首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为了提高GPS卫星导航系统服务性能,很多国家和地区建立了独立的星基增强系统(SBAS),通过提供广播星历差分与完好性增强信息,满足高精度高完好性用户使用需求。本文介绍了美国WAAS和欧洲EGNOS等星基增强系统的广播星历差分完好性信息电文编码格式,并对实际星基增强系统的广播星历差分与完好性电文进行解析。由于不同的星基增强系统采用的信息处理模式不同,针对WAAS和EGNOS两个不同地区建立的星基增强系统,对广播星历差分慢变改正/快变改正的变化特征进行了比较分析。研究了星基增强系统广播星历差分完好性信息用户使用算法,基于国际GNSS服务组织(IGS)提供的GPS实测数据,对WAAS系统和EGNOS系统的广播星历差分服务精度和完好性性能进行了对比分析。结果表明,WAAS系统的伪距单点定位精度约为1.2 m, EGNOS系统的伪距单点定位精度约为1.8 m,与GPS基本导航服务相比,伪距单点定位精度可提高约22%和16%。两个星基增强系统利用完好性电文计算的完好性保护限值大致相当,均在16 m以内,能够对定位误差进行包络。   相似文献   

2.
精密定位的质量控制和完好性评估是实时全球卫星导航系统(GNSS)导航应用不可或缺的环节,尤其是在GNSS易受损害的城市峡谷等场景下,这种需求更加迫切.广域精密单点定位(PPP)瞬时分米级定位,利用GNSS三频信号形成的两个宽巷观测值可以实现单点单历元分米级定位.然而,在城市复杂环境中,反射信号、严重多路径以及其他信号干扰对定位造成的影响无法准确评估与识别,限制了PPP瞬时分米级单点定位的应用.完好性概念中的高级接收机自主完好性监测(ARAIM)可以计算用户定位误差最小置信区间的上限保护水平(PL)以评估定位有效性,可经过一定改进用于PPP瞬时定位的质量控制.针对当前ARAIM中计算PL的误差模型难以适应高精度定位需求的问题,提出了一种改进的ARAIM PL算法,称其为BARAIM(Back Advanced Receiver Autonomous Integrity Monitoring).使用PPP三频组合观测值残差对ARAIM权与误差模型进行修正以计算PL.基于不同复杂程度的环境下采集的车载数据对算法进行了验证,对PL的改进情况以及导航的可用性提升情况进行评估.结果表明:在不同环境下,基于改进的B-ARAIM算法得到的PL,相比传统方法得到的PL更符合城市定位的需要,将PL降低了30%~70%.此方法有助于将ARAIM算法应用在高精度GNSS定位领域.  相似文献   

3.
Positioning and navigation – as are presently possible with the American Global Positioning System (GPS) and the Russian GLONASS system – is briefly reviewed. Deficiencies, which have led to augmentations like the European Geostationary Navigation Overlay System (EGNOS), are outlined. Europe's decision to get involved in the definition and possible set-up of a Global Navigation Satellite System (GNSS) of the second generation (GNSS-2), called Galileo, is discussed in detail as well as the GPS modernization program that might take place during the sample phase. Finally, some brief thoughts on the benefit of GNSS-2 for geodesy and surveying are given. ? 2000 John Wiley & Sons, Inc.  相似文献   

