首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
刘洋  许才军  温扬茂  何平 《测绘学报》2015,44(11):1202-1209
2008年11月10日,青海省大柴旦地区发生了Mw6.3级地震。本文利用EnviSat卫星升降轨SAR数据和差分干涉测量技术提取了同震形变场,基于均匀位错模型反演确定了地震断层参数,然后利用格网迭代搜索法确定了较优断层倾角,同时基于非均匀位错模型获得了精细滑动分布。结果表明,地震使得上盘区域沿降轨、升轨视线向分别产生最大约8.5cm、10cm的抬升;较优断层倾角为47.9°;地震滑动未延伸至地表,主要发生在地下8.2~23.7km深度范围内,最大和平均滑动量为0.5m和0.19m,平均滑动角为104.9°。反演的地震矩为3.74×1018 N·m,矩震级为Mw6.35。  相似文献   

2.
中国青海省门源县于2016年和2022年分别发生了Mw 5.9和Mw 6.7地震,相距不足40 km。利用欧洲空间局Sentinel-1A升降轨雷达影像,采用合成孔径雷达干涉测量(interferometric synthetic aperture radar, InSAR)技术分别获取两次地震的同震地表形变场,进而利用弹性半空间的位错模型确定上述事件的震源参数,基于分布式滑动模型反演确定两次地震断层面上的滑动分布,并探讨2016年门源地震对2022年门源地震的发震影响及触发机制。结果表明,2016年门源地震为逆冲型地震,并未破裂到地表,升、降轨同震形变场沿视线向的最大形变量分别为6.7 cm和7.0 cm,断层的最大滑动量为0.53 m,主要集中在地下4~12 km区域滑动。2022年门源地震同震形变场沿NWW-SEE向破裂,降轨影像最大视线向地表形变量为78 cm,断层的最大滑动值达到3.5 m,处于地下4 km左右,断层滑动分布模型揭示此次地震为左旋走滑型地震;结合冷龙岭断裂的运动性质和几何特征,可初步判定发震断层主要为冷龙岭断裂的西段、且极有可能破裂到了其西北端西侧的托莱山断裂。静态库仑应力触发关系显示,2016年门源地震对2022年门源地震的发生有一定的促进作用。  相似文献   

3.
利用哨兵(Sentinel)-1A卫星升、降轨影像,在地震位错模型约束下获取了2017年九寨沟Mw 6.5地震的高质量三维形变场。首先,利用合成孔径雷达干涉测量技术(interferometric synthetic aperture radar,InSAR)提取九寨沟地震升、降轨同震形变场;然后,通过“两步法”反演获取该地震发震断层的几何参数和分布式滑动模型,以此为约束,采用方差分量估计算法联合解算九寨沟地震三维形变场。结果表明,九寨沟地震同震三维形变场以水平位移为主,垂向形变较弱;南北向形变呈拉张趋势,断层上盘向南、下盘向北滑动,最大位移分别为-19.81 cm和14.38 cm;东西向形变不对称性明显,断层上盘西北部向东水平运动,最大位移为18.37 cm,下盘东南部向西运动,最大位移不足8 cm。将南北、东西向形变与6个全球导航卫星系统(global navigation satellite system,GNSS)台站观测数据进行比较,两者一致性较好且均方根误差较小,分别为1.44 cm和1.77 cm,表明联合升、降轨InSAR观测和地震位错模型约束构建同震三维形变场方法具有较高可行性,显著降低了大地测量数据不足、InSAR观测对南北向形变不敏感等问题的影响。  相似文献   

4.
台湾集集大地震断层非均匀滑动分布的反演   总被引:1,自引:0,他引:1  
利用台湾1999集集大地震前后GPS测量获得的地表位移数据,反演断层面上的非均匀滑动分布.反演中采用二次样条函数作为滑动分布的基函数,通过引入阿卡克贝叶斯准则,获得了反演问题的惟一解.反演得到的地表位移与实测位移的差在几个厘米,较好地解释了观测到的GPS位移.另一方面,用反演结果计算得到的地表形变场同INSAR得到的地表实测位移场较相近.  相似文献   

5.
2019年6月19日四川长宁县发生Ms6.0地震,提取地震同震形变场,反演震源机制,对于地震破裂分析、指导救灾具有重要意义。本文利用两轨差分干涉处理覆盖长宁地震影响区域的两景Sentinel-1A影像,在对D-InSAR关键技术和影像特征研究的基础上,配置处理方法和参数,提取了此次地震的同震形变场,采用Okada模型和正向建模对发震断层的几何参数及形变场进行了反演和模拟。结果表明,长宁地震形变场呈西北—东南走向的次级断层控制的不规则椭圆形,断层的两侧区域特征差异明显,断层左下侧为沉降区,右上侧为隆升区,两者的最大视线向形变分别为8、6 cm。断层的运动主要以左旋走滑为主,平均滑动距离约0.38 m,平均滑动角约55°,正向模拟的形变场与观测结果相符,这表明观测结果较可靠,同时也提高了低相干形变区的观测精度。  相似文献   

