首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we used Landsat-8 imagery to test object- and pixel-based image classification approaches in an urban fringe area. For object-based classification, we applied four machine learning classifiers: decision tree (DT), naive Bayes (NB), random trees (RT), and support vector machine (SVM). For pixel-based classification, we utilized the maximum likelihood classifier (MLC). Specifically, we explored the influence of repeated sampling on classification results with different training sample sizes. We found that (1) except the overall accuracy of NB, those of the other four classifiers increased as the training sample size increased; (2) repeated sampling had a significant effect on classification accuracy, especially for the DT and NB classifiers; and (3) SVM achieved the best classification accuracy. In addition, the performance of the object-based classifiers was superior to that of the pixel-based classifier. The results of this study can provide guidance on the training sample size and classifier selection.  相似文献   

2.
对比研究了平行六面体、最近邻分类法、最大似然法、神经网络等经典分类算法以及近年来新发展的支持向量机分类算法在基于分割对象的高分辨率遥感图像分类中的性能,详细分析了不同内积核函数对于支持向量机分类的影响。对两个试验区进行试验的结果表明,支持向量机分类算法分类精度得到明显改善,同时分类结果受参数、样本选择等影响较小,稳定性好。  相似文献   

3.
提出了一种基于误差分析的组合分类器,通过结合两种监督分类方法,提出的算法分别估计了两种监督分类方法在计算过程中的误差,给出了规则输出的置信区间,再根据置信区间的大小对两种分类方法的输出结果进行加权平均,从而得到更精确的规则输出.利用该方法对遥感图像进行分类实验,在不同训练样本分布与不同训练样本数量的情况下,比较新的组合分类器与单一分类器的精度.结果表明新的组合分类器能够取得比单一的分类器更高的分类精度.结果还显示出,两个分类器的独立性越强,组合分类器的效果越好.另外一个实验比较了新的组合分类器与和式规则组合分类器的分类精度,结果仍显示出了新方法的优越性.  相似文献   

4.
A fuzzy ARTMAP classifier is adopted for a classification experiment of CBERS-2 imagery. The fundamental theory and processing about the algorithm are first introduced, followed with a land-use classification experiment in Shihezi County on CBERS-2 high resolution imagery. Three classifiers are compared: maximum likelihood classifier (MLC), error back propagation (BP) classifier, and fuzzy ARTMAP classifier. The comparison shows comparably better results for the fuzzy ARTMAP classifier, with overall classification accuracy of 9.9% and 4.6% higher than that of MLC and BP. The results also prove that the fuzzy ARTMAP classifier has better discernment in identifying bare soil on CBERS-2 imagery.  相似文献   

5.
A fuzzy ARTMAP classifier is adopted for a classification experiment of CBERS-2 imagery. The fundamental theory and processing about the algorithm are first introduced, followed with a land-use classification experiment in Shihezi County on CBERS-2 high resolution imagery. Three classifiers are compared: maximum likelihood classifier (MLC), error back propagation (BP) classifier, and fuzzy ARTMAP classifier. The comparison shows comparably better results for the fuzzy ARTMAP classifier, with overall classification accuracy of 9.9% and 4.6% higher than that of MLC and BP. The results also prove that the fuzzy ARTMAP classifier has better discernment in identifying bare soil on CBERS-2 imagery.  相似文献   

6.
This article presents the use of kernel functions in fuzzy classifiers for an efficient land use/land cover mapping. It focuses on handling mixed pixels obtained from a remote sensing image by considering non-linearity between class boundaries. It uses kernel functions combined with the conventional fuzzy c-means (FCM) classifier. Kernel-based fuzzy c-mean classifiers were applied to classify AWiFS and LISS-III images from Resourcesat-1 and Resourcesat-2 satellites. Optimal kernels were obtained from eight single kernel functions. Fractional images generated from high resolution LISS-IV image were used as reference data. Classification accuracy of the FCM classifier increased with 12.93%. Improvement in overall accuracy shows that non-linearity in the dataset was handled adequately. The inverse multiquadratic kernel and the Gaussian kernel with the Euclidean norm were identified as optimal kernels. The study showed that overall classification accuracy of the FCM classifier improved if kernel functions were included.  相似文献   