4.
The EGNOS service will provide better positioning availability and accuracy than that from the standalone GPS solutions. However, in order to access the EGNOS service, the end user needs to access the corresponding GEO satellites that broadcast the augmentation information for the region. This is not a problem normally for aviation and maritime applications because an open sky is always available for such applications. However, an open sky is not always available for land applications because of the obstacles in the vicinity of the end users, for example, in the city canyons. The situation gets worse for the regions at high latitudes because the elevation angles to the GEO satellites are rather low (e.g. 4–22° in Finland). This article describes briefly the SISNeT technology, designed and developed by the European Space Agency, which allows accessing the EGNOS SIS via the Internet. It will describe in detail the handheld SISNeT receiver, designed and developed by the Finnish Geodetic Institute under ESA contract. The SISNeT data server is an IP-based server that acquires the EGNOS messages from an EGNOS receiver, and broadcasts them over the Internet in real-time. The handheld receiver consists of a GPS PC-card receiver, a GPRS (or GSM) card phone, and a pocket PC as the host platform. The receiver software is a Windows CE-based package with a multi-process and multi-thread architecture. It simultaneously receives: (1) the EGNOS SIS over a GPRS wireless connection and the Internet and (2) the NMEA messages from a serial connection to a GPS receiver. It decompresses and decodes the EGNOS messages, and utilizes the information in the messages to estimate the EGNOS-corrected coordinates, which are finally delivered to the end user via a virtual COM port. The virtual COM port has been implemented as a stream interface driver in the Pocket PC. It can be accessed in the same way as the physical COM port in a GPS receiver is accessed. Therefore, it is easy to interface to any third-party applications. The test results show that the handheld SISNeT receiver can provide a positioning accuracy of about 1–2 m for the horizontal components, and 2–3 m for the vertical component in real time. Due to the poor performance of the wireless connection, 10–30% of the EGNOS messages can be lost depending on the services provided by the wireless network operators. The impact of the messages lost on the positioning accuracy is about 0.5 m in both the horizontal and vertical components. Electronic Publication  相似文献   

5.
全球卫星导航系统(GNSS)与超宽带(UWB)等定位系统在室内外复杂环境下作用范围有限,并且单一定位源均无法获得从室外到室内连续可靠的定位结果等问题,针对北斗卫星导航系统(BDS)+GPS/UWB松组合定位方法展开研究,设计了室内外动态定位实验与过渡区域静态定位实验,利用扩展卡尔曼滤波器(EKF)对定位误差状态进行最优估计,并对BDS+GPS组合、UWB以及BDS+GPS/UWB松组合三种定位模式进行分析评价. 实验结果表明:在室内外的过渡区域,BDS+GPS/UWB松组合改善了GNSS-实时动态定位(RTK)的定位精度,扩展了GNSS-RTK的作用范围;BDS+GPS/UWB松组合相比于各单一定位源在一定程度上提高了系统从室外到室内定位的连续性与定位结果的可用性.   相似文献   

6.
城市智能交通、自动驾驶等对高精度动态定位的需求为分米级甚至厘米级,但在城市复杂环境下信号遮挡、衰减和多径频繁发生,GNSS定位的可用性和精度严重降低。本文充分利用现有可用的多频多系统GNSS(GPS/BDS/Galileo/QZSS)数据,采用最新提出的单历元PPP宽巷模糊度固定方法(PPP-WAR),并与传统PPP方法和广域伪距增强精密定位方法进行对比试验,分析了这3种单点高精度定位方法在大都市高楼密布道路、小城镇狭窄道路和工业区开阔道路3种不同信号遮挡条件下的车载动态定位性能。结果表明,目前城市环境中的三频数据完整性高达94%以上,可满足基于多频GNSS单历元定位的需求。粗差阈值设定为3 m时,单历元PPP-WAR解在小城镇狭窄道路的水平定位误差RMS为0.41 m,达到了分米级定位精度,比广域伪距增强精密定位解和传统PPP解分别提高了53.9%和21.2%;3种方法在大都市高楼密布环境下的定位可用性均高于70%,在另外两种城市环境下的定位可用性均高于90%。粗差阈值0.5 m时,单历元PPP-WAR方法和传统PPP方法在小城镇狭窄道路环境中可用性依然可达~70%。单历元PPP-WAR方法受城市环境中4种典型地物(地下通道、高架桥、行道树和高楼)的影响最小。总之,在干扰因素多的城市复杂环境中单历元PPP-WAR方法更具优势,在干扰因素少的城市开阔环境中传统PPP方法更优。  相似文献   

7.
全球卫星导航系统(GNSS)在弱信号环境下,GNSS信号易受到遮挡或者电磁干扰,严重影响导航定位的可靠性、连续性和精度. 针对此问题,本文作者研究了一种GNSS和视觉观测紧组合导航定位方法. 首先基于相机采集图像数据,利用ORB-SLAM2开源平台求解得到视觉位置结果增量,再联合GNSS伪距观测数据采用卡尔曼滤波(KF)进行组合定位解算. 采用实测的GNSS伪距观测数据和图像数据进行测试,试验结果表明:该算法不仅能有效地提升GNSS弱信号环境下导航定位的连续性和精度,还能在卫星数少于4颗时保持持续导航定位.   相似文献   

