首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
综合环境卫星与MODIS数据的面向对象土地覆盖分类方法   总被引:1,自引:0,他引:1  
使用面向对象方法对单时相的环境卫星数据进行土地覆盖分类时,几何特征和光谱特征相似的地物无法区分,而MODIS时序数据的空间分辨率较低,不适用于中小尺度的土地覆盖分类。应用面向对象方法,充分利用环境卫星数据的空间、光谱特征和MODIS数据的物候特征建立规则,进行分类,可以有效地解决上述困难。首先对环境卫星数据进行多尺度分割,生成待分类对象;再根据对象的特征,依据由简到难的原则进行分层分类。以双台子河口为例进行土地覆盖分类,总体精度93%,Kappa系数0.92。结果表明,综合环境卫星与MODIS数据的面向对象土地覆盖分类方法应用潜力巨大。  相似文献   

2.
基于多源遥感数据的西藏羌多地区地质构造解译   总被引:2,自引:0,他引:2  
多光谱遥感数据的空间分辨率通常是为解决资源和环境等特定问题而设置的,但是地质构造从区域到手标本可划分为不同尺度,因而单一遥感数据并不能满足多尺度的构造解译。为此,以西藏羌多地区为研究区,利用ETM+,ASTER,WorldView2及DEM等多源遥感数据的综合优势,从30 m空间分辨率的ETM+和15 m空间分辨率的ASTER到0.5 m空间分辨率的WorldView2这2个层次上解译研究区的构造,取得了显著成效。首先,基于传统的构造信息解译标志,用ETM+数据进行构造架构解译,同时运用ASTER数据的波段运算结果间接反映构造信息;然后,开展WorldView2高空间分辨率数据的综合构造解译分析;最后,在野外验证的基础上,对解译的构造信息进行室内修正。研究区的地质构造解译结果表明,综合多源遥感数据可以大大提高地质构造解译的准确率,并在较短的时间内取得较好的应用效果。  相似文献   

3.
地表覆盖分类数据对区域森林叶面积指数反演的影响   总被引:2,自引:0,他引:2  
以江西省吉安市为研究区,将5种全球地表覆盖分类数据(包括美国地质调查局(USGS)、马里兰大学(UMD)和波士顿大学(BU)生成的3套数据和欧洲生成的2套数据)以及由TM影像生成的区域地表覆盖分类数据,分别与MODIS1km反射率资料结合,利用基于4尺度几何光学模型的LAI反演方法生成研究区的LAI。在1km和4km两种尺度上将反演的LAI与TM资料生成的LAI进行比较,评价地表覆盖分类数据对LAI反演结果的影响。结果表明,TM和欧洲太空局的GLOBCOVER地表覆盖分类数据用于反演LAI的结果较好,在1km尺度上,反演的LAI与统计模型估算的TMLAI相关的R2分别为0.44和0.40,在4km尺度上的R2分别为0.57和0.54;其次为波士顿大学的MODIS地表覆盖分类数据,据其反演的LAI与TMLAI相关的R2在1km和4km尺度上分别为0.38和0.51;而马里兰大学的UMD和欧洲的GLC2000地表覆盖分类数据会导致反演的LAI存在较大误差,据其反演的LAI与TMLAI之间的一致性较差,在1km和4km两种尺度上平均偏低20%左右;LAI的反演结果对聚集度系数具有强的敏感性。该研究表明,为了提高区域/全球LAI反演精度,需要有高质量的地表覆盖分类数据。  相似文献   

