首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
提出了一种基于交叉累积剩余熵的星载激光测高仪大光斑波形数据与地形匹配方法。根据星载激光测高仪大光斑回波波形信号包含地形结构信息的特性,将激光回波波形数据和数字表面模型(DSM)投影到统计特征空间,建立数据的统计特征向量,消除数据间维度差异,以交叉累积剩余熵为相似性测度匹配波形数据与地形的统计特征。试验结果表明,本方法能够较好地实现激光回波波形数据与地形的匹配,匹配精度达到一个像素以内。  相似文献   

2.
大光斑激光雷达数据已广泛应用于森林冠层高度提取,但通常仅限于地形坡度小于20°的平缓地区。在地形坡度大于20°的陡峭山区,地形引起的波形展宽使得地面回波和植被回波信息混合在一起,给森林冠层高度提取带来巨大挑战。本文利用激光雷达回波模型和地形信息,提出了一种模型辅助的坡地森林冠层高度反演算法。该方法以激光雷达回波信号截止点为参考,定义了波形高度指数H50和H75,使用激光雷达回波模型与已知地形信息模拟裸地的激光雷达回波,将裸地回波信号截止点与森林激光雷达回波信号截止点对齐,利用裸地回波计算常用的波形相对高度指数RH50和RH75,对森林冠层高度进行反演。并与高斯波形分解法和波形参数法的反演结果进行了比较。研究结果表明:(1)利用所提取的波形指数RH50和RH75对胸高断面积加权平均高(Lorey’s height)进行了估算,在坡度小于20°时,高斯波形分解法、波形参数法和模型辅助法的估算结果与实测值线性拟合的相关系数(R2)分别为0.70,0.78和0.98,对应的均方根误差(RMSE)分别为2.90 m,2.48 m和0.60 m,模型辅助法略优于其他两种方法;(2)在坡度大于20°时,高斯波形分解法、波形参数法和模型辅助法的R2分别为0.14,0.28和0.97,相应的RMSE分别为4.93 m,4.53 m和0.81 m,模型辅助法明显优于其他两种方法;(3)在0°—40°时,模型辅助法对Lorey’s height估算结果与实测值的R2为0.97,RMSE为0.80 m。本研究提出的模型辅助法具有更好的地形适应性,在0°—40°的坡度范围内具备对坡地森林冠层高度反演的潜力。  相似文献   

3.
针对全波激光雷达(LiDAR)数据在坡地森林高度估测中的应用,该文提出利用地形参数估测树高的方法。首先以ICESat-GLAS大光斑全波形数据为数据源,利用指数加权和形式建立全波LiDAR波形的理想数据模型,并采用最小二乘法求解该理想模型;其次,利用阈值法确定有效波形的始末位置,进而得到有效波形的波形长度,并据此估计地形起伏参数;结合光斑直径、波形长度、地形起伏参数以及地表展宽程度,建立树高估测模型。以黑龙江省大兴安岭为实验研究区,估测树高与实际测量值之间的相关系数为0.926 2。实验结果表明:针对地形坡度等外在因素影响,利用波形本身特征参数,能有效量化地形因素的影响,并能有效解决地形复杂地区树木高度估测问题。  相似文献   

4.
林木空间格局对大光斑激光雷达波形的影响模拟   总被引:5,自引:1,他引:5  
庞勇  孙国清  李增元 《遥感学报》2006,10(1):97-103
激光雷达是近年来国际上发展十分迅速的主动遥感技术,在森林参数的定量测量和反演上取得了成功应用。激光雷达具有与被动光学遥感不同的成像机理,对植被空间结构和地形的探测能力很强。大光斑激光雷达系统一般指光斑直径在8—70m、连续记录激光回波波形的激光雷达系统。由于大光斑连续回波的激光雷达的光斑尺寸通常大于林木冠幅,波形中往往包含了森林冠层和许多森林元素的信息而不仅仅是单株树的信息。对于搭载在ICESAT卫星上的GLAS而言,光斑直径为70m,因此光斑对应着一片森林,包括很多棵树,在GLAS的激光光斑内树木的空间分布会有一定变化。同时激光雷达发射的脉冲信号在激光光斑内的分布也不均匀,而是从中心到边缘呈递减的分布。因此树木空间分布模式的变化对波形会产生一定的影响。通过对几种典型的树木空间格局进行模拟(包括规则分布、均匀(随机)分布和集群分布),假定激光光斑内能量呈高斯分布,模拟了各种树木分布模式林分的激光雷达信号。从模拟结果可见,森林的空间分布模式对大光斑激光雷达波形有明显的影响,对于波形面积(AWAV)和波形半能量高度(HOME),规则分布〉随机分布〉团状分布。其中对于HOME而言,规则分布和随机分布十分接近,而对于AWAV而言,聚集中心的变动不太敏感。  相似文献   

