首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Address ranges used in linear interpolation geocoding often have errors and omissions that result in input address numbers falling outside of known address ranges. Geocoding systems may match these input addresses to the closest available nearby address range and assign low confidence values (match scores) to increase match rates, but little is published describing the matching or scoring techniques used in these systems. This article sheds light on these practices by investigating the need for, technical approaches to, and utility of nearby matching methods used to increase match rates in geocode data. The scope of the problem is motivated by an analysis of a commonly used health dataset. The technical approach of a geocoding system that includes a nearby matching approach is described along with a method for scoring candidates based on spatially‐varying neighborhoods. This method, termed dynamic nearby reference feature scoring, identifies, scores, ranks, and returns the most probable candidate to which the input address feature belongs or is spatially near. This approach is evaluated against commercial systems to assess its effectiveness and resulting spatial accuracy. Results indicate this approach is viable for improving match rates while maintaining acceptable levels of spatial accuracy.  相似文献   

2.
Geocoding has become a routine task for many research investigations to conduct spatial analysis. However, the output quality of geocoding systems is found to impact the conclusions of subsequent studies that employ this workflow. The published development of geocoding systems has been limited to the same set of interpolation methods and reference data sets for quite some time. We introduce a novel geocoding approach utilizing object detection on remotely sensed imagery based on a deep learning framework to generate rooftop geocoding output. This allows geocoding systems to use and output exact building locations without employing typical geocoding interpolation methods or being completely limited by the availability of reference data sets. The utility of the proposed approach is demonstrated over a sample of 22,481 addresses resulting in significant spatial error reduction and match rates comparable to typical geocoding methods. For different land‐use types, our approach performs better on low‐density residential and commercial addresses than on high‐density residential addresses. With appropriate model setup and training, the proposed approach can be extended to search different object locations and to generate new address and point‐of‐interest reference data sets.  相似文献   

3.
Land change models are frequently used to analyze current land change processes and possible future developments. However, the outcome of such models is accompanied by uncertainties that have to be taken into account in order to address their reliability for science and decision‐making. While a range of approaches exist that quantify the disagreement of land change maps, the quantification of uncertainty remains a major challenge. The aim of this article is therefore to reveal uncertainties in land change modeling by developing two measures: quantity uncertainty and allocation uncertainty. We choose a Bayesian Belief Network modeling approach for deforestation in Brazil to develop and apply the two measures to the resulting probability surface. Quantity uncertainty describes the uncertainty about the correct number of cells in a land change map assigned to different land change categories and allocation uncertainty expresses the uncertainty about the correct spatial placement of a cell in the land change map. Thus, uncertainty can be quantified even in those cases where no reference data exist. Informing about uncertainty in probabilistic outcomes may be an important asset when land change projections are being used in science and decision‐making and moreover, they may also be further evaluated for other spatial applications.  相似文献   

4.
Advances in computer technologies have improved the quality of maps, making map comparison and analysis easier, but uncertainty and error still exist in GIS when overlaying geographic data with multiple or unknown confidence levels. The goals of this research are to review current geospatial uncertainty literature, present the Error‐Band Geometry Model (EBGM) for classifying the size and shape of spatial confidence intervals for vector GIS data, and to analyze the interpretability of the model by looking at how people use metadata to classify the uncertainty of geographic objects. The results from this research are positive and provide important insight into how people interpret maps and geographic data. They suggest that uncertainty is more easily interpreted for well defined point data and GPS data. When data is poorly defined, people are unable to determine an approach to model uncertainty and generate error‐bands. There is potential for using the EBGM to aid in the development of a GIS tool that can help individuals parameterize and model spatial confidence intervals, but more research is needed to refine the process by which people use the decision tree. A series of guiding questions or an “uncertainty wizard” tool that helps one select an uncertainty modeling approach might improve the way people apply this model to real‐world applications.  相似文献   