8.
为了验证全球卫星导航系统(GNSS)接收机研制状态,全面确认全球连续监测评估系统(iGMAS)监测站接收机性能,为后续GNSS接收机数据的质量评定做出贡献.?基于iGMAS多品牌接收机比测实验,通过对多个品牌监测接收机多系统不同频点观测数据质量(完整率、多路径、周跳比、观测噪声)及零基线相对定位精度进行统计分析,综合评...  相似文献   

9.
对流层延迟是影响全球卫星导航系统定位精度的主要因素之一。针对全球气象数据建立的对流层延迟改正模型区域精度较低这一问题,文中基于遗传算法和BP神经网络技术,在EGNOS模型基础上建立一个高精度的区域融合模型(GA-BPEGNOS模型)。选取北美洲2010—2014年41个观测站点,以国际GNSS服务中心的对流层产品作为真值,分析比较EGNOS模型和融合模型的对流层天顶延迟。研究表明,EGNOS模型的均方根误差为80.38mm,融合模型的均方根误差为34.44 mm。与EGNOS模型相比,融合模型的精度提高约57%,取得满意效果。  相似文献   

10.
随着芯片技术的发展,智能手机已成为使用最普遍的一类全球卫星导航系统(GNSS)设备,其提供位置服务的能力逐步彰显. 为探究将手机作为专业GNSS设备的可行性,利用谷歌开放Android智能终端GNSS原始观测数据这一契机,设计并实现一款手机实时动态 (RTK)定位手机应用程序(APP),并基于该APP开展高精度定位应用试验. 结果表明:在静态条件下,手机RTK定位精度约达1 dm;在行人和车载动态条件下,可达平面亚米级、高程1~2 m的精度水平,RTK定位精度远高于内置芯片解,但稳定性略差于芯片解. 使用手机模拟RTK点测量,其平面精度约达1 m,基本满足地理信息采集和调查等亚米级到米级低精度专业应用的需求.   相似文献   

11.
Virtual differential GPS based on SBAS signal   总被引:2,自引:0,他引:2  
In order to access the satellite-based augmentation system (SBAS) service, the end user needs access to the corresponding geostationary earth orbit (GEO) satellites that broadcast the augmentation information for the region. This is normally not a problem for aviation and maritime applications, because an open sky is typically available for such applications. However, it is difficult to access the GEO satellites directly at high latitudes for land applications because of the low elevation angles to the GEO satellites (e.g., 4–22° in Finland to the European geostationary navigation overlay services [EGNOS] GEO satellites). Results from a driving test of 6,100 km in Finland show that the EGNOS GEO satellites can be accessed in only 51.8% of the driving routes. Furthermore, it is also difficult to access the GEO satellites from city canyons, because the high buildings block the GEO signals. This article presents a solution to solve this problem by creating virtual differential GPS (DGPS) reference stations using the SBAS signal in space (SIS). The basic concept is to convert the SBAS signal to Radio Technical Commission for Maritime Services (RTCM) signals, and broadcast the converted RTCM signals over the wireless Internet using the Internet radio technology. Therefore, access to the SBAS service will not be limited by low elevation angles to the GEO satellites because the converted RTCM data streams are disseminated over the wireless Internet. Furthermore, the SBAS service can then be accessed via a legacy DGPS receiver. Two test cases have been carried out with the prototype system developed by the Finnish Geodetic Institute. The test results showed that the positioning accuracy of the virtual DGPS solution was about 1–2 m at 95%, which was similar to that of the standard WAAS/EGNOS solution. The positioning accuracy was not degraded, compared to that of the standard wide area augmentation system–European geostationary navigation overlay services (WAAS/EGNOS) solution, as long as the distance between the rover receiver and the virtual DGPS reference station was less than 150 km. A preliminary driving test of 400 km carried out in southern Finland showed that the availability of the virtual DGPS solutions was 98.6% along the driving route.  相似文献   

