strategies as closely as possible. In parallel, ZTD and gradients were derived from numerical weather models, i.e., from the global European Centre for Medium-Range Weather Forecasts (ECMWF) analysis fields, the High Resolution Limited Area Model (European sites), the Japan Meteorological Agency-Operational Meso-Analysis Field (MANAL, over Japan), and the Cloud Resolving Storm Simulator (Tsukuba, Japan). Finally, zenith wet delays were estimated from the observations of water vapor radiometers (WVR) at sites where the WVR observables are available during the CONT sessions. The best ZTD agreement, interpreted as the smallest standard deviation, was found between GNSS and VLBI techniques to be about 5–6 mm at most of the co-located sites and CONT campaigns. We did not detect any significant improvement in the ZTD agreement between various techniques over time, except for DORIS and MANAL. On the other hand, the agreement and thus the accuracy of the troposphere parameters mainly depend on the amount of humidity in the atmosphere.  相似文献   

7.
We present earth rotation results from the ultra-rapid operations during the continuous VLBI campaigns CONT11 and CONT14. The baseline Onsala–Tsukuba, i.e., using two out of the 13 and 17 stations contributing to CONT11 and CONT14, respectively, was used to derive UT1-UTC in ultra-rapid mode during the ongoing campaigns. The latency between a new observation and a new UT1-UTC result was less than 10 min for more than 95% of the observations. The accuracy of the derived ultra-rapid UT1-UTC results is approximately a factor of three worse than results from optimized one-baseline sessions and/or complete analysis of large VLBI networks. This is, however, due to that the one-baseline picked from the CONT campaigns is not optimized for earth rotation determination. Our results prove that the 24/7 operation mode planned for VGOS, the next-generation VLBI system, is possible already today. However, further improvements in data connectivity of stations and correlators as well in the automated analysis are necessary to realize the ambitious VGOS plans.  相似文献   

8.
Within the International Very Long Baseline Interferometry (VLBI) Service for Geodesy and Astrometry (IVS), long time-series of zenith wet and total troposphere delays have been combined at the level of parameter estimates. The data sets were submitted by eight IVS Analysis Centers (ACs) and cover January 1984 to December 2004. In this paper, the combination method is presented and the time-series submitted by the eight IVS ACs are compared with each other. The combined zenith delays are compared with time-series provided by the International Global Navigation Satellite System (GNSS) Service (IGS), and with zenith delays derived from the European Centre for Medium-Range Weather Forecasts (ECMWF). Before the combination, outliers are eliminated from the individual time-series using the robust BIBER (bounded influence by standardized residuals) estimator. For each station and AC, relative weight factors are obtained by variance component estimation. The mean bias of the IVS ACs’ time-series with respect to the IVS combined time-series is 0.89 mm and the mean root mean square is 7.67 mm. Small differences between stations and ACs can be found, which are due to the inhomogeneous analysis options, different parameterizations, and different treatment of missing in-situ pressure records. Compared to the IGS zenith total delays, the combined IVS series show small positive mean biases and different long-term trends. Zenith wet delays from the ECMWF are used to validate the IVS combined series. Inconsistencies, e.g., long-term inhomogeneity of the in-situ pressure data used for the determination of VLBI zenith delays, are identified.  相似文献   

9.
The very long baseline interferometry (VLBI) Intensive sessions are typically 1-h and single-baseline VLBI sessions, specifically designed to yield low-latency estimates of UT1-UTC. In this work, we investigate what accuracy is obtained from these sessions and how it can be improved. In particular, we study the modeling of the troposphere in the data analysis. The impact of including external information on the zenith wet delays (ZWD) and tropospheric gradients from GPS or numerical weather prediction models is studied. Additionally, we test estimating tropospheric gradients in the data analysis, which is normally not done. To evaluate the results, we compared the UT1-UTC values from the Intensives to those from simultaneous 24-h VLBI session. Furthermore, we calculated length of day (LOD) estimates using the UT1-UTC values from consecutive Intensives and compared these to the LOD estimated by GPS. We find that there is not much benefit in using external ZWD; however, including external information on the gradients improves the agreement with the reference data. If gradients are estimated in the data analysis, and appropriate constraints are applied, the WRMS difference w.r.t. UT1-UTC from 24-h sessions is reduced by 5% and the WRMS difference w.r.t. the LOD from GPS by up to 12%. The best agreement between Intensives and the reference time series is obtained when using both external gradients from GPS and additionally estimating gradients in the data analysis.  相似文献   