4.
基于波段选择的MODIS全国土地覆盖分类   总被引:1,自引:0,他引:1  
以MODIS多光谱和多时相数据为输入参数进行了全国土地覆盖分类研究。从试验区2007年MODIS 8 d数据的合成影像(MOD 09)中提取EVI、NDWI和NDSI 3个指数,并将其作为特征波段与原有的7波段(B1~B7)形成10波段影像。以统计分类J-M距离平均值和SVM分类总精度为标准评价不同波段对土地覆盖分类的贡献。在全国范围内,选择贡献最大的EVI、B7和B4这3个波段的月合成值,并分别对其作PCA变换,选取各PCA变换后的前3个波段进行分类运算。研究结果表明,在没有其他辅助信息的境况下,基于MODIS贡献最大的前3个波段结合多时相信息能够在中分辨率区域土地覆盖分类中取得较好的分类结果,其精度为78.04%。  相似文献   

5.
土地覆盖信息尺度转换的判别空间方法   总被引:1,自引:0,他引:1  
提出了土地覆盖信息尺度转换的判别空间方法,选取判别向量并对其进行尺度转换,以不同尺度的判别向量构建多尺度判别空间模型,通过在判别空间中进行土地覆盖分类,实现不同分辨率土地覆盖信息的尺度转换。将此方法与常规的优势法和中心点法做尺度效应对比分析,并对各尺度上两种不同分类方法在判别空间中的土地覆盖分类结果进行比较。实验结果表明,该方法进行升尺度转换的结果比常规方法更加稳健,信息缺损更小,从而验证了其在土地覆盖信息尺度转换方面的有效性和适用性。  相似文献   

6.
以2000年~2006年塔里木河下游MODIS、ETM及ASTER数据为信息源,从不同时间和空间分辨率角度分析塔里木河下游喀尔达依断面输水后NDVI时空变化规律,并在此基础上建立了研究区不同离河距离、不同时间MODIS、ETM及ASTER数据NDVI的预测模型;根据模型预测的NDVI值,使用像元二分法反演植被覆盖度,并根据当年实地调查数据对反演植被盖度进行精度验证,其平均精度达82.88%以上。以上研究结果为监测和预测塔里木河下游植被恢复提供方法借鉴和恢复趋势预测参考。  相似文献   

7.
利用Landsat ETM+和ASTER近红外波段数据进行了水体信息提取,然后利用知识规则对2种提取结果进行进一步分类,并分析了波谱分辨率的差异对水体信息提取结果的影响。实验表明,基于Landsat ETM+数据的水体提取总体精度为82.4%,基于ASTER数据的水体信息提取结果总体精度为92.4%;在空间分辨率相同情况下,波谱分辨率的提高可以有效地提高水体信息提取的精度。  相似文献   

8.
针对宏观土地覆盖遥感分类的现状,充分利用MODIS相对于AVHRR数据具有的多光谱和分辨率优势,提出了利用MODIS数据进行分类特征选择与提取并结合多时相特征进行宏观土地覆盖分类的分类方法,并进行了分类试验。  相似文献   

9.
陶舒  周旭  程滔  刘倩 《测绘科学》2015,(11):89-95
为了实现地理国情普查中不同尺度地表覆盖分类数据的交叉验证,文章选择郑州、西安等10个地理国情普查试点作为试验区,分析了不同地类在精度损失、景观格局等方面存在的尺度效应,并以林地为例,在空间分辨率6~2 000m的范围内,构建了空间尺度转换模型,估测精度可达92.63%。结果表明:地表覆盖分类数据进行尺度转换时,各种地类都会存在相应的精度损失;基于分辨率、景观格局指数构建的尺度转换模型,可以有效校正粗分辨率地表覆盖数据的尺度误差,为地理国情普查与监测中的质量控制提供参考。  相似文献   