7.
In this study we explored the potential of open source data mining software support to classify freely available Landsat image. The study identified several major classes that can be distinguished using Landsat data of 30 m spatial resolution. Decision tree classification (DTC) using Waikato environment for knowledge analysis (WEKA), open source software is used to prepare land use land cover (LULC) map and the result is compared with supervised (maximum likelihood classifier – MLC) and unsupervised (Iterative self-organizing data analysis technique - ISODATA clustering) classification techniques. The accuracy assessment indicates highest accuracy of the map prepared using DTC with overall accuracy (OA) 92 % (kappa = 0.90) followed by MLC with OA 88 % (kappa = 0.84) and ISODATA OA 76 % (kappa = 0.69). Results indicate that data set with a good definition of training sites can produce LULC map having good overall accuracy using decision tree. The paper demonstrates utility of open source system for information extraction and importance of DTC algorithm.  相似文献   

8.
用模糊ARTMAP算法对CBERS-2数据进行分类   总被引:3,自引:0,他引:3  
用模糊ARTMAP(fuzzy adaptive resonance theorymap)神经网络算法对CBERS-2数据进行了分类实践。首先介绍了模糊ARTMAP神经网络的算法原理和具体训练分类过程;然后用2004年9月新疆石河子地区的影像数据进行土地利用分类试验,并将分类结果与基于统计的最大似然法(MLC)、反向传播神经网络(BP)的分类结果作比较,总分类精度比MLC和BP算法分别提高9.9%和4.6%。结果表明,模糊ARTMAP对试验区CBERS-2影像上的裸地识别能力很强,对高分辨率的CBERS-2影像可获得很好的分类结果。  相似文献   

9.
Feature selection methods play an important role in Hyperspectral Remote Sensing applications, especially in classification. This paper proposed a new Feature selection strategy for Hyperspectral dataset. This strategy was designed to help refine vegetation classification of 4 categories with 13 species vegetation which are the most common species in central China. An ASD field spectrometer (Analytical Spectral Device) was used to collect spectrum information of plant leaves from each species through 400 nm to 900 nm with 1 nm spectral resolution. Firstly, correlation between the physical/chemical characteristics of the leaves and the separability of each vegetation species was tested. Then, two feature selection methods, spectral angle and spectral distance, and the feature parameters extracted from spectral curves (FPESC) were used to build the feature space which would be the input space for the classifiers. At last, two linear classifiers, mahalanobis distance (MDC), and fisher linear discriminate analysis (FLDA), and a quadratic classifier, maximum likelihood (MLC), were used for vegetation species refine classification. The results showed that (1) there were no significant differences among 13 species on the leaf dry weight (physical parameter) and leaf chlorophyll content (chemical parameter); (2) FPESC of 13 species have distinctive differences and could be ideal features to discriminate these species; (3) The linear classifiers, MDC and FLDA, have better classification results in the experiments compared to the quadratic classifier MLC, where MDC has the highest classification accuracy which is above 96.2 %.  相似文献   

10.
条件随机场模型约束下的遥感影像模糊C-均值聚类算法   总被引:2,自引:1,他引:1  
王少宇  焦洪赞  钟燕飞 《测绘学报》2016,45(12):1441-1447
遥感影像具有丰富的空间相关信息,而传统的基于像元光谱的聚类算法并不能将空间信息融入聚类,聚类结果往往不好。针对这一问题,本文提出了一种条件随机场模型约束下的模糊C-均值聚类算法,通过邻域像元的分类先验信息对中心像元的类别进行约束从而提取空间相关信息,基于二阶条件随机场将光谱信息和空间相关信息同时融入聚类,并使用环形置信度迭代算法得到像元分类后验概率的全局最优推测。试验证明,本文算法能够有效地保持地物的形状特征,分类精度相比传统算法有所提高。  相似文献   

11.
In mapping the forest–woodland–savannah mosaic of Budongo Forest Reserve, Uganda, four classification methods were compared, i.e. Maximum Likelihood classifier (MLC), Spectral Angle Mapper (SAM), Maximum Likelihood combined with an Expert System (MaxExpert) and Spectral Angle Mapper combined with an Expert System (SAMExpert). The combination of conventional classifiers with an Expert System proved to be an effective approach for forest mapping. This was also the first time that the SAMExpert had been used in the mapping of tropical forests. SAMExpert not only maps with high accuracy, but is also fast and easy to use, making it attractive for use in less developed countries. Another advantage is that it can be executed on a standard PC set up for image processing.Combining the conventional classifiers (MLC and SAM) with the Expert System significantly improved the classification accuracy. The highest overall accuracy (94.6%) was obtained with SAMExpert. The MaxExpert approach yielded a map with an accuracy of 85.2%, which was also significantly higher than that obtained using the conventional MLC approach.The SAMExpert classifier accurately mapped individual classes. Of the four classes of woodland mapped, the Open Woodland (with Terminalia) and Wooded Grassland classes were more accurately mapped using SAMExpert. The Open Woodland had been previously identified by ecologists, but had never been mapped.  相似文献   