10.
In October 2002, 15 continuous days of Very Long Baseline Interferometry (VLBI) data were observed in the Continuous VLBI 2002 (CONT02) campaign. All eight radio telescopes involved in CONT02 were co-located with at least one other space-geodetic technique, and three of them also with a Water Vapor Radiometer (WVR). The goal of this paper is to compare the tropospheric zenith delays observed during CONT02 by VLBI, Global Positioning System (GPS), Doppler Orbitography Radiopositioning Integrated by Satellite (DORIS) and WVR and to compare them also with operational pressure level data from the European Centre for Medium-Range Weather Forecasts (ECMWF). We show that the tropospheric zenith delays from VLBI and GPS are in good agreement at the 3–7 mm level. However, while only small biases can be found for most of the stations, at Kokee Park (Hawaii, USA) and Westford (Massachusetts, USA) the zenith delays derived by GPS are larger by more than 5 mm than those from VLBI. At three of the four DORIS stations, there is also a fairly good agreement with GPS and VLBI (about 10 mm), but at Kokee Park the agreement is only at about 30 mm standard deviation, probably due to the much older installation and type of DORIS equipment. This comparison also allows testing of different DORIS analysis strategies with respect to their real impact on the precision of the derived tropospheric parameters. Ground truth information about the zenith delays can also be obtained from the ECMWF numerical weather model and at three sites using WVR measurements, allowing for comparisons with results from the space-geodetic techniques. While there is a good agreement (with some problems mentioned above about DORIS) among the space-geodetic techniques, the comparison with WVR and ECMWF is at a lower accuracy level. The complete CONT02 data set is sufficient to derive a good estimate of the actual precision and accuracy of each geodetic technique for applications in meteorology.  相似文献   

11.
目前正处在下一代甚长基线干涉测量(very long baseline interferometry,VLBI)系统的建设时期。利用维也纳VLBI与卫星软件(Vienna VLBI and satellite software,VieVS)解算了2006—2015年的VLBI数据,得到了10 a的地球定向参数(Earth orientation parameters,EOP)时间序列,并与国际地球自转服务机构的结果进行了对比。利用解算结果得到了10 a的日长变化时间序列,通过傅里叶分析得出了日长变化的短周期、半月周期、月周期、半年周期和周年周期,同时还分析得到了极移序列中的周年项和张德勒周期项以及章动改正序列中的自由核章动项。此次解算工作可为武汉大学卫星台站日后的VLBI数据解析积累一定的经验。  相似文献   

12.
In connection with the work for the next generation VLBI2010 Global Observing System (VGOS) of the International VLBI Service for Geodesy and Astrometry, a new scheduling package (Vie_Sched) has been developed at the Vienna University of Technology as a part of the Vienna VLBI Software. In addition to the classical station-based approach it is equipped with a new scheduling strategy based on the radio sources to be observed. We introduce different configurations of source-based scheduling options and investigate the implications on present and future VLBI2010 geodetic schedules. By comparison to existing VLBI schedules of the continuous campaign CONT11, we find that the source-based approach with two sources has a performance similar to the station-based approach in terms of number of observations, sky coverage, and geodetic parameters. For an artificial 16 station VLBI2010 network, the source-based approach with four sources provides an improved distribution of source observations on the celestial sphere. Monte Carlo simulations yield slightly better repeatabilities of station coordinates with the source-based approach with two sources or four sources than the classical strategy. The new VLBI scheduling software with its alternative scheduling strategy offers a promising option with respect to applications of the VGOS.  相似文献   

13.
Quality assessment of GPS reprocessed terrestrial reference frame   总被引:5,自引:1,他引:4  
The International GNSS Service (IGS) contributes to the construction of the International Terrestrial Reference Frame (ITRF) by submitting time series of station positions and Earth Rotation Parameters (ERP). For the first time, its submission to the ITRF2008 construction is based on a combination of entirely reprocessed GPS solutions delivered by 11 Analysis Centers (ACs). We analyze the IGS submission and four of the individual AC contributions in terms of the GNSS frame origin and scale, station position repeatability and time series seasonal variations. We show here that the GPS Terrestrial Reference Frame (TRF) origin is consistent with Satellite laser Ranging (SLR) at the centimeter level with a drift lower than 1 mm/year. Although the scale drift compared to Very Long baseline Interferometry (VLBI) and SLR mean scale is smaller than 0.4 mm/year, we think that it would be premature to use that information in the ITRF scale definition due to its strong dependence on the GPS satellite and ground antenna phase center variations. The new position time series also show a better repeatability compared to past IGS combined products and their annual variations are shown to be more consistent with loading models. The comparison of GPS station positions and velocities to those of VLBI via local ties in co-located sites demonstrates that the IGS reprocessed solution submitted to the ITRF2008 is more reliable and precise than any of the past submissions. However, we show that some of the remaining inconsistencies between GPS and VLBI positioning may be caused by uncalibrated GNSS radomes.  相似文献   