5.
激光雷达森林参数反演研究进展   总被引:6,自引:0,他引:6  
李增元  刘清旺  庞勇 《遥感学报》2016,20(5):1138-1150
激光雷达通过发射激光能量和接收返回信号的方式,来获取高精度的森林空间结构和林下地形信息。全波形激光雷达通过记录返回信号的全部能量,得到亚米级植被垂直剖面;离散回波激光雷达记录的单个或多个回波,表示来自不同冠层的回波信号。星载激光雷达一般采用全波形或光子计数激光剖面系统,仅能获取卫星轨道下方的单波束或多波束数据,用于区域/全球范围的森林垂直结构及变化观测。机载激光雷达多采用离散回波或全波形激光扫描系统,能够获取飞行轨迹下方特定视场范围内的扫描数据,用于林分/区域范围的森林结构观测。地基激光雷达多采用离散回波激光扫描系统,获取以测站为中心的球形空间内扫描数据,用于单木/样地范围的森林结构观测。激光雷达单木因子估测方法可分为CHM单木法、NPC单木法和体元单木法3类。CHM单木法通过局部最大值识别树冠顶点,采用区域生长或图像分割算法识别树冠边界或树冠主方向,NPC单木法一般通过空间聚类或形态学算法识别单木,体元单木法在3维体元空间采用区域生长或空间聚类算法识别树冠。根据激光雷达冠层高度分布可以估测林分因子,冠层高度分布特征来自于离散点云或全波形。多时相激光雷达可用于森林生长量、生物量变化等监测,以及森林采伐、灾害等引起的结构变化监测。随着激光雷达技术的发展,它将在森林调查、生态环境建模等生产与科学研究领域中得到更为广泛的应用。  相似文献   

6.
张智宇  王虹  张文豪  黄科  周辉  马跃  李松 《测绘学报》2018,47(2):142-152
目前激光星载激光测高仪已被广泛应用于植被目标特征的提取,证明了激光雷达在林业行业的巨大应用潜力。植被目标的回波波形复杂,本文提出了一种基于半解析法植被目标的回波仿真模型,可以较好地仿真特定输入参数产生的波形。使用GLAS测高系统经过大兴安岭区域的激光波形和实地林木样地参数为依据,仿真波形与GLAS回波的相关系数R2均达到0.91以上。利用回波仿真模型定量控制如冠层几何形状、区域坡度、地面粗糙度和林下植被的变化并快速获取大量波形的优势,独立地分析每个因素对回波波形的影响,为植被目标反演的数据源选取及对回波波形展宽的分析提供指导意见。  相似文献   

7.
地面LiDAR数据模拟及单木LAI反演   总被引:1,自引:0,他引:1  
地面激光雷达Li DAR可以快速获取高精度、高密度的点云数据,在植被结构参数获取方面的应用越来越广泛。为了定量分析地面激光雷达点云数据获取单木结构参数的能力和精度,本文提出利用光线跟踪结合植被真实结构模拟地面3维激光扫描仪的单木点云数据(以RIEGL VZ-1000为例),并结合间隙率模型反演单木叶面积指数LAI。在点云模拟过程中,充分考虑了脉冲特性,包括光斑大小、波束发射角以及回波探测强度。重点分析了光斑大小和最小探测强度对LAI反演的影响,并采用根河实测单木数据进行了验证。结果表明,光斑大小和最小探测强度的设定对于LAI反演结果存在很大影响,该结论对于提高地面激光雷达点云数据反演植被结构参数精度具有重要意义。  相似文献   

8.
机载LiDAR测深ALB(Airborne LiDAR Bathymetry)是测量沿海地区地形图和水深图的最有效的技术之一,其通常是利用ALB海面和海底反射回波的峰值位置来计算水深值。然而,当绿色(532 nm)激光光束到达海底时,光斑范围内的具有坡度的海底地形会导致海底反射回波波形展宽、峰值位置偏移等现象,从而产生海底位置的不确定性,进而直接影响海底地形测量的准确性。为了减小这种影响,本文提出了一种机载LiDAR测深的海底地形坡度影响改正方法。通过考虑ALB激光光斑内海底地形的连续性,基于ALB激光光斑范围内局部地形参数模型FTPM(Footprint-scale Topography Parameters Model)构建ALB海底反射回波模型,通过定量分析不同水深、不同海底地形坡度所引起的海底反射回波峰值位置变化,以确定海底地形坡度对ALB测深的影响规律,进而构建ALB测深误差方程针对性地改正海底地形坡度引起的测深误差。本文采用中国南海甘泉岛附近海域所测ALB和多波束测深数据对所提方法进行了验证。结果表明,海底地形坡度影响改正后,平均绝对误差MAE(Mean Absolute Error)和中误差RMSE(Root Mean Square Error)分别减小到9.4 cm和12.3 cm,较改正前分别降低了35.6%和33.5%,对ALB测深数据处理具有参考意义。  相似文献   