12.
AdaBoost算法利用每个特征构造一个简单分类器,然后将简单分类器进行训练组合成一个强分类器。算法能够充分利用每个分类器的优势并避免其劣势,得到一个最佳判别,达到提高分类精度的目的。本文利用TM影像,将影像各波段灰度、水体指数和谱间关系特征相结合,构成提取水体的强分类器,实现水体提取。实验结果表明,算法能够非常有效地、高精度地提取水体信息。  相似文献   

13.
Composite kernels for hyperspectral image classification   总被引:8,自引:0,他引:8  
This letter presents a framework of composite kernel machines for enhanced classification of hyperspectral images. This novel method exploits the properties of Mercer's kernels to construct a family of composite kernels that easily combine spatial and spectral information. This framework of composite kernels demonstrates: 1) enhanced classification accuracy as compared to traditional approaches that take into account the spectral information only: 2) flexibility to balance between the spatial and spectral information in the classifier; and 3) computational efficiency. In addition, the proposed family of kernel classifiers opens a wide field for future developments in which spatial and spectral information can be easily integrated.  相似文献   

14.
潘欣  张树清  李晓峰  那晓东  于欢 《遥感学报》2009,13(6):1163-1176
提出了一种基于粗集属性划分的遥感分类新方法, 构造了基于粗集的集成遥感分类器。该分类器利用粗集理论将输入的属性集合划分为多个约减, 利用这些约减构造多个训练子集。每个训练子集训练神经网分类器, 在决策时将多个单个分类器的结果进行投票选举。这种方法即减少了单个分类器的输入属性个数, 又避免了由于属性选取造成单一分类器在某些分类上的错误偏见。该分类器与神经网分类器方法, 以及属性选取与神经网结合方法进行了比较。结果表明RSEC无论在分类精度上, 还是在不同样本个数条件下的精度稳定程度上均有较好表现。  相似文献   

15.
Automatic extraction of urban features from high resolution satellite images is one of the main applications in remote sensing. It is useful for wide scale applications, namely: urban planning, urban mapping, disaster management, GIS (geographic information systems) updating, and military target detection. One common approach to detecting urban features from high resolution images is to use automatic classification methods. This paper has four main objectives with respect to detecting buildings. The first objective is to compare the performance of the most notable supervised classification algorithms, including the maximum likelihood classifier (MLC) and the support vector machine (SVM). In this experiment the primary consideration is the impact of kernel configuration on the performance of the SVM. The second objective of the study is to explore the suitability of integrating additional bands, namely first principal component (1st PC) and the intensity image, for original data for multi classification approaches. The performance evaluation of classification results is done using two different accuracy assessment methods: pixel based and object based approaches, which reflect the third aim of the study. The objective here is to demonstrate the differences in the evaluation of accuracies of classification methods. Considering consistency, the same set of ground truth data which is produced by labeling the building boundaries in the GIS environment is used for accuracy assessment. Lastly, the fourth aim is to experimentally evaluate variation in the accuracy of classifiers for six different real situations in order to identify the impact of spatial and spectral diversity on results. The method is applied to Quickbird images for various urban complexity levels, extending from simple to complex urban patterns. The simple surface type includes a regular urban area with low density and systematic buildings with brick rooftops. The complex surface type involves almost all kinds of challenges, such as high dense build up areas, regions with bare soil, and small and large buildings with different rooftops, such as concrete, brick, and metal.Using the pixel based accuracy assessment it was shown that the percent building detection (PBD) and quality percent (QP) of the MLC and SVM depend on the complexity and texture variation of the region. Generally, PBD values range between 70% and 90% for the MLC and SVM, respectively. No substantial improvements were observed when the SVM and MLC classifications were developed by the addition of more variables, instead of the use of only four bands. In the evaluation of object based accuracy assessment, it was demonstrated that while MLC and SVM provide higher rates of correct detection, they also provide higher rates of false alarms.  相似文献   