14.
The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC) (Eriksson and MacMillan in http://lacerta.gsfc.nasa.gov/tropodelays, 2016) with respect to the analysis performances in terms of BLR results. If tropospheric gradient estimation is included in the analysis, 51.3% of the baselines benefit from the RADIATE ray-traced delays at sub-mm difference level. If no tropospheric gradients are estimated within the analysis, the RADIATE ray-traced delays deliver a better BLR at 63% of the baselines compared to the NASA GSFC ray-traced delays.  相似文献   

15.
The Vienna Mapping Functions 1 (VMF1) as provided by the Institute of Geodesy and Geophysics (IGG) at the Vienna University of Technology are the most accurate mapping functions for the troposphere delays that are available globally and for the entire history of space geodetic observations. So far, the VMF1 coefficients have been released with a time delay of almost two days; however, many scientific applications require their availability in near real-time, e.g. the Ultra Rapid solutions of the International GNSS Service (IGS) or the analysis of the Intensive sessions of the International VLBI Service (IVS). Here we present coefficients of the VMF1 as well as the hydrostatic and wet zenith delays that have been determined from forecasting data of the European Centre for Medium-Range Weather Forecasts (ECMWF) and provided on global grids. The comparison with parameters derived from ECMWF analysis data shows that the agreement is at the 1 mm level in terms of station height, and that the differences are larger for the wet mapping functions than for the hydrostatic mapping functions and the hydrostatic zenith delays. These new products (VMF1-FC and hydrostatic zenith delays from forecast data) can be used in real-time analysis of geodetic data without significant loss of accuracy.  相似文献   

16.
The CONT02 campaign is of great interest for studies combining very long baseline interferometry (VLBI) with other space-geodetic techniques, because of the continuously available VLBI observations over 2 weeks in October 2002 from a homogeneous network. Especially, the combination with the Global Positioning System (GPS) offers a broad spectrum of common parameters. We combined station coordinates, Earth orientation parameters (EOPs) and troposphere parameters consistently in one solution using technique- specific datum-free normal equation systems. In this paper, we focus on the analyses concerning the EOPs, whereas the comparison and combination of the troposphere parameters and station coordinates are covered in a companion paper in Journal of Geodesy. In order to demonstrate the potential of the VLBI and GPS space-geodetic techniques, we chose a sub-daily resolution for polar motion (PM) and universal time (UT). A consequence of this solution set-up is the presence of a one-to-one correlation between the nutation angles and a retrograde diurnal signal in PM. The Bernese GPS Software used for the combination provides a constraining approach to handle this singularity. Simulation studies involving both nutation offsets and rates helped to get a deeper understanding of this singularity. With a rigorous combination of UT1–UTC and length of day (LOD) from VLBI and GPS, we showed that such a combination works very well and does not suffer from the systematic effects present in the GPS-derived LOD values. By means of wavelet analyses and the formal errors of the estimates, we explain this important result. The same holds for the combination of nutation offsets and rates. The local geodetic ties between GPS and VLBI antennas play an essential role within the inter-technique combination. Several studies already revealed non-negligible discrepancies between the terrestrial measurements and the space-geodetic solutions. We demonstrate to what extent these discrepancies propagate into the combined EOP solution.  相似文献   