9.
李鑫  廖鹤  赵美玲  周文龙  曹水艳  周世宏 《测绘学报》2014,43(12):1238-1244
针对斜坡地形、台阶地形和植被地貌、分界地貌建立了4种基本模型,研究了不同的地表空间起伏和反射率分布对回波信号时空分布特性的影响,并采用蒙特卡罗方法仿真了4种模型下Geiger探测模式星载激光雷达的高程测量精度,发现:地形起伏主要影响回波信号的时间分布特性,统计条件下可以消除测量误差;回波信号空间分布特性变化主要由地貌(反射率)的变化引起,误差较小可以忽略.研究结果表明:激光三维测绘卫星对垂直陡变地形(如城市建筑)、斜坡地形(如山坡)、分界地貌(如水陆分界)和折射率起伏地貌(如植被地貌等)具有良好的探测能力.  相似文献   

10.
张良  姜晓琦  周薇薇  张帆 《测绘科学》2018,(3):148-153,160
针对传统的LM波形分解算法在GLAS大光斑波形数据处理中容易陷于局部最优解,限制了GLAS大光斑激光雷达数据在森林结构参数反演方面应用的问题,该文结合GLAS大光斑数据特征,引进优化后的EM算法对大光斑全波形数据进行分解,获取波形参数最优值。结合波形前缘长度和波形后缘长度,建立树高反演模型,并与LM分解算法建立的模型进行对比分析。研究结果表明,通过改进的EM算法对GLAS大光斑激光雷达数据进行处理,波形特征参数的获取更为精确,达到了较高的树高反演精度。  相似文献   

11.
Due to its measurement principle, light detection and ranging (lidar) is particularly suited to estimate the horizontal as well as vertical distribution of forest structure. Quantification and characterization of forest structure is important for the understanding of the forest ecosystem functioning and, moreover, will help to assess carbon sequestration within forests. The relationship between the signal recorded by a lidar system and the canopy structure of a forest can be accurately characterized by physically based radiative transfer models (RTMs). A three-dimensional RTM is capable of representing the complex forest canopy structure as well as the involved physical processes of the lidar pulse interactions with the vegetation. Consequently, the inversion of such an RTM presents a novel concept to retrieve biophysical forest parameters that exploits the full lidar signal and underlying physical processes. A synthetic dataset and data acquired in the Swiss National Park (SNP) successfully demonstrated the feasibility and the potential of RTM inversion to retrieve forest structure from large-footprint lidar waveform data. The SNP lidar data consist of waveforms generated from the aggregation of small-footprint lidar returns. Derived forest biophysical parameters, such as fractional cover, leaf area index, maximum tree height, and the vertical crown extension, were able to describe the horizontal and vertical forest canopy structure.  相似文献   

12.
对目标空间三维—光谱信息的高分辨一体化获取与应用,是对地观测技术发展的前沿科学问题。结合高光谱成像与激光雷达测距的技术优势,对地观测多光谱/高光谱激光雷达遥感技术手段应运而生,并成为遥感技术未来发展的重要方向。本文分3个阶段详细回顾了对地观测高光谱激光雷达系统的发展历程,并针对其独有数据类型阐述了数据处理研究方面的探索研究。最后,重点分析了高光谱激光雷达在测绘领域、农林业领域的重大应用潜力,展望了未来对地观测高光谱激光雷达发展面临的机遇和挑战。  相似文献   

13.
Retracking considerations in spaceborne GNSS-R altimetry   总被引:1,自引:0,他引:1  
The European Space Agency Passive Reflectometry and Interferometry System In-orbit Demonstrator (IoD) aims to perform mesoscale altimetric observations by measuring the Global Navigation Satellite System (GNSS) opportunity signals reflected over the sea surface. Altimetry based on GNSS reflectometry (GNSS-R) is significantly affected by satellite motion, since it requires relatively long integration times to reduce noise. We present the impact of the satellite motion on the GNSS-R observables and the need to retrack the waveforms. By using a detailed GNSS-R space mission simulator, the change of delay difference between the direct and the reflected signals during the incoherent averaging of the waveform has been investigated. Their effects on the waveform shape and the altimetric performance are presented comparing the aligned and non-aligned waveforms. Results show that the performance of spaceborne GNSS-R altimeter is seriously degraded without a proper alignment of the waveform samples.  相似文献   