5.
Density‐based clustering algorithms such as DBSCAN have been widely used for spatial knowledge discovery as they offer several key advantages compared with other clustering algorithms. They can discover clusters with arbitrary shapes, are robust to noise, and do not require prior knowledge (or estimation) of the number of clusters. The idea of using a scan circle centered at each point with a search radius Eps to find at least MinPts points as a criterion for deriving local density is easily understandable and sufficient for exploring isotropic spatial point patterns. However, there are many cases that cannot be adequately captured this way, particularly if they involve linear features or shapes with a continuously changing density, such as a spiral. In such cases, DBSCAN tends to either create an increasing number of small clusters or add noise points into large clusters. Therefore, in this article, we propose a novel anisotropic density‐based clustering algorithm (ADCN). To motivate our work, we introduce synthetic and real‐world cases that cannot be handled sufficiently by DBSCAN (or OPTICS). We then present our clustering algorithm and test it with a wide range of cases. We demonstrate that our algorithm can perform equally as well as DBSCAN in cases that do not benefit explicitly from an anisotropic perspective, and that it outperforms DBSCAN in cases that do. Finally, we show that our approach has the same time complexity as DBSCAN and OPTICS, namely O(n log n) when using a spatial index and O(n2) otherwise. We provide an implementation and test the runtime over multiple cases.  相似文献   

6.
Species distribution modeling (SDM) at fine spatial resolutions requires species occurrence data of high positional accuracy to achieve good model performance. However, wildlife occurrences recorded by patrols in ranger‐based monitoring programs suffer from positional errors, because recorded locations represent the positions of the ranger and differ from the actual occurrence locations of wildlife (hereinafter referred to as positional errors in patrol data). This study presented an evaluation of the impact of such positional errors in patrol data on SDM and developed a heuristic‐based approach to mitigating the positional errors. The approach derives probable wildlife occurrence locations from ranger positions, utilizing heuristics based on species preferred habitat and the observer's field of view. The evaluations were conducted through a case study of SDM using patrol records of the black‐and‐white snub‐nosed monkey (Rhinopithecus bieti) in Yunnan, China. The performance of the approach was also compared against alternative sampling methods. The results showed that the positional errors in R. bieti patrol data had an adverse effect on SDM performance, and that the proposed approach can effectively mitigate the impact of the positional errors to greatly improve SDM performance.  相似文献   

7.
Agent‐based modeling provides a means for addressing the way human and natural systems interact to change landscapes over time. Until recently, evaluation of simulation models has focused on map comparison techniques that evaluate the degree to which predictions match real‐world observations. However, methods that change the focus of evaluation from patterns to processes have begun to surface; that is, rather than asking if a model simulates a correct pattern, models are evaluated on their ability to simulate a process of interest. We build on an existing agent‐based modeling validation method in order to present a temporal variant‐invariant analysis (TVIA). The enhanced method, which focuses on analyzing the uncertainty in simulation results, examines the degree to which outcomes from multiple model runs match some reference to how land use parcels make the transition from one land use class to another over time. We apply TVIA to results from an agent‐based model that simulates the relationships between landowner decisions and wildfire risk in the wildland‐urban interface of the southern Willamette Valley, Oregon, USA. The TVIA approach demonstrates a novel ability to examine uncertainty across time to provide an understanding of how the model emulates the system of interest.  相似文献   

8.
基于不规则网格的城市管理网格体系与地理编码   总被引:11,自引:1,他引:11  
从网格的定义出发,论述了规则网格与不规则网格的特点,描述了等级不规则网格的组成,指出地籍是城市最小不规则空间网格单元,利用地籍可以组合成其他管理分区(网格),使城市空间信息的纵向综合与横向共享得以实现,最后探讨了基于等级不规则网格的地理编码标准。  相似文献   