17.
Missing or incorrect consideration of azimuthal asymmetry of troposphere delays is a considerable error source in space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). So-called horizontal troposphere gradients are generally utilized for modeling such azimuthal variations and are particularly required for observations at low elevation angles. Apart from estimating the gradients within the data analysis, which has become common practice in space geodetic techniques, there is also the possibility to determine the gradients beforehand from different data sources than the actual observations. Using ray-tracing through Numerical Weather Models (NWMs), we determined discrete gradient values referred to as GRAD for VLBI observations, based on the standard gradient model by Chen and Herring (J Geophys Res 102(B9):20489–20502, 1997.  https://doi.org/10.1029/97JB01739) and also for new, higher-order gradient models. These gradients are produced on the same data basis as the Vienna Mapping Functions 3 (VMF3) (Landskron and Böhm in J Geod, 2017.  https://doi.org/10.1007/s00190-017-1066-2), so they can also be regarded as the VMF3 gradients as they are fully consistent with each other. From VLBI analyses of the Vienna VLBI and Satellite Software (VieVS), it becomes evident that baseline length repeatabilities (BLRs) are improved on average by 5% when using a priori gradients GRAD instead of estimating the gradients. The reason for this improvement is that the gradient estimation yields poor results for VLBI sessions with a small number of observations, while the GRAD a priori gradients are unaffected from this. We also developed a new empirical gradient model applicable for any time and location on Earth, which is included in the Global Pressure and Temperature 3 (GPT3) model. Although being able to describe only the systematic component of azimuthal asymmetry and no short-term variations at all, even these empirical a priori gradients slightly reduce (improve) the BLRs with respect to the estimation of gradients. In general, this paper addresses that a priori horizontal gradients are actually more important for VLBI analysis than previously assumed, as particularly the discrete model GRAD as well as the empirical model GPT3 are indeed able to refine and improve the results.  相似文献   

18.
Atmospheric loading corrections at the observation level in VLBI analysis   总被引:3,自引:3,他引:0  
This paper investigates whether in very long baseline interferometry (VLBI) analysis atmospheric loading corrections should be applied a priori at the observation level or whether it is sufficient to correct for atmospheric loading effects a posteriori by adding constant values per session to the estimated station coordinates. Simulated observations at single stations corresponding to the precise point positioning approach of global navigation satellite systems show that the atmospheric loading effect can be fully recovered by a posteriori corrections, i.e., the height differences between both approaches stay well below 1 mm. However, real global VLBI network solutions with sessions from 1984 to 2008 reveal that the effect of neglected atmospheric loading corrections at the stations is distributed to the other stations in the network, thus resulting in station height differences between solutions with observation level and with a posteriori corrections which can be as large as 10 mm and a ‘damping’ effect of the corrections. As soon as the terrestrial reference frame and the corresponding coordinate time series are determined, it would be conceptually wrong to apply atmospheric loading corrections at the VLBI stations. We recommend the rigorous application of atmospheric loading corrections at the observation level to all stations of a VLBI network because the seven parameters for translation, rotation, and in particular the network-scale of VLBI networks are significantly affected.  相似文献   

19.
Improved UT1 predictions through low-latency VLBI observations   总被引:2,自引:2,他引:0  
The quality of predictions of Earth orientation parameters (EOPs) in general, and of Universal Time (UT1) in particular, depends strongly on the time delay between the last observation available and the first prediction. Since 30 September 2007 (MJD 54373), the latency of UT1 results from a subset of single baseline VLBI observations running once per week (Mondays) has been decreased from 2 to 3 days to about 8 h. This was achieved by transmitting the raw VLBI data of 1-h duration from the observing sites in Tsukuba (Japan), Wettzell (Germany) and Ny-Ålesund (Norway) to the correlator of the Max-Planck-Institute for Radio Astronomy and the German Federal Agency of Cartography and Geodesy at Bonn, Germany, by high-speed Internet connections (e-Transfer). The reduced latency of the observations has improved the accuracy of the combined International Earth Rotation and Reference Systems Service (IERS) Rapid Service/Prediction Center (RS/PC) UT1-UTC solution by roughly 50% on the days when the data are available. Because this combination is an input to the UT1-UTC prediction process, the improved latency is also responsible for a roughly 21% improvement in the accuracy of short-term IERS RS/PC UT1-UTC predictions on the days where the data are available.  相似文献   

20.
Summary In the last three years, the European Geodetic Very Long Baseline Interferometry (VLBI) Network has grown to a total of six fixed antennas placed in Germany, Italy, Spain and Sweden, all equipped with the standard geodetic VLBI instrumentation and data recording systems. During this period of time, several experiments have been carried out using this interferometer providing data of very high quality due to the excellent sensitivity and performance of the European stations. The purpose of this paper is to study the consistency of the VLBI geodetic results on the European baselines with respect to the different degrees of freedom in the analysis procedure. In order to complete this study we have made use of both real and simulated data sets, two different software packages (OCCAM 3.0 and CALC 7.4/SOLVE) and a variety of strategies in the data analysis. The results we have obtained show that the repeatability of the VLBI estimates of the baseline lengths in the European network is better than one centimeter, independent of the different analysis methods, and is consistent with the formal error levels expected from the data analysis. This consistency should be enough to produce geophysically significant information in Europe from VLBI data within a relatively short time span.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号