14.
Airborne lidar systems have become a source for the acquisition of elevation data. They provide georeferenced, irregularly distributed 3D point clouds of high altimetric accuracy. Moreover, these systems can provide for a single laser pulse, multiple returns or echoes, which correspond to different illuminated objects. In addition to multi-echo laser scanners, full-waveform systems are able to record 1D signals representing a train of echoes caused by reflections at different targets. These systems provide more information about the structure and the physical characteristics of the targets. Many approaches have been developed, for urban mapping, based on aerial lidar solely or combined with multispectral image data. However, they have not assessed the importance of input features. In this paper, we focus on a multi-source framework using aerial lidar (multi-echo and full waveform) and aerial multispectral image data. We aim to study the feature relevance for dense urban scenes. The Random Forests algorithm is chosen as a classifier: it runs efficiently on large datasets, and provides measures of feature importance for each class. The margin theory is used as a confidence measure of the classifier, and to confirm the relevance of input features for urban classification. The quantitative results confirm the importance of the joint use of optical multispectral and lidar data. Moreover, the relevance of full-waveform lidar features is demonstrated for building and vegetation area discrimination.  相似文献   

15.
The Laser Vegetation Imaging Sensor (LVIS) is an airborne, scanning laser altimeter, designed and developed at NASA's Goddard Space Flight Center (GSFC). LVIS operates at altitudes up to 10 km above ground, and is capable of producing a data swath up to 1000 m wide nominally with 25-m wide footprints. The entire time history of the outgoing and return pulses is digitised, allowing unambiguous determination of range and return pulse structure. Combined with aircraft position and attitude knowledge, this instrument produces topographic maps with dm accuracy and vertical height and structure measurements of vegetation. The laser transmitter is a diode-pumped Nd:YAG oscillator producing 1064 nm, 10 ns, 5 mJ pulses at repetition rates up to 500 Hz. LVIS has recently demonstrated its ability to determine topography (including sub-canopy) and vegetation height and structure on flight missions to various forested regions in the US and Central America. The LVIS system is the airborne simulator for the Vegetation Canopy Lidar (VCL) mission (a NASA Earth remote sensing satellite due for launch in year 2000), providing simulated data sets and a platform for instrument proof-of-concept studies. The topography maps and return waveforms produced by LVIS provide Earth scientists with a unique data set allowing studies of topography, hydrology, and vegetation with unmatched accuracy and coverage.  相似文献   

16.
海陆回波分类是机载激光测深中的一项波形预处理步骤,关系着后续信号检测和点云生成的精度。针对现有海陆回波分类方法不适用于单频机载激光测深系统且自动化程度不高的问题,本文提出一种单频机载激光测深海陆回波自动分类方法:首先,通过首末回波信号检测及点位计算获得回波的点云高程特征;然后,采用高程直方图拟合的方式确定平均水面位置,依据点云高程特征判定大部分回波的海陆属性,对余下的未定回波,仅保留其中的最强信号并统一处理为单信号回波,同时提取波形的信号特征和能量分布特征,依据点云高程特征的相似性自动建立训练样本集;最后,利用支持向量机分类器实现未定回波的分类。采用国产系统Mapper5000采集的实测数据进行试验,结果表明基于首末回波点云的初分类可快速、准确地对远离海陆交界处的回波进行分类,基于波形特征的未定回波分类可在自动建立的训练样本集支持下实现海陆交界处未定回波的高精度分类。与传统方法相比,本文方法无须近红外通道波形和人工样本的辅助就可以达到较高的分类精度,其中总体分类精度可达99.82%,海陆交界处分类精度可达91.59%。  相似文献   

17.
Gaussian decomposition has been used to extract terrain elevation from waveforms of the satellite lidar GLAS (Geoscience Laser Altimeter System), on board ICESat (Ice, Cloud, and land Elevation Satellite). The common assumption is that one of the extracted Gaussian peaks, especially the lowest one, corresponds to the ground. However, Gaussian decomposition is usually complicated due to the broadened signals from both terrain and objects above over sloped areas. It is a critical and pressing research issue to quantify and understand the correspondence between Gaussian peaks and ground elevation. This study uses ~2000 km2 airborne lidar data to assess the lowest two GLAS Gaussian peaks for terrain elevation estimation over mountainous forest areas in North Carolina. Airborne lidar data were used to extract not only ground elevation, but also terrain and canopy features such as slope and canopy height. Based on the analysis of a total of ~500 GLAS shots, it was found that (1) the lowest peak tends to underestimate ground elevation; terrain steepness (slope) and canopy height have the highest correlation with the underestimation, (2) the second to the lowest peak is, on average, closer to the ground elevation over mountainous forest areas, and (3) the stronger peak among the lowest two is closest to the ground for both open terrain and mountainous forest areas. It is expected that this assessment will shed light on future algorithm improvements and/or better use of the GLAS products for terrain elevation estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号