6.
基于Sentinel-1卫星升降轨SAR数据,采用D-InSAR技术提取了2018年台湾花莲县Mw6.4地震的同震形变场。结果表明,2018年花莲地震造成的最大地表形变量为38.2 cm,以隆升为主,断层上下盘最大相对位移为50 cm。利用InSAR观测得到的升降轨地表形变数据,分别构建2018年与2021年台湾花莲两次地震的断层三维滑动分布模型。结果表明,2018年花莲Mw6.4地震主震断层为靠近米伦断层的西倾隐伏断层,断层最大滑动量为1.8 m,以左旋走滑为主兼具少量逆冲分量,断层破裂传播至米伦断层西侧,影响了苓顶断层和米伦断层的地震活动性。2021年花莲Mw6.0地震发生在苓顶断层北段,断层最大滑动量为0.38 m,断层滑动以左旋走滑为主,两次地震事件均具有高倾角滑动特征。综合两次地震静态库仑应力的重新分布和M-T图发现,2018年花莲地震对2021年地震起触发作用,应力沿断层从高纬度向邻近低纬度传输累积,花莲地区及近海海域短周期内地震活动性仍强烈,主要表现为小震频发、中强震孕育周期短等特点。  相似文献   

7.
利用Sentinel-1A卫星升轨、降轨合成孔径雷达影像数据,提取了2016年门源Mw5.9级地震的高精度合成孔径雷达干涉同震形变场,利用单纯形法和非负最小二乘法反演确定了地震断层几何和滑动分布,并构建了区域断裂带的深部几何形态模型。结果表明,门源Mw5.9级地震同震形变以地表抬升为主,沿升轨、降轨视线向的最大值分别为5.3 cm、7.1 cm;地震断层走向、倾角分别为133°、43°;地震滑动以逆冲为主,主要发生在地下6.14~12.28 km处,最大滑动量约0.5 m,平均滑动角为66.85°,地震矩为1.0×1018 N·m(Mw5.94);形变观测拟合残差均方根为0.36 cm;区域断裂带的深部几何形态以花状构造为特征,整体倾向南西,门源地震发震断裂为花状构造中未出露地表的盲断层。相关成果能够为研究区域地壳运动与变形、活动断裂与地震孕育发生等提供参考。  相似文献   

8.
利用覆盖整个日本东北部的3个条带的Envisat/ASAR降轨数据和6个条带的ALOS/PALSAR升轨数据,通过二通差分干涉处理,首先得到了2011年日本Tohoku-Oki Mw 9.0级地震的初步同震形变干涉结果,然后,利用GPS同震观测值对InSAR结果进行校正和基准统一。在此基础上,采用弹性半空间矩形位错模型,联合GPS和InSAR观测结果对同震滑动分布进行反演,获取了发震断层的断层滑动分布。结果显示,此次地震的滑动分布主要发生在40~50km深度范围内,最大滑移量为50.3m,释放的能量为3.20×1022 N·m(相当于Mw 8.94级)。  相似文献   

9.
差分雷达干涉测量(DInSAR)在地震形变监测中具有重要作用,但DInSAR仅能获取雷达视线向的形变量,无法准确反映地表三维形变.为了获取真实的地表形变,文中采用一种联合DInSAR和多孔径干涉技术(MAI)的地震三维形变场反演方法,以2017年九寨沟Ms7.0级地震为例,融合升降轨Sentinel-1A数据,联合解算获取研究区地表在竖直、南北、东西向上的形变,构建地震三维同震形变场.实验结果表明,本次地震的断裂带为西北—东南(NW-SE)走向,地震断裂面西北侧(下降盘)错动位移较大,向东南偏东方向滑动;东南侧(上升盘)错动位移较小且3个方向位移的贡献较为平均,大致向正西北方向滑动.地表运动以水平形变为主,纵向起伏较小,东西方向对本次地震的同震形变贡献最大,存在向东最大0.25 m、向西最大0.12 m的形变,断层性质为左旋走滑断层.  相似文献   

10.
2007年5月5日,西藏阿里地区发生了Mw6.1级地震。本文采用Envisat卫星的升、降轨SAR数据获取地震的精确同震地表位移,然后基于弹性半空间位错模型,分别采用MPSO非线性和最小二乘线性反演算法确定了断层几何参数和滑动分布模型。结果表明,分布式滑动分布模型能较好地解释观测到的InSAR地表形变场。地震发震断层为走向158°、倾角43°的西南倾断层,主要的滑动量集中在7~12km的深度,最大滑动量约0.3m,位于9km的深度。反演给出的地震矩为1.24×1018 Nm,与地震学结果相一致。  相似文献   