10.
叶面积指数(leaf area index,LAI)是描述植被冠层结构的重要参数,准确获取果树的LAI对果树长势监测和果树估产均有重要作用。以美国加州中部的果园为研究区,基于沿太阳主平面飞行成像的机载MODIS/ASTER模拟传感器(MODIS/ASTER airborne simulator,MASTER)数据,利用实测LAI数据与归一化差值植被指数(normalized difference vegetation index,NDVI)、归一化差值红外指数(normalized difference infrared index,NDII)和归一化差值水体指数(normalized difference water index,NDWI)分别建立回归模型,并选取NDWI进行研究区LAI的反演。结果表明:由于地物的二向性反射,垂直太阳主平面飞行获取的遥感数据具有明显的亮度梯度现象,而沿太阳主平面飞行获取的遥感数据几乎不受亮度梯度的影响;NDVI在高植被覆盖区容易达到饱和,而NDWI比NDVI和NDII具有更高的拟合度和更小的均方根误差,更加适合研究区LAI的遥感反演;该研究结果可以丰富LAI反演理论,也可以为研究LAI尺度问题提供理论和数据支持。  相似文献   

11.
Detection, monitoring and precise assessment of the snow covered regions is an important issue. Snow cover area and consequently the amount of runoff generated from snowmelt have a significant effect on water supply management. To precisely detect and monitor the snow covered area we need satellite images with suitable spatial and temporal resolutions where we usually lose one for the other. In this study, products of two sensors MODIS and ASTER both on board of TERRA platform having low and high spatial resolution respectively were used. The objective of the study was to modify the snow products of MODIS by using simultaneous images of ASTER. For this, MODIS snow index image with high temporal resolution were compared with that of ASTER, using regression and correlation analysis. To improve NDSI index two methods were developed. The first method generated from direct comparison of ASTER averaged NDSI with those of MODIS (MODISI). The second method generated by dividing MODIS NDSI index into 10 codes according to their percentage of surface cover and then compared the results with the difference between ASTER averaged and MODIS snow indices (SCMOD). Both methods were tested against some 16 MODIS pixels. It is found that the precision of the MODISI method was more than 96%. This for SCMOD was about 98%. The RMSE of both methods were as good as 0.02.  相似文献   

12.
Moderate Resolution Imaging Spectroradiometer (MODIS) data have played an important role in global environmental and resource research. However, its low spatial resolution has been an impediment to researchers pursuing more accurate classification results. In this research, the high temporal resolution of MODIS was employed to improve the accuracy of land cover classification of the North China Plain using MODIS_EVI time series from 2003. Harmonic Analysis of Time Series (HANTS) was performed on the MODIS_EVI image time series to reduce cloud and other noise effects. The improved MODIS_EVI time series was then classified into 100 clusters by the Iterative Self-Organizing Data Analysis Technique (ISODATA). To distinguish ambiguous land cover classes, a decision tree was built on five phenological features derived from EVI profiles, Land Surface Temperature (LST) and topographic slope. The overall accuracy of the final land cover map was 75.5%, indicating the promise of using MODIS EVI time series and decision trees for broad area land cover classification.  相似文献   

13.
The classification of satellite imagery into land use/cover maps is a major challenge in the field of remote sensing. This research aimed at improving the classification accuracy while also revealing uncertain areas by employing a geocomputational approach. We computed numerous land use maps by considering both image texture and band ratio information in the classification procedure. For each land use class, those classifications with the highest class-accuracy were selected and combined into class-probability maps. By selecting the land use class with highest probability for each pixel, we created a hard classification. We stored the corresponding class probabilities in a separate map, indicating the spatial uncertainty in the hard classification. By combining the uncertainty map and the hard classification we created a probability-based land use map, containing spatial estimates of the uncertainty. The technique was tested for both ASTER and Landsat 5 satellite imagery of Gorizia, Italy, and resulted in a 34% and 31% increase, respectively, in the kappa coefficient of classification accuracy. We believe that geocomputational classification methods can be used generally to improve land use and land cover classification from imagery, and to help incorporate classification uncertainty into the resultant map themes.  相似文献   