16.
山区植被类型信息提取方法研究   总被引:3,自引:0,他引:3  
根据遥感图像的光谱信息和空间信息特征及不同植被的分布规律,研究利用计算机处理技术提取山区植被类型的方法。分类过程采用四个步骤完成:①均一目标的象限四分树提取分类;②多光谱数据的最小距离分类;③综合利用波谱曲线的形态和地形数据进行分类;④高程数据修正分类。在分类处理过程中,分别利用了图像的空间信息、光谱信息以及地形数据。利用该分类方法在实验小区内进行植被类型提取试验,其精度为90%.与最大似然分类方法所得结果相比较,其分类精度提高了10%.  相似文献   

17.
本文主要是探索Landsat TM数据不同辐射校正方法对土地覆盖遥感分类的影响。介绍了使用的3种不同辐射校正方法(ATCOR3、FLAASH以及查找表)和两种分类算法。在分类实验部分,根据样本的地理坐标在3景校正影像中分别采集训练样本并训练各自的分类器,并交叉用于其他辐射校正影像的土地覆盖遥感分类。实验结果表明:(1)用于分类器训练的样本采集自待分类影像时的分类精度明显高于采集自其他影像的分类精度;(2)3种辐射校正影像的分类结果存在差异,其中使用ATCOR3和FLAASH方法校正后影像的分类结果有更相近的精度;(3)辐射校正对分类类别的影响不同,其中对森林类型影响最大,对裸地等其他类别影响相对较小。  相似文献   

18.
The accuracy of cotton crop classification using satellite data has been assessed with respect to a detailed land cover map prepared by field survey. The effect of spatial resolution on classification accuracy was studied using LISS-I (spatial resolution 72.6 m) and LISS-II data (spatial resolution 36.25 m) of the Indian remote sensing satellite IRS-1B. The performances of the maximum likelihood and the minimum distance to mean as classifiers have also been assessed. LISS-II data have been found to give a higher classification accuracy. The estimate of cotton acreage using LISS-II data was closer to that obtained from the base map. The maximum likelihood classifier (MXL) and the minimum distance to mean (MDM) classifier performed equally well.  相似文献   

19.
The study investigates the performance of image classifiers for landscape-scale land cover mapping and the relevance of ancillary data for the classification success in order to assess and to quantify the importance of these components in image classification. Specifically tested are the performance of maximum likelihood classification (MLC), artificial neural networks (ANN) and discriminant analysis (DA) based on Landsat7 ETM+ spectral data in combination with topographic measures and NDVI. ANN produced high accuracies of more than 75% also with limited input information, while MLC and DA produced comparable results only by incorporating ancillary data into the classification process. The superiority of ANN classification was less pronounced on the level of the single land cover classes. The use of ancillary data generally increased classification accuracy and showed a similar potential for increasing classification accuracy than the selection of the classifier. Therefore, a stronger focus on the development of appropriate and optimised sets of input variables is suggested. Also the definition and selection of land cover classes has shown to be crucial and not to be simply adaptable from existing land cover class schemes. A stronger research focus towards discriminating land cover classes by their typical spectral, topographic or seasonal properties is therefore suggested to advance image classification.  相似文献   

20.
Accurate classification of heterogeneous land surfaces with homogeneous land cover classes is a challenging task as satellite images are characterized by a large number of features in the spectral and spatial domains. The identifying relevance of a feature or feature set is an important task for designing an effective classification scheme. Here, an ensemble of random forests (RF) classifiers is realized on the basis of relevance of features. Correlation‐based Feature Selection (CFS) was utilized to assess the relevance of a subset of features by studying the individual predictive ability of each feature along with the degree of redundancy between them. Predictability of RF was greatly improved by random selection of the relevant features in each of the splits. An investigation was carried out on different types of images from the Landsat Enhanced Thematic Mapper Plus (Landsat ETM+) and QuickBird sensors. It has been observed that the performance of the RF classifier was significantly improved while using the optimal set of relevant features compared with a few of the most advanced supervised classifiers such as maximum likelihood classifier (MLC), Navie Bayes, multi‐layer perception (MLP), support vector machine (SVM) and bagging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号