12.
Navigation applications and location-based services are now becoming standard features in smart phones. However, locating a mobile user anytime anywhere is still a challenging task, especially in GNSS (Global Navigation Satellite System) degraded and denied environments, such as urban canyons and indoor environments. To approach a seamless indoor/outdoor positioning solution, Micro-Electro-Mechanical System sensors such as accelerometers, digital compasses, gyros and pressure sensors are being adopted as augmentation technologies for a GNSS receiver. However, the GNSS degraded and denied environments are typically contaminated with significant sources of error, which disturb the measurements of these sensors. We introduce a new sensor, the electromyography (EMG) sensor, for stride detection and stride length estimation and apply these measurements, together with a digital compass, to a simple pedestrian dead reckoning (PDR) solution. Unlike the accelerometer, which senses the earth gravity field and the kinematic acceleration of the sensor, the EMG sensor senses action potentials generated by the muscle contractions of the human body. The EMG signal is independent of the ambient environment and its disturbance sources. Therefore, it is a good alternative sensor for stride detection and stride length estimation. For evaluating the performance of the EMG sensor, we carried out several field tests at a sports field and along a pedestrian path. The test results demonstrated that the accuracy of stride detection was better than 99.5%, the errors of the EMG-derived travelled distances were less than 1.5%, and the performance of the corresponding PDR solutions was comparable to that of the global positioning system solutions.  相似文献   

13.
14.
For mobile surveying and mapping applications, tightly coupled integration of global navigation satellite system (GNSS) and Strap down Inertial Navigation System is usually recommended for direct georeferencing since it can provide position, velocity, and attitude information at higher accuracy and better reliability in a self-contained manner. A post-mission smoothing method is applied to optimally use observation information of both systems and to overcome the shortcomings of Kalman filter in GNSS degraded environments. We propose the revised Rauch–Tung–Streibel Smoother (RTSS) and Forward–Backward combination (FBC) smoothing algorithms for tightly coupled integration. From the analysis and field test, it is found that RTSS smoothing mainly improves the relative accuracy, while FBC mainly contributes to the absolute accuracy. With the complementary characteristics of both smoothing algorithms, an optimal new smoothing scheme combining RTSS with FBC is built. The performance of these three smoothing algorithms is evaluated through a real vehicular test. Compared with RTSS and FBC smoothing algorithms, the new smoothing scheme improves the mean 3D position RMS and the mean 3D attitude RMS by 65.7 and 70%, respectively. It provides better accuracy and smoothness for the position, velocity, and attitude at the same time.  相似文献   

15.
在卫星定位中,观测环境的优劣对最终定位结果精度有着显著性影响,单GPS系统因为其可观测卫星颗数少和自身星座分布的共同影响,载波相位周跳频繁,定位解的误差大、可靠性低、稳定性差。本文对多模GNSS ( Global Navigation Satellite System )解算中时空系统的统一,组合单点定位模型和差分定位模型等关键技术进行了研究,实现了多模GNSS组合定位,改善了卫星相对于测站的几何分布,环境适应性加强,使得定位精度、系统冗余度和可靠性大幅提高,最后使用车载数据进行实验验证。验证结果表明,多模GNSS观测卫星数相比单GPS系统而言,观测卫星数增加了2倍,PDOP值降低了42%,极大地提高了差分定位解的成功率,固定解比例提高了18.3%。这充分说明了多模GNSS统一定位的可行性和优越性。  相似文献   

16.
Multipath is one of the most important error sources in Global Navigation Satellite System (GNSS) carrier-phase-based precise relative positioning. Its theoretical maximum is a quarter of the carrier wavelength (about 4.8 cm for the Global Positioning System (GPS) L1 carrier) and, although it rarely reaches this size, it must clearly be mitigated if millimetre-accuracy positioning is to be achieved. In most static applications, this may be accomplished by averaging over a sufficiently long period of observation, but in kinematic applications, a modelling approach must be used. This paper is concerned with one such approach: the use of ray-tracing to reconstruct the error and therefore remove it. In order to apply such an approach, it is necessary to have a detailed understanding of the signal transmitted from the satellite, the reflection process, the antenna characteristics and the way that the reflected and direct signal are processed within the receiver. This paper reviews all of these and introduces a formal ray-tracing method for multipath estimation based on precise knowledge of the satellite–reflector–antenna geometry and of the reflector material and antenna characteristics. It is validated experimentally using GPS signals reflected from metal, water and a brick building, and is shown to be able to model most of the main multipath characteristics. The method will have important practical applications for correcting for multipath in well-constrained environments (such as at base stations for local area GPS networks, at International GNSS Service (IGS) reference stations, and on spacecraft), and it can be used to simulate realistic multipath errors for various performance analyses in high-precision positioning.  相似文献   