14.
基于MODIS数据的环北京地区土地资源监测研究   总被引:1,自引:0,他引:1  
刘爱霞  王静  刘正军 《测绘科学》2007,32(6):132-134
本文基于MODIS 16天合成的NDVI时间序列数据及其他辅助数据,首先用PCA方法对NDVI时间序列数据进行信息增强与压缩处理,结合LST数据、DEM数据及降雨温度数据,利用模糊K-均值非监督分类法,进行环北京地区的土地覆盖分类,得到土地资源现状情况。然后利用变化矢量(CVA)分析方法对环北京地区的土地利用及植被覆盖的多年变化状况进行了分析。结果表明,MODIS数据能很好的应用于大范围的土地资源监测中,并能得到较好的结果。  相似文献   

15.
Land cover maps play an integral role in environmental management. However, countries and institutes encounter many challenges with producing timely, efficient, and temporally harmonized updates to their land cover maps. To address these issues we present a modular Regional Land Cover Monitoring System (RLCMS) architecture that is easily customized to create land cover products using primitive map layers. Primitive map layers are a suite of biophysical and end member maps, with land cover primitives representing the raw information needed to make decisions in a dichotomous key for land cover classification. We present best practices to create and assemble primitives from optical satellite using computing technologies, decision tree logic and Monte Carlo simulations to integrate their uncertainties. The concept is presented in the context of a regional land cover map based on a shared regional typology with 18 land cover classes agreed on by stakeholders from Cambodia, Laos PDR, Myanmar, Thailand, and Vietnam. We created annual map and uncertainty layers for the period 2000–2017. We found an overall accuracy of 94% when taking uncertainties into account. RLCMS produces consistent time series products using free long term historical Landsat and MODIS data. The customizable architecture can include a variety of sensors and machine learning algorithms to create primitives and the best suited smoothing can be applied on a primitive level. The system is transferable to all regions around the globe because of its use of publicly available global data (Landsat and MODIS) and easily adaptable architecture that allows for the incorporation of a customizable assembly logic to map different land cover typologies based on the user's landscape monitoring objectives  相似文献   

16.
With the high deforestation rates of global forest covers during the past decades, there is an ever-increasing need to monitor forest covers at both fine spatial and temporal resolutions. Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat series images have been used commonly for satellite-derived forest cover mapping. However, the spatial resolution of MODIS images and the temporal resolution of Landsat images are too coarse to observe forest cover at both fine spatial and temporal resolutions. In this paper, a novel multiscale spectral-spatial-temporal superresolution mapping (MSSTSRM) approach is proposed to update Landsat-based forest maps by integrating current MODIS images with the previous forest maps generated from Landsat image. Both the 240 m MODIS bands and 480 m MODIS bands were used as inputs of the spectral energy function of the MSSTSRM model. The principle of maximal spatial dependence was used as the spatial energy function to make the updated forest map spatially smooth. The temporal energy function was based on a multiscale spatial-temporal dependence model, and considers the land cover changes between the previous and current time. The novel MSSTSRM model was able to update Landsat-based forest maps more accurately, in terms of both visual and quantitative evaluation, than traditional pixel-based classification and the latest sub-pixel based super-resolution mapping methods The results demonstrate the great efficiency and potential of MSSTSRM for updating fine temporal resolution Landsat-based forest maps using MODIS images.  相似文献   

17.
Global land cover data could provide continuously updated cropland acreage and distribution information, which is essential to a wide range of applications over large geographical regions. Cropland area estimates were evaluated in the conterminous USA from four recent global land cover products: MODIS land cover (MODISLC) at 500-m resolution in 2010, GlobCover at 300-m resolution in 2009, FROM-GLC and FROM-GLC-agg at 30-m resolution based on Landsat imagery circa 2010 against the US Department of Agriculture survey data. Ratio estimators derived from the 30-m resolution Cropland Data Layer were applied to MODIS and GlobCover land cover products, which greatly improved the estimation accuracy of MODISLC by enhancing the correlation and decreasing mean deviation (MDev) and RMSE, but were less effective on GlobCover product. We found that, in the USA, the CDL adjusted MODISLC was more suitable for applications that concern about the aggregated county cropland acreage, while FROM-GLC-agg gave the least deviation from the survey at the state level. Correlation between land cover map estimates and survey estimates is significant, but stronger at the state level than at the county level. In regions where most mismatches happen at the county level, MODIS tends to underestimate, whereas MERIS and Landsat images incline to overestimate. Those uncertainties should be taken into consideration in relevant applications. Excluding interannual and seasonal effects, R2 of the FROM-GLC regression model increased from 0.1 to 0.4, and the slope is much closer to one. Our analysis shows that images acquired in growing season are most suitable for Landsat-based cropland mapping in the conterminous USA.  相似文献   