11.
赵建辉  王博  闵林  李宁 《测绘工程》2021,30(2):1-6,12
传统差分干涉技术只能获取雷达视线方向的一维形变场,极大地限制该技术的应用。联合升降轨InSAR数据,可以解算出地表二维形变场。然而,受卫星轨道参数的限制,即使是不同的卫星,也很难做到对同一目标的同步观测,造成升降轨观测时间的不一致,进而降低二维形变解算精度。针对上述问题,文中提出一种升降轨观测时间配准方法,即以其中一轨SAR时序数据的采集时刻为参考,采用数据插值技术,对另一轨SAR时序数据获取的时间累积形变量进行内插,得到对应参考时刻点的形变量。最后,联合解算时间配准后的两个一维形变量,获取研究区域的二维形变场。为验证所提方法的有效性,文中以苏锡常地区为例,开展二维形变场的解算实验。研究结果表明,所提方法可以更加准确地反演地表二维形变场。  相似文献   

12.
本文基于30景Sentinel-1影像,首先采用SBAS-InSAR技术反演了2018年4-10月雅鲁藏布江色东普流域灾前冰川形变,并利用非冰雪覆盖的基岩区形变结果进行可靠性检验,得出均方根误差为9 mm,表明SBAS-InSAR技术应用于冰川形变监测具有较高的可靠性。然后分析了升降轨数据对不同坡向形变监测的敏感性,以及冰川碎屑流灾害发生前冰川形变的空间分布与时间演化特征。结果表明,冰川运动的主流线在东西坡交汇的中轴部,研究区平均形变量达-34.8 mm。在典型剖面上,随着海拔逐渐降低,冰川形变呈先缓慢减少,后快速增加,再缓慢减少的趋势,平均形变量为-50.1 mm。冰川碎屑流灾害发生前冰川形变已有明显的加速趋势,可为冰川灾害早期识别提供科学的数据支持。  相似文献   

13.
2016年8月24日,意大利中部阿马特里切(Amatrice)地区发生Mw 6.2地震。采用ALOS-2条带模式和SENTINEL-1A宽幅模式的合成孔径雷达(synthetic aperture radar,SAR)数据分别进行SAR差分干涉测量处理,获取了该地震的同震形变场。结果显示,本次地震造成意大利中部地区发生明显的地壳形变,在雷达视线向最大沉降量达19.6 cm。基于合成孔径雷达干涉测量(interferometry synthetic aperture radar,InSAR)和GPS同震形变场数据对此次地震的发震断层进行联合反演,通过改进倾角和平滑系数获取方法,得到了最优滑动分布模型。通过使用单断层模型和双断层模型进行反演可知,双断层模型反演结果优于单断层反演结果,两种模型下反演模型相关系数分别为0.85和0.89,发震断层走向分别为160°和158°,倾角分别为44°和46°,倾滑分布主要位于地下5~7 km,平均倾滑角为-80°,最大倾滑量0.9 m位于地壳深度5 km处,该发震断层是亚平宁冲断带的一部分,为NW-SE向延伸的正断层,断层长约20 km。综合使用地震同震形变场和GPS数据对震源机制进行反演、模拟和分析,获取了高精度的震源参数,可以为分析地震危险性和断层破裂参数等提供数据支持。  相似文献   

14.
介绍了蒙特卡洛法和为求解复杂组合优化问题提出的蚁群算法,针对断层参数的特点,结合位错理论模型模拟的地面位移场数据对断层的三维滑动速率采用两种优化方法进行了反演计算,比较了两种优化算法的反演效果。结果表明:蚁群算法的可靠性和稳定性优于蒙特卡洛法。  相似文献   

15.
通过升降轨ASAR数据的获取与差分干涉处理,获取了西藏改则地震的双视线向同震形变场信息。对升降轨同震形变场的特征分析表明,改则地震主、余震均表现为典型的正断裂破裂模式,并先后形成了东、西两条规模不同的走向NE、倾向NW的正断层破裂带(可能未出露地表),以及西北盘的东、西两个沉降形变中心。从干涉条纹的切割关系判断,东沉降形变中心可能受2008年1月9日Ms 6.9级主震的控制,西沉降形变中心可能受2008年1月16日Ms 6.0级余震的控制。Ms 6.9级主震形成东南盘隆升与西北盘沉降的总体格局;Ms 6.0级余震使西北盘余震震中及以西部位进一步沉降,造成西沉降中心沉降形变量大于东沉降中心。升降轨同震形变场的获取为进一步的震源参数模拟与三维形变场解算提供了更好的约束条件与信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号