17.
The integration of Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) technologies is a very useful navigation option for high-accuracy positioning in many applications. However, its performance is still limited by GNSS satellite availability and satellite geometry. To address such limitations, a non-GNSS-based positioning technology known as “Locata” is used to augment a standard GNSS/INS system. The conventional methods for multi-sensor integration can be classified as being either in the form of centralized Kalman filtering (CKF), or decentralized Kalman filtering. However, these two filtering architectures are not always ideal for real-world applications. To satisfy both accuracy and reliability requirements, these three integration algorithms—CKF, federated Kalman filtering (FKF) and an improved decentralized filtering, known as global optimal filtering (GOF)—are investigated. In principle, the GOF is derived from more information resources than the CKF and FKF algorithms. These three algorithms are implemented in a GPS/Locata/INS integrated navigation system and evaluated using data obtained from a flight test. The experimental results show that the position, velocity and attitude solution derived from the GOF-based system indicate improvements of 30, 18.4 and 20.8% over the CKF- and FKF-based systems, respectively.  相似文献   

18.
The troposphere affects Global Navigation Satellite System (GNSS) signals due to the variability of the refractive index. Tropospheric delay is a function of the satellite elevation angle and the altitude of the GNSS receiver and depends on the atmospheric parameters. If the residual tropospheric delay is not modelled carefully a bias error will occur in the vertical component. In order to analyse the precise altimetric positioning based on a local active network, four scenarios in Southern Spain with different topographical, environmental, and meteorological conditions are presented, considering both favourable and non-favourable conditions. The use of surface meteorological observations allows us to take into account the tropospheric conditions instead of a standard atmosphere, but introduces a residual tropospheric bias which reduces the accuracy of precise GNSS positioning. Thus, with short observation times it is recommended not to estimate troposphere parameters, but to use an a priori model together with the standard atmosphere. The results confirm that it is possible to achieve centimetre-scale vertical accuracy and precision with real time kinematic positioning even with large elevation differences with respect to the nearest reference stations. These numerical results may be taken into consideration for improving the altimetric configuration of the local active network.  相似文献   

19.
智能手机凭借其普遍性、便携性和低成本等优势,已成为大众用户导航与位置服务的主流终端载体,其多频多系统GNSS(global navigation satellite system)观测值的开放进一步激发了手机高精度定位的研究。然而,受限于消费级GNSS器件性能,手机卫星观测值呈现出信号衰减严重、伪距噪声大、粗差周跳多等问题;并且受城市复杂环境影响,手机GNSS定位的连续性、可靠性也难以保证。提出一种城市场景手机GNSS/ MEMS(micro-electro mechanical system)融合的车载高精度定位方案。首先,构建了速度约束的GNSS差分定位模型;然后,通过手机内置MEMS与车辆运动约束,在挑战环境下进行GNSS/MEMS融合精密定位。实验结果表明,在开阔和树荫场景下,速度约束方法可达到分米至米级定位精度,相比于常规方法分别提升了35.2%和78.9%;在高架场景下,GNSS/MEMS融合定位的精度和连续性均提升显著;在隧道场景下,MEMS推算位置累积误差约为2.5%。实验结果初步表明,手机GNSS具备开阔环境下的车道级定位能力,手机GNSS/MEMS融合可提升城市复杂环境下车载定位的精度和连续可用性。  相似文献   

20.
随着全球卫星导航系统(GNSS)的发展和移动通信技术的进步,用户对位置服务(LBS)提出了更高的要求. 本文采用市面上常见的两部Android智能手机采集GNSS数据,对Android智能手机伪距单点定位(SPP)和单频精密单点定位(PPP)算法进行研究,分析了在不同条件下智能手机的SPP、单频PPP定位性能. 结果表明:在使用多普勒平滑伪距和信噪比随机模型的基础上,Android智能手机GPS单系统的SPP定位精度可达3 m,GPS、Galileo、GLONASS、北斗卫星导航系统(BDS)四系统定位精度可达亚米级. 在单频PPP静态定位中,在GPS单系统下,定位精度仅能达到米级,且收敛时间较长;在GPS、Galileo、GLONASS、BDS四系统下,定位精度可达亚米级,且平面方向可在40 min内收敛. 在单频PPP动态定位中,手机的定位精度仅能达到米级.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号