首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
SAR与TM数字复合处理技术,能为地质解译及地质制图提供一份空间与波谱信息都比较丰富 的图像。复合图像的优点是:地物细节详尽,立体感强,图像上阴影又少,便于进行各种图像增 强处理和与其他地学资料对比分析、拟合。试验表明,除岩性解译能力较差外,其它地质体的解译能完全或基本满足中等(大)比例尺区域地质调查的要求。  相似文献   

2.
本文介绍了一种用于辅助遥感图像地质解译的方法概况,所开发的方法是应用数学形态学对分类图像进行分析的技术。为了说明有关这类辅助解译的两种处理方法,使用了某一地质褶皱实例。  相似文献   

3.
应用计算机增强和特征信息提取技术,结合航空摄影图像的立体观察对比,对卫星TM数字图像地学信息进行解译研究,并通过野外调查验证,对深圳-大亚湾沿海高速公路沿线工程地质环境进行了迅速评价,经计算机不同处理方法处理获得的TM专题信息图像在进行地质构造解译和岩土体分类中均起到重要作用,而航片在地质体边界圈定和详细定位以及灾害地质现象分析方面效果较好。在不到两个月的时间里就完成了该项目从图像处理、解译到野外调查和成图及报告编写的全过程工作,节约勘察资金50%以上,满足了公路勘查前期工作的需要,也充分体现了遥感技术的优越性。遥感解译研究与常规地质调绘方法相结合,可取得事半功倍的效果,也是公路勘察手段现代化的标志和必经之路。  相似文献   

4.
1:100万台湾数字地貌遥感制图研究   总被引:1,自引:1,他引:0  
王兵  胡伟平  卓慕宁 《测绘通报》2007,(8):10-13,32
在台北、高雄两标准分幅1∶100万数字地貌遥感制图的基础上,制定了台湾地区陆地地貌分类方案及编码体系,并建立台湾省1∶100万数字地貌数据库。进而总结1∶100万遥感地貌制图的方法、流程和规范,探讨遥感地貌制图的关键技术和问题:遥感解译的基本原则、解译图像比例尺、DEM的辅助作用、特殊地貌的划分以及属性赋值,为编制全国1∶100万数字地貌图奠定基础。  相似文献   

5.
应用计算机增强和特征信息提取技术,结合航空摄影图像的立体观察对比,对卫星TM数字图像地学信息进行解译研究,并通过野外调查验证,对深圳-大亚湾沿海高速公路沿线工程地质环境进行了迅速评价,经计算机不同处理方法处理获得的TM专题信息图像在进行地质构造解译和碉土休分类中均起到重要作用,而航片在地质体边界圈定和详细定位以及灾害地质现象分析方面效果较好。  相似文献   

6.
长江流域基础地质遥感调查与监测,以2000年左右ETM图像为主,20世纪70年代MSS图像和2007年左右CBERS图像为辅,进行地貌、第四纪地质及新构造断裂遥感解译.通过长江流域遥感解泽实践,归纳总结了新构造遥感解译标志.  相似文献   

7.
鄂尔多斯盆地是世界上罕见的特大型多时期复合含煤盆地,面积约30万km2,含有丰富的煤炭、石油及煤成气等矿产资源。盆地内主要含煤地层为晚古生界石炭系太原组、下二迭系山西组与中生界侏罗系延安组等地层。 1.技术方法 本文采用煤田遥感地质方法,选用不同比例尺卫星假彩色合成图像,通过选择典型区、波谱测量、图像增强处理、影像模式识别、地质构造解译、隐伏构造信息提取等工作,并对解译结果进行了重点验证,最后在分析盆地构造格局特征的基础上,运用煤成气地质理论对其赋存背景进行了分析。 2.盆地遥感地质构造格局及特征 解译结果表明,盆…  相似文献   

8.
甘肃红山地区重要控矿地质单元GF-1数据遥感解译与应用   总被引:1,自引:0,他引:1  
为了解高分一号(GF-1)卫星图像在地质找矿领域的应用性能,查明甘肃红山地区的成矿地质环境,利用GF-1图像对红山地区的控矿地层、构造和岩体进行遥感解译。在收集、梳理前人研究成果和野外验证的基础上,综合分析红山地区的成矿地质特征和规律,总结区内与多金属矿密切相关的地质体,建立该区重要控矿地层、控矿构造和控矿岩体的GF-1图像解译标志;通过分析重要控矿地质单元的成矿地质特征和成矿规律,解析和挖掘典型矿床的控矿地质要素特征,整合典型矿床所处地质环境和控矿及赋矿要素信息,综合剖析典型多金属矿床的多源异常特征,构建找矿模型;开展找矿应用,圈定遥感找矿有利地段。经野外查证,新发现铜、钼、铁、锌等多金属矿化线索,均位于GF-1图像解译的重要控矿地质单元区,取得了较好的找矿成果,表明国产卫星数据能够很好地应用于地质矿产勘查领域。  相似文献   

9.
在西藏雅鲁藏布江中游要修建一大型水利工程,都需要先查明工程地区的地质情况,对基底稳定性做出评价、工程设计和施工提供地质依据。为此运用遥感与GIS技术对雅鲁藏布江区域进行遥感地质调查,本文通过项目的实践研究,对遥感在区域地质调查中的遥感片种及谱段的选择、图像处理、解译标志的建立、构造断裂地层断层以及地质灾害等方面的解译以及GIS地质制图中需要注意的问题等方面的认识作了总结。  相似文献   

10.
随着遥感技术在地质上的应用不断深入,单一波段图像或常规的合成图像已不能满足地质解译的需要,作者通过对TM数据进行多种功能复合处理,期望能直接从影像上获得蚀变信息和线性体(构造)发育程度的信息。 蚀变信息的提取根据白云母化、绢云母化和绿泥石化等蚀变岩石波谱曲线和正常岩石波谱曲线的差异,通过TM 5/TM7的比值提高蚀变岩石的灰度。由于南方植被发育,这一比值也使植被信息得到提高,而TM 4/TM3是植被的指示系数,因此利用这两个比值进行变换分类,就可消除植被对蚀变信息的干扰。 线性体提取及其密度统计线性体与断裂构造是密切相关…  相似文献   

11.
为了适应面广量大且需求仍在不断增长的1:5万专题调查制图的需要,我们采用数字插值放大、优化波段组合的光机复合处理技术,探索了1:5万高质量TM影像图的制作技术。本文介绍了制作1:5万高质量TM影像图的基本工艺方案及技术关键:(1)对TM图像磁带数据进行实数倍(2.28倍)双向线性插值放大,(2)在C-4500扫描仪上用50μm光点扫描获得比例尺为1:25万的潜影图像,(3)把潜影图像经显影、定影处理,再光学放大5倍,获得1:5万TM影像图。从我们结合有关任务先后在河北省南皮县、黑龙江省穆稜县和山东省莱洲湾等地区进行的试验研究看,均取得了良好效果。  相似文献   

12.
Woody canopy cover (CC) is the simplest two dimensional metric for assessing the presence of the woody component in savannahs, but detailed validated maps are not currently available in southern African savannahs. A number of international EO programs (including in savannah landscapes) advocate and use optical LandSAT imagery for regional to country-wide mapping of woody canopy cover. However, previous research has shown that L-band Synthetic Aperture Radar (SAR) provides good performance at retrieving woody canopy cover in southern African savannahs. This study’s objective was to evaluate, compare and use in combination L-band ALOS PALSAR and LandSAT-5 TM, in a Random Forest environment, to assess the benefits of using LandSAT compared to ALOS PALSAR. Additional objectives saw the testing of LandSAT-5 image seasonality, spectral vegetation indices and image textures for improved CC modelling. Results showed that LandSAT-5 imagery acquired in the summer and autumn seasons yielded the highest single season modelling accuracies (R2 between 0.47 and 0.65), depending on the year but the combination of multi-seasonal images yielded higher accuracies (R2 between 0.57 and 0.72). The derivation of spectral vegetation indices and image textures and their combinations with optical reflectance bands provided minimal improvement with no optical-only result exceeding the winter SAR L-band backscatter alone results (R2 of ∼0.8). The integration of seasonally appropriate LandSAT-5 image reflectance and L-band HH and HV backscatter data does provide a significant improvement for CC modelling at the higher end of the model performance (R2 between 0.83 and 0.88), but we conclude that L-band only based CC modelling be recommended for South African regions.  相似文献   

13.
The C-band imaging radar of ERS-1, due to its high sensitivity to terrain surface features, holds tremendous potential in topographic terrain mapping for various applications. This is being examined for geological applications, mainly structural and lithological mapping in a mineral belt of Bihar and Orissa, India. The high image contrast that facilitates structural interpretation and highlights topography on the SAR images, reflects the high sensitivity of the ERS-1-SAR to change in terrain slope in the study area. Extensive lineaments, fold structure and major lithological contacts are easily mappable from the SAR imagery. Many of the lineaments, lithological contacts and fold pattern are mapped equally from optical data (Landsat-TM and IRS-1B FCC). The close association of fold pattern and mineral deposits in the region has necessitated the study of those structures carefully from various remote sensing data products. Synergism between SAR and TM provided useful results regarding structure and lithology of the region. The advantage of SAR in highlighting topography and detecting lineaments are affected to a great extent by the speckle noise and low pixel resolution. The present study shows that future geologic interpretation demands high spatial resolution and efficient data processing technique which reduces the speckle noise more significantly.  相似文献   

14.
LANDSAT-TM has been evaluated for forest cover type and landuse classification in subtropical forests of Kumaon Himalaya (U.P.) Comparative evaluation of false colour composite generated by using various band combinations has been made. Digital image processing of Landsat-TM data on VIPS-32 RRSSC computer system has been carried out to stratify vegetation types. Conventional band combination in false colour composite is Bands 2, 3 and 4 in Red/Green/Blue sequence of Landsat TM for landuse classification. The present study however suggests that false colour combination using Landsat TM bands viz., 4, 5 and 3 in Red/Green/Blue sequence is the most suitable for visual interpretation of various forest cover types and landuse classes. It is felt that to extract full information from increased spatial and spectral resolution of Landsat TM, it is necessary to process the data digitally to classify land cover features like vegetation. Supervised classification using maximum likelihood algorithm has been attemped to stratify the forest vegetation. Only four bands are sufficient enough to classify vegetaton types. These bands are 2,3,4 and 5. The classification results were smoothed digitaly to increase the readiability of the map. Finally, the classification carred out using digital technique were evaluated using systematic sampling design. It is observed that forest cover type mapping can be achieved upto 80% overall mapping accuracy. Monospecies stand Chirpine can be mapped in two density classes viz., dense pine (<40%) with more than 90% accuracy. Poor accuracy (66%) was observed while mapping pine medium dense areas. The digital smoothening reduced the overall mapping accuracy. Conclusively, Landsat-TM can be used as operatonal sensor for forest cover type mapping even in complex landuse-terrain of Kumaon Himalaya (U.P.)  相似文献   

15.
[1]Castleman K R.Digital image processing.Englewood Cliffs,NJ:Prentice Hall,1996 [2]Carr J R,Miranda F P.Spectral and texture classification of single and multiple band images.Computers &amp; Geosciences,1996,22(8):849~865 [3]Chen S P,Zhen W.Conciseness of remote sensing mineral resources exploration.Science and Technology Publishing House,1994(in Chinese) [4]Costanitini M,Farina A,Zirilli F.The fusion of different resolution of SAR images.Proceeding of IEEE,1997,85(1):139~146 [5]Dong Q,Fang H L.The use of variogram in remotely sensed images.Journal of Remote Sensing and Application,1997,12(1):7~13(in Chinese) [6]De Jong S M,Burrongh P A.A fractal approach to the classification of Mediterranean vegetation types in remotely sensed images.PE &amp; RS,1995(61):1 041~1 053 [7]Fang H L,Qian G H.Fusion of ADEOS-AVNIR panchromatic and multispectral image data using principle component analysis.Journal of Remote Sensing and Application,1998,13(3):48~53(in Chinese) [8]Franklin S E,Wulder M A,Lavigne M B.Automated derivation of geographic window size for use in remote sensing digital image texture analysis.Computers &amp; Geosciences,1996,22(6):665~673 [9]He J G,Zhu C G.Methods for data fusion between satellite-boarded SAR and multi-satellite remote sensing.Journal of Earth-science Information,1997 (16):29~33(in Chinese) [10]Jia Y H.A data fusion method for spatial resolution enhancement of remotely sensed multi-spectral images.Journal of Remote Sensing and Application,1997,12(1):19~33(in Chinese) [11]Jin G L,Qiu Z C.A research on information amount of multi-spectral images.Acta Geodaetica et Cartographica Sinica,1992,21(2):101~107(in Chinese) [12]Kang Y H.Theories of data fusion.Xi‘an:Xi‘an Electronic University Press,1997(in Chinese) [13]Li H,et al. Multi-sensor image fusion using the wavelet transform.Graphical Models and Image Processing,1995,27(3):235~244 [14]Liu J G.Digital image processing of remotely sensed imagery data.Imperial College of Science,Technology and Medicine,1997 [15]Liu J G,McM J.Moore:Pixel block intensity modulation: adding spatial detail to TM band 6 thermal imagery.Int.J.Remote sensing,1998,19(13):2 477~2 491 [16]Lou Z,Zhu C G.Multi-variate statistics fusion of TM images.Journal of Aero-computational Technology,1998,28(3):40~42(in Chinese) [17]Peng W N.Statistical methods for geo-data processing.Wuhan:Wuhan College of Geology,1983(in Chinese) [18]Richard J R.Remote sensing digital image processing.an introduction,Berlin:Springer-Verlag,1999 [19]Wang R S.Image understanding.Changsha:National Defense University Press,1995(in Chinese) [20]Winkler G.Image analysis.Random Fields and Dynamic Monte Carlo Methods (A Mathematical Introduction),Berlin:Springer-Verlag,1995  相似文献   

16.
The Regione del Veneto (Italy) is cooperating with the University of California, Santa Barbara and other researchers in Italy and the U.S.A. to develop a system of econometric crop production modeling. Five crops are to be included in this project: small grains (wheat and barley), corn, sugar beets, soybeans, orchards and vineyards. A critical part of the crop yield modeling process is the identification of crops using multispectral satellite data. This paper explores two strategies to improve crop classification accuracies: (1) use of ancillary data stored in digital format and (2) use of multitemporal data. Ancillary information stored on digital files were used in this research to remove (mask) non‐agricultural areas from satellite image data. Comparison between the classification of masked and unmasked images showed that improvement ranged from 3% to 26% depending on crop type. The multidate classification was performed by compiling an image of transformed spectral bands and three TM‐5 bands. The transformed bands were TM band 4 over TM band 3. Based on the work conducted in this study it is clear that crop type determination from satellite imagery is possible for small field agricultural areas such as those found in Italy.  相似文献   

17.
An ERS-1 SAR image of Frankfurt was geocoded using a variety of DEM spatial resolutions to examine the influence on positional accuracy compared with control points derived from a 1:50 000 scale map of the same area. It was demonstrated that mapping to 1:50 000 scale was possible in flat areas with a DEM resolution finer than 200 m. The case for SAR imagery in nautical charting is discussed in the light of these results, drawing on recent experiences at the Hydrographic Office in charting the South Orkney Islands.  相似文献   

18.
基于RPC的TerraSAR-X影像立体定向平差模型   总被引:1,自引:0,他引:1  
张过  李贞 《测绘科学》2011,36(6):146-148,120
针对新型高分辨率雷达卫星TerraSAR-X立体像对,本文提出采用基于RPC的平差模型,通过少量的地面控制点来拟合因传感器不稳定、平台星历数据不精确及测距误差引起的影像几何畸变,从而达到精确定向目的.为验证RPC平差模型的适用性,通过在立体成像区域均匀市设人工角反射器点的方法验证其模型精度,并评估了其三维定向平差后的精...  相似文献   

19.
介绍了VirtuoZoNT IGS数字化影像测图对通过预处理的立体影像进行数字影像测图的技术过程,以理县某区域1∶10 000测图过程中地物信息的采集方法,阐明其在实际测量中的应用,为摄影测量的高效与快速成图提供参照。  相似文献   

20.
The remote sensing community in geology is widely using the Multispectral Landsat Thematic Mapper (TM) data which has a wider choice of spectral bands (six between 0.45 and 2.35 μm, plus a thermal infrared channel 10.4-12.5 urn). These were evaluated for low-grade magnetite ores mapping over the high-grade granulite region of Kanjamalai area of Tamil Nadu state, India. The Fourier Transform Infrared (FTIR) spectroscopy data (0.4-4.0 μm) for powders of the magnetite ores exposed with granulite rock and published spectral reflectance data were used as guides in selecting TM band reflectance ratios, which maximize discrimination of magnetite ores on the basis of their respective mineralogies. The study shows that the weathering mineralogy of magnetite ores causes absorption features in their reflectance spectra which are particularly characteristic of the near infrared. Comparison of TM data with field and petrographic observations shows the presence of magnetite and aluminosilicate minerals & show strong absorption at 0.7-1 μ.m wavelength spectral region & increase in the product of two TM band ratios: band 5 (1.55-1.75 μm) to band 4 (0.76-0.9 μm) and band 3 (0.63-0.69 μm) to band 4 (0.76-0.9 μm). Various computer image enhancement and data extraction techniques such as interactive digital image classification techniques using color compositing stretched ratio, maximum likelihood and thresholding statistical approaches using Landsat TM data are used to map the low-grade magnetite ores of the granulite region. The field traverses and local verification enhanced to map the other rock types namely granulites and gneisses of the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号