9.
Abstract

The output from any spatial data processing method may contain some uncertainty. With the increasing use of satellite data products as a source of data for Geographical Information Systems (GIS), there have been some major concerns about the accuracy of the satellite‐based information. Due to the nature of spatial data and remotely sensed data acquisition technology, and conventional classification, any single classified image can contain a number of mis‐classified pixels. Conventional accuracy evaluation procedures can report only the number of pixels that are mis‐classified based on some sampling observation. This study investigates the spatial distribution and the amount of these pixels associated with each cover type in a product of satellite data. The study uses Thematic Mapper (TM) and SPOT multispectral data sets obtained for a study area selected in North East New South Wales, Australia. The Fuzzy c‐Means algorithm is used to identify the classified pixels that contained some uncertainty. The approach is based on evaluating the strength of class membership of pixels. This study is important as it can give an indication of the amount of error resulting from the mis‐classification of pixels of specific cover types as well as the spatial distribution of such pixels. The results show that the spatial distribution of erroneously classified pixels are not random and varies depending on the nature of cover types. The proportions of such pixels are higher in spectrally less clearly defined cover types such as grasslands.  相似文献   

10.
Uncertainty quantification is not often performed in spatial modeling applications, especially when there is a mixture of probabilistic and non‐probabilistic uncertainties. Furthermore, the effect of positional uncertainty is often not assessed, despite its relevance to geographical applications. Although there has been much work in investigating the aforementioned types of uncertainty in isolation, combined approaches have not been much researched. This has resulted in a lack of tools for conducting mixed uncertainty analyses that include positional uncertainty. This research addresses the issue by first presenting a new, flexible, simulation‐oriented conceptualization of positional uncertainty in geographic objects called F‐Objects. F‐Objects accommodates various representations of uncertainty, while remaining conceptually simple. Second, a new Python‐based framework is introduced, termed Wiggly and capable of conducting mixed uncertainty propagation using fuzzy Monte Carlo simulation (FMCS). FMCS combines both traditional Monte Carlo with fuzzy analysis in a so‐called hybrid approach. F‐Objects is implemented within the Wiggly framework, resulting in a tool capable of considering any combination of: (1) probabilistic variables; (2) fuzzy variables; and (3) positional uncertainty of objects (probabilistic/fuzzy). Finally, a realistic GIS‐based groundwater contamination problem demonstrates how F‐Objects and Wiggly can be used to assess the effect of positional uncertainty.  相似文献   

11.
Scientific inquiry often requires analysis of multiple spatio‐temporal datasets, ranging in type and size, using complex multi‐step processes demanding an understanding of GIS theory and software. Cumulative spatial impact layers (CSIL) is a GIS‐based tool that summarizes spatio‐temporal datasets based on overlapping features and attributes. Leveraging a recursive quadtree method, and applying multiple additive frameworks, the CSIL tool allows users to analyze raster and vector datasets by calculating data, record, or attribute density. Providing an efficient and robust method for summarizing disparate, multi‐format, multi‐source geospatial data, CSIL addresses the need for a new integration approach and resulting geospatial product. The built‐in flexibility of the CSIL tool allows users to answer a range of spatially driven questions. Example applications are provided in this article to illustrate the versatility and variety of uses for this CSIL tool and method. Use cases include addressing regulatory decision‐making needs, economic modeling, and resource management. Performance reviews for each use case are also presented, demonstrating how CSIL provides a more efficient and robust approach to assess a range of multivariate spatial data for a variety of uses.  相似文献   

12.
Estimates of solar radiation distribution in urban areas are often limited by the complexity of urban environments. These limitations arise from spatial structures such as buildings and trees that affect spatial and temporal distributions of solar fluxes over urban surfaces. The traditional solar radiation models implemented in GIS can address this problem only partially. They can be adequately used only for 2‐D surfaces such as terrain and rooftops. However, vertical surfaces, such as facades, require a 3‐D approach. This study presents a new 3‐D solar radiation model for urban areas represented by 3‐D city models. The v.sun module implemented in GRASS GIS is based on the existing solar radiation methodology used in the topographic r.sun model with a new capability to process 3‐D vector data representing complex urban environments. The calculation procedure is based on the combined vector‐voxel approach segmenting the 3‐D vector objects to smaller polygon elements according to a voxel data structure of the volume region. The shadowing effects of surrounding objects are considered using a unique shadowing algorithm. The proposed model has been applied to the sample urban area with results showing strong spatial and temporal variations of solar radiation flows over complex urban surfaces.  相似文献   

13.
14.
When people explore new environments they often use landmarks as reference points to help navigate and orientate themselves. This research paper examines how spatial datasets can be used to build a system for use in an urban environment which functions as a city guide, announcing Features of Interest (FoI) as they become visible to the user (not just proximal), as the user moves freely around the city. Visibility calculations for the FoIs were pre‐calculated based on a digital surface model derived from LIDAR (Light Detection and Ranging) data. The results were stored in a text‐based relational database management system (RDBMS) for rapid retrieval. All interaction between the user and the system was via a speech‐based interface, allowing the user to record and request further information on any of the announced FoI. A prototype system, called Edinburgh Augmented Reality System (EARS), was designed, implemented and field tested in order to assess the effectiveness of these ideas. The application proved to be an innovative, ‘non‐invasive’ approach to augmenting the user's reality.  相似文献   

15.
The emergence of Geographical Information Systems (GIS) as an important tool in the analysis of spatial phenomena has been mirrored by the evolution of the data models underpinning such systems. When considering vector‐based solutions, such developments have seen a migration from single‐user, file‐based, topological hybrid models to multi‐user database management system (DBMS) based integrated formats, often with no inherent topology. With all these solutions still being readily available, the decision of which to employ for a given application is a complicated one. This study analyses the performance of a number of vector data storage formats for use with ESRI's ArcGIS, with the aim to facilitate the ‘intelligent selection’ of an appropriate solution. Such a solution will depend upon the application domain and both single‐user and multi‐user (corporate) scenarios are considered. Findings indicate that single‐user ESRI coverages and multi‐user ArSDE/Oracle strategies perform better when considering the range of GIS operations used to evaluate data store performance.  相似文献   

16.
We present a geostatistical approach that accounts for spatial autocorrelation in malaria mosquito aquatic habitats in two East African urban environments. QuickBird 0.61 m data, encompassing visible bands and the near infra‐red (NIR) bands, were selected to synthesize images of Anopheles gambiae s.l. aquatic habitats in Kisumu and Malindi, Kenya. Field sampled data of An. gambiae s.l. aquatic habitats were used to determine which ecological covariates were associated with An. gambiae s.l. larval habitat development. A SAS/GIS® spatial database was used to calculate univariate statistics, correlations and perform Poisson regression analyses on the An. gambiae s.l. aquatic habitat datasets. Semivariograms and global autocorrelation statistics were generated in ArcGIS®. The spatially dependent models indicate the distribution of An. gambiae s.l. aquatic habitats exhibits weak positive autocorrelation in both study sites, with aquatic habitats of similar log‐larval counts tending to cluster in space. Individual anopheline habitats were further evaluated in terms of their covariations with spatial autocorrelation by regressing them on candidate spatial filter eigenvectors. This involved the decomposition of Moran's I statistic into orthogonal and uncorrelated map pattern components using a negative binomial regression. The procedure generated synthetic map patterns of latent spatial correlation representing the geographic configuration of An. gambiae s.l. aquatic habitat locations in each study site. The Gaussian approximation spatial filter models accounted for approximately 13% to 32% redundant locational information in the ecological datasets. Spatial statistics generated in a SAS/GIS® module can capture spatial dependency effects on the mean response term of a Poisson regression analysis of field and remotely sampled An. gambiae s.l. aquatic habitat data.  相似文献   

17.
This article describes a web‐based data entry and GIS‐driven mapping system designed for an ethnographic and entomological survey of Chagas’ disease, an emerging zoonotic disease, and Triatoma dimidiata, a primary vector, in the Los Tuxtlas region of Veracruz, Mexico. To better understand this disease in the region, a collaborative, multi‐disciplinary study was initiated to conduct a spatial investigation of T. dimidiata and a community‐by‐community survey of local perceptions of the disease. In order to facilitate such a collaborative effort the CODES‐GIS was developed. This system allows for (near) real‐time mapping, analyses, disease reporting, and results sharing. CODES‐GIS provides a framework for a research team working in a remote area with limited technology, software, or GIS expertise to benefit from (near) real‐time spatial analyses performed at collaborating institutions. The system is bi‐directional, where field personnel can upload data to the system for field‐based map production. Likewise, laboratory personnel can upload diagnostics data for viewing by field personnel. In this way, the system provides a virtual link between the field and the laboratory to increase the speed at which results are returned to the local community. The CODES‐GIS is described along with a selection of study results.  相似文献   

18.
Detecting and Analyzing Mobility Hotspots using Surface Networks   总被引:3,自引:0,他引:3  
Capabilities for collecting and storing data on mobile objects have increased dramatically over the past few decades. A persistent difficulty is summarizing large collections of mobile objects. This article develops methods for extracting and analyzing hotspots or locations with relatively high levels of mobility activity. We use kernel density estimation (KDE) to convert a large collection of mobile objects into a smooth, continuous surface. We then develop a topological algorithm to extract critical geometric features of the surface; these include critical points (peaks, pits and passes) and critical lines (ridgelines and course‐lines). We connect the peaks and corresponding ridgelines to produce a surface network that summarizes the topological structure of the surface. We apply graph theoretic indices to analytically characterize the surface and its changes over time. To illustrate our approach, we apply the techniques to taxi cab data collected in Shanghai, China. We find increases in the complexity of the hotspot spatial distribution during normal activity hours in the late morning, afternoon and evening and a spike in the connectivity of the hotspot spatial distribution in the morning as taxis concentrate on servicing travel to work. These results match with scientific and anecdotal knowledge about human activity patterns in the study area.  相似文献   

19.
针对确定性地理目标位置不确定性和方向系统划分粒度粗细产生的空间方向关系的不确定性问题,提出了锥形模型空间方向关系的粗集表达模型,然后定义了知识含量的测度(I(Rn))用于度量锥形模型粗集表达的方向分类能力,在近似精度和粗糙度中引入I(Rn)因子,构建了基于知识含量的近似精度和粗糙度,用于确定性地理目标位置不确定性及方向系统划分粒度引起的方向关系不确定性的定量评价。实验表明,基于知识含量的近似精度和粗糙度,是定量评价由于确定性地理目标位置不确定性及方向系统划分粒度引起的方向关系不确定性的理想指标。  相似文献   

20.
Environmental models constructed with a spatial domain require choices about the representation of space. Decisions in the adaptation of a spatial data model can have significant consequences on the ability to predict environmental function as a result of changes to levels of aggregation of input parameters and scaling issues in the processes being modelled. In some cases, it is possible to construct a systematic framework to evaluate the uncertainty in predictions using different spatial models; in other cases, the realm of possibilities plus the complexity of the environmental model in question may inhibit numeric uncertainty estimates. We demonstrate a range of potential spatial data models to parameterize a landscape‐level hydroecological model (RHESSys). The effects of data model choice are illustrated, both in terms of input parameter distributions and resulting ecophysiological predictions. Predicted productivity varied widely, as a function of both the number of modelling units, and of arbitrary decisions such as the origin of a raster grid. It is therefore important to use as much information about the modelled environment as possible. Combinations of adaptive methods to evaluate distributions of input data, plus knowledge of dominant controls of ecosystem processes, can help evaluate potential representations. In this case, variance‐based delineation of vegetation patches is shown to improve the ability to intelligently choose a patch distribution that minimizes the number of patches, while maintaining a degree of aggregation that does not overly bias the predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号