18.
The analysis and classification of land cover is one of the principal applications in terrestrial remote sensing. Due to the seasonal variability of different vegetation types and land surface characteristics, the ability to discriminate land cover types changes over time. Multi-temporal classification can help to improve the classification accuracies, but different constraints, such as financial restrictions or atmospheric conditions, may impede their application. The optimisation of image acquisition timing and frequencies can help to increase the effectiveness of the classification process. For this purpose, the Feature Importance (FI) measure of the state-of-the art machine learning method Random Forest was used to determine the optimal image acquisition periods for a general (Grassland, Forest, Water, Settlement, Peatland) and Grassland specific (Improved Grassland, Semi-Improved Grassland) land cover classification in central Ireland based on a 9-year time-series of MODIS Terra 16 day composite data (MOD13Q1). Feature Importances for each acquisition period of the Enhanced Vegetation Index (EVI) and Normalised Difference Vegetation Index (NDVI) were calculated for both classification scenarios. In the general land cover classification, the months December and January showed the highest, and July and August the lowest separability for both VIs over the entire nine-year period. This temporal separability was reflected in the classification accuracies, where the optimal choice of image dates outperformed the worst image date by 13% using NDVI and 5% using EVI on a mono-temporal analysis. With the addition of the next best image periods to the data input the classification accuracies converged quickly to their limit at around 8–10 images. The binary classification schemes, using two classes only, showed a stronger seasonal dependency with a higher intra-annual, but lower inter-annual variation. Nonetheless anomalous weather conditions, such as the cold winter of 2009/2010 can alter the temporal separability pattern significantly. Due to the extensive use of the NDVI for land cover discrimination, the findings of this study should be transferrable to data from other optical sensors with a higher spatial resolution. However, the high impact of outliers from the general climatic pattern highlights the limitation of spatial transferability to locations with different climatic and land cover conditions. The use of high-temporal, moderate resolution data such as MODIS in conjunction with machine-learning techniques proved to be a good base for the prediction of image acquisition timing for optimal land cover classification results.  相似文献   

19.
应用MODIS数据监测陕西地区土地利用/覆盖变化。主要内容是利用陕西省MODIS影像辅助以ETM+等数据进行最大似然法监督分类,根据分类的结果得到各个土地利用类型面积,然后与统计资料对比,进行土地利用/土地覆盖动态监测分析。  相似文献   

20.
We use a linear unmixing approach to test how land use and forestry maps, in combination with the MODIS BRDF/albedo product, can be used to estimate land cover type albedos in boreal regions. Operational land use maps from three test areas in Finland and Canada were used to test the method. The resulting endmember albedo estimates had low standard errors of the mean and were realistic for the main land cover types. The estimated albedos were fairly consistent with albedo measurements conducted with a telescope mast and pure pixel albedos. Problems with the method are the possible errors in the land cover maps, lack of good quality winter MODIS albedo composites and the mismatch between the MODIS pixels and the true observation area. The results emphasize the role of tree species as determinant of forest albedo. Comprehensive spatial and temporal measurements of land cover albedo are usually not possible with in situ mast measurements, and the spatial resolution of MODIS albedo product is often too low to allow direct comparison of pixel albedos and land cover types in areas with heterogeneous vegetation. Hence, and since local forestry maps exist for most temperate and boreal regions, we believe that the proposed method will be useful in estimating average regional land cover type albedos as well as in tracking